Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Impaired neural stress resistance and loss of REST in bipolar disorder

Abstract

Neurodevelopmental changes and impaired stress resistance have been implicated in the pathogenesis of bipolar disorder (BD), but the underlying regulatory mechanisms are unresolved. Here we describe a human cerebral organoid model of BD that exhibits altered neural development, elevated neural network activity, and a major shift in the transcriptome. These phenotypic changes were reproduced in cerebral organoids generated from iPS cell lines derived in different laboratories. The BD cerebral organoid transcriptome showed highly significant enrichment for gene targets of the transcriptional repressor REST. This was associated with reduced nuclear REST and REST binding to target gene recognition sites. Reducing the oxygen concentration in organoid cultures to a physiological range ameliorated the developmental phenotype and restored REST expression. These effects were mimicked by treatment with lithium. Reduced nuclear REST and derepression of REST targets genes were also observed in the prefrontal cortex of BD patients. Thus, an impaired cellular stress response in BD cerebral organoids leads to altered neural development and transcriptional dysregulation associated with downregulation of REST. These findings provide a new model and conceptual framework for exploring the molecular basis of BD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Increased neuronal gene expression and network activity in BD cerebral organoids.
Fig. 2: Abnormal neural development in BD cerebral organoids.
Fig. 3: Oxygen-related stress and mitochondrial function in BD organoids.
Fig. 4: Reduced REST expression and activity in BD cerebral organoids.
Fig. 5: Lithium modulates the development and neural activity of BD cerebral organoids.
Fig. 6: Nuclear REST is reduced in prefrontal cortical neurons in BD.

Similar content being viewed by others

Data availability

Supplementary information is available at MP’s website.

References

  1. Merikangas KR, Jin R, He J-P, Kessler RC, Lee S, Sampson NA, et al. Prevalence and correlates of bipolar spectrum disorder in the world mental health survey initiative. Arch Gen Psychiatry. 2011;68:241–51.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Mullins N, Forstner AJ, O’Connell KS, Coombes B, Coleman JRI, Qiao Z, et al. Genome-wide association study of more than 40,000 bipolar disorder cases provides new insights into the underlying biology. Nat Genet. 2021;53:817–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kerner B. Genetics of bipolar disorder. Appl Clin Genet. 2014;7:33–42.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Talati A, Bao Y, Kaufman J, Shen L, Schaefer CA, Brown AS. Maternal smoking during pregnancy and bipolar disorder in offspring. Am J Psychiatry. 2013;170:1178–85.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Chudal R, Sourander A, Polo-Kantola P, Hinkka-Yli-Salomäki S, Lehti V, Sucksdorff D, et al. Perinatal factors and the risk of bipolar disorder in Finland. J Affect Disord. 2014;155:75–80.

    Article  PubMed  Google Scholar 

  6. Parboosing R, Bao Y, Shen L, Schaefer CA, Brown AS. Gestational influenza and bipolar disorder in adult offspring. JAMA Psychiatry. 2013;70:677–85.

    Article  PubMed  Google Scholar 

  7. Opel N, Goltermann J, Hermesdorf M, Berger K, Baune BT, Dannlowski U. Cross-disorder analysis of brain structural abnormalities in six major psychiatric disorders: a secondary analysis of mega- and meta-analytical findings from the ENIGMA consortium. Biol Psychiatry. 2020;88:678–86.

    Article  PubMed  Google Scholar 

  8. Pfaffenseller B, Wollenhaupt-Aguiar B, Fries GR, Colpo GD, Burque RK, Bristot G, et al. Impaired endoplasmic reticulum stress response in bipolar disorder: cellular evidence of illness progression. Int J Neuropsychopharmacol. 2014;17:1453–63.

    Article  CAS  PubMed  Google Scholar 

  9. Kapczinski F, Dal-Pizzol F, Teixeira AL, Magalhaes PVS, Kauer-Sant’Anna M, Klamt F, et al. Peripheral biomarkers and illness activity in bipolar disorder. J Psychiatr Res. 2011;45:156–61.

    Article  PubMed  Google Scholar 

  10. Rajkowska G. Cell pathology in bipolar disorder. Bipolar Disord. 2002;4:105–16.

    Article  PubMed  Google Scholar 

  11. Naydenov AV, MacDonald ML, Ongur D, Konradi C. Differences in lymphocyte electron transport gene expression levels between subjects with bipolar disorder and normal controls in response to glucose deprivation stress. Arch Gen Psychiatry. 2007;64:555–64.

    Article  PubMed  Google Scholar 

  12. Lu T, Aron L, Zullo J, Pan Y, Kim H, Chen Y, et al. REST and stress resistance in ageing and Alzheimer’s disease. Nature. 2014;507:448–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ballas N, Grunseich C, Lu DD, Speh JC, Mandel G. REST and its corepressors mediate plasticity of neuronal gene chromatin throughout neurogenesis. Cell. 2005;121:645–57.

    Article  CAS  PubMed  Google Scholar 

  14. Zullo JM, Drake D, Aron L, O’Hern P, Dhamne SC, Davidsohn N, et al. Regulation of lifespan by neural excitation and REST. Nature. 2019;574:359–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cavadas MAS, Mesnieres M, Crifo B, Manresa MC, Selfridge AC, Keogh CE, et al. REST is a hypoxia-responsive transcriptional repressor. Sci Rep. 2016;6:31355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lancaster MA, Renner M, Martin C-A, Wenzel D, Bicknell LS, Hurles ME, et al. Cerebral organoids model human brain development and microcephaly. Nature. 2013;501:373–9.

    Article  CAS  PubMed  Google Scholar 

  17. Soares JC, Boada F, Spencer S, Mallinger AG, Dippold CS, Wells KF, et al. Brain lithium concentrations in bipolar disorder patients: preliminary 7Li magnetic resonance studies at 3 T. Biol Psychiatry. 2001;49:437–43.

    Article  CAS  PubMed  Google Scholar 

  18. Lancaster MA, Corsini NS, Wolfinger S, Gustafson EH, Phillips A, Burkard TR, et al. Guided self-organization and cortical plate formation in human brain organoids. Nat Biotechnol. 2017;35:659–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Giandomenico SL, Mierau SB, Gibbons GM, Wenger LMD, Masullo L, Sit T, et al. Cerebral organoids at the air-liquid interface generate diverse nerve tracts with functional output. Nat Neurosci. 2019;22:669–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Samarasinghe RA, Miranda OA, Buth JE, Mitchell S, Ferando I, Watanabe M, et al. Identification of neural oscillations and epileptiform changes in human brain organoids. Nat Neurosci. 2021;24:1488–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Meyer K, Feldman HM, Lu T, Drake D, Lim ET, Ling K-H, et al. REST and Neural Gene Network Dysregulation in iPSC Models of Alzheimer’s Disease. Cell Rep. 2019;26:1112–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bavamian S, Mellios N, Lalonde J, Fass DM, Wang J, Sheridan SD, et al. Dysregulation of miR-34a links neuronal development to genetic risk factors for bipolar disorder. Mol Psychiatry. 2015;20:573–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yoshimizu T, Pan JQ, Mungenast AE, Madison JM, Su S, Ketterman J, et al. Functional implications of a psychiatric risk variant within CACNA1C in induced human neurons. Mol Psychiatry. 2015;20:162–9.

    Article  CAS  PubMed  Google Scholar 

  24. Sellgren CM, Sheridan SD, Gracias J, Xuan D, Fu T, Perlis RH. Patient-specific models of microglia-mediated engulfment of synapses and neural progenitors. Mol Psychiatry. 2017;22:170–7.

    Article  CAS  PubMed  Google Scholar 

  25. Manji H, Kato T, Di Prospero NA, Ness S, Beal MF, Krams M, et al. Impaired mitochondrial function in psychiatric disorders. Nat Rev Neurosci. 2012;13:293–307.

    Article  CAS  PubMed  Google Scholar 

  26. Cataldo AM, McPhie DL, Lange NT, Punzell S, Elmiligy S, Ye NZ, et al. Abnormalities in Mitochondrial Structure in Cells from Patients with Bipolar Disorder. Am J Pathol. 2010;177:575–85.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Stork C, Renshaw PF. Mitochondrial dysfunction in bipolar disorder: evidence from magnetic resonance spectroscopy research. Mol Psychiatry. 2005;10:900–19.

    Article  CAS  PubMed  Google Scholar 

  28. Dager SR, Friedman SD, Parow A, Demopulos C, Stoll AL, Lyoo IK, et al. Brain metabolic alterations in medication-free patients with bipolar disorder. Arch Gen Psychiatry. 2004;61:450–8.

    Article  CAS  PubMed  Google Scholar 

  29. Mertens J, Wang Q-W, Kim Y, Yu DX, Pham S, Yang B, et al. Differential responses to lithium in hyperexcitable neurons from patients with bipolar disorder. Nature. 2015;527:95–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Stuart JA, Fonseca J, Moradi F, Cunningham C, Seliman B, Worsfold CR, et al. How Supraphysiological oxygen levels in standard cell culture affect oxygen-consuming reactions. Oxid Med Cell Longev. 2018;2018:8238459.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Timpano S, Uniacke J. Human cells cultured under physiological oxygen utilize two cap-binding proteins to recruit distinct mRNAs for translation. J Biol Chem. 2016;291:10772–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lengner CJ, Gimelbrant AA, Erwin JA, Cheng AW, Guenther MG, Welstead GG, et al. Derivation of Pre-X inactivation human embryonic stem cells under physiological oxygen concentrations. Cell. 2010;141:872–83.

    Article  CAS  PubMed  Google Scholar 

  33. Alva R, Gardner GL, Liang P, Stuart JA. Supraphysiological oxygen levels in mammalian cell culture: current state and future perspectives. Cells. 2022;11:3123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dietrich N, Lerdrup M, Landt E, Agrawal-Singh S, Bak M, Tommerup N, et al. REST–mediated recruitment of polycomb repressor complexes in mammalian cells. PLOS Genet. 2012;8:e1002494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mozzetta C, Pontis J, Fritsch L, Robin P, Portoso M, Proux C, et al. The histone H3 lysine 9 methyltransferases G9a and GLP regulate polycomb repressive complex 2-mediated gene silencing. Mol Cell. 2014;53:277–89.

    Article  CAS  PubMed  Google Scholar 

  36. Nosarti C, Reichenberg A, Murray RM, Cnattingius S, Lambe MP, Yin L, et al. Preterm birth and psychiatric disorders in young adult life. Arch Gen Psychiatry. 2012;69:E1–8.

    Article  PubMed  Google Scholar 

  37. Machado-Vieira R. Lithium, stress, and resilience in bipolar disorder: deciphering this key homeostatic synaptic plasticity regulator. J Affect Disord. 2018;233:92–9.

    Article  CAS  PubMed  Google Scholar 

  38. Moon AL, Haan N, Wilkinson LS, Thomas KL, Hall J. CACNA1C: association with psychiatric disorders, behavior, and neurogenesis. Schizophr Bull. 2018;44:958–65.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Stahl EA, Breen G, Forstner AJ, McQuillin A, Ripke S, Trubetskoy V, et al. Genome-wide association study identifies 30 loci associated with bipolar disorder. Nat Genet. 2019;51:793–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hibar DP, Westlye LT, van Erp TGM, Rasmussen J, Leonardo CD, Faskowitz J, et al. Subcortical volumetric abnormalities in bipolar disorder. Mol Psychiatry. 2016;21:1710–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hibar DP, Westlye LT, Doan NT, Jahanshad N, Cheung JW, Ching CRK, et al. Cortical abnormalities in bipolar disorder: an MRI analysis of 6503 individuals from the ENIGMA Bipolar Disorder Working Group. Mol Psychiatry. 2018;23:932–42.

    Article  CAS  PubMed  Google Scholar 

  42. Hanford LC, Nazarov A, Hall GB, Sassi RB. Cortical thickness in bipolar disorder: a systematic review. Bipolar Disord. 2016;18:4–18.

    Article  PubMed  Google Scholar 

  43. Abé C, Liberg B, Song J, Bergen SE, Petrovic P, Ekman CJ, et al. Longitudinal cortical thickness changes in bipolar disorder and the relationship to genetic risk, mania, and lithium use. Biol Psychiatry. 2020;87:271–81.

    Article  PubMed  Google Scholar 

  44. Rubinsztein JS, Fletcher PC, Rogers RD, Ho LW, Aigbirhio FI, Paykel ES, et al. Decision-making in mania: a PET study. Brain. 2001;124:2550–63.

    Article  CAS  PubMed  Google Scholar 

  45. Blumberg HP, Stern E, Martinez D, Ricketts S, de Asis J, White T, et al. Increased anterior cingulate and caudate activity in bipolar mania. Biol Psychiatry. 2000;48:1045–52.

    Article  CAS  PubMed  Google Scholar 

  46. Clark L, Sahakian BJ. Cognitive neuroscience and brain imaging in bipolar disorder. Dialogues Clin Neurosci. 2008;10:153–65.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Chen C-H, Lennox B, Jacob R, Calder A, Lupson V, Bisbrown-Chippendale R, et al. Explicit and implicit facial affect recognition in manic and depressed States of bipolar disorder: a functional magnetic resonance imaging study. Biol Psychiatry. 2006;59:31–9.

    Article  PubMed  Google Scholar 

  48. Malhi GS, Lagopoulos J, Ward PB, Kumari V, Mitchell PB, Parker GB, et al. Cognitive generation of affect in bipolar depression: an fMRI study. Eur J Neurosci. 2004;19:741–54.

    Article  PubMed  Google Scholar 

  49. Gruber SA, Rogowska J, Holcomb P, Soraci S, Yurgelun-Todd D. Stroop performance in normal control subjects: an fMRI study. Neuroimage. 2002;16:349–60.

    Article  PubMed  Google Scholar 

  50. Kronhaus DM, Lawrence NS, Williams AM, Frangou S, Brammer MJ, Williams SCR, et al. Stroop performance in bipolar disorder: further evidence for abnormalities in the ventral prefrontal cortex. Bipolar Disord. 2006;8:28–39.

    Article  PubMed  Google Scholar 

  51. Zhu J, Aja S, Kim E-K, Park MJ, Ramamurthy S, Jia J, et al. Physiological oxygen level is critical for modeling neuronal metabolism in vitro. J Neurosci Res. 2012;90:422–34.

    Article  CAS  PubMed  Google Scholar 

  52. Andreazza AC, Wang J-F, Salmasi F, Shao L, Young LT. Specific subcellular changes in oxidative stress in prefrontal cortex from patients with bipolar disorder. J Neurochem. 2013;127:552–61.

    Article  CAS  PubMed  Google Scholar 

  53. Sun X, Wang J-F, Tseng M, Young LT. Downregulation in components of the mitochondrial electron transport chain in the postmortem frontal cortex of subjects with bipolar disorder. J Psychiatry Neurosci. 2006;31:189–96.

    PubMed  PubMed Central  Google Scholar 

  54. Shi X-F, Kondo DG, Sung Y-H, Hellem TL, Fiedler KK, Jeong E-K, et al. Frontal lobe bioenergetic metabolism in depressed adolescents with bipolar disorder: a phosphorus-31 magnetic resonance spectroscopy study. Bipolar Disord. 2012;14:607–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Chong JA, Tapia-Ramírez J, Kim S, Toledo-Aral JJ, Zheng Y, Boutros MC, et al. REST: a mammalian silencer protein that restricts sodium channel gene expression to neurons. Cell. 1995;80:949–57.

    Article  CAS  PubMed  Google Scholar 

  56. Madison JM, Zhou F, Nigam A, Hussain A, Barker DD, Nehme R, et al. Characterization of bipolar disorder patient-specific induced pluripotent stem cells from a family reveals neurodevelopmental and mRNA expression abnormalities. Mol Psychiatry. 2015;20:703–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Pajarillo E, Rizor A, Son D-S, Aschner M, Lee E. The transcription factor REST up-regulates tyrosine hydroxylase and antiapoptotic genes and protects dopaminergic neurons against manganese toxicity. J Biol Chem. 2020;295:3040–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Warburton A, Savage AL, Myers P, Peeney D, Bubb VJ, Quinn JP. Molecular signatures of mood stabilisers highlight the role of the transcription factor REST/NRSF. J Affect Disord. 2015;172:63–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Corrêa-Velloso JC, Gonçalves MC, Naaldijk Y, Oliveira-Giacomelli Á, Pillat MM, Ulrich H. Pathophysiology in the comorbidity of bipolar disorder and Alzheimer’s disease: pharmacological and stem cell approaches. Prog Neuropsychopharmacol Biol Psychiatry. 2018;80:34–53.

    Article  PubMed  Google Scholar 

  60. Velosa J, Delgado A, Finger E, Berk M, Kapczinski F, de Azevedo Cardoso T. Risk of dementia in bipolar disorder and the interplay of lithium: a systematic review and meta-analyses. Acta Psychiatr Scand. 2020;141:510–21.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank members of the Yankner laboratory for suggestions and discussion, and the Microscopy Resources (MicRoN) core facility at Harvard Medical School for assistance. Bio-samples and/or data for this publication were obtained from NRGR (supported by cooperative agreement U24 MH068457), a centralized national biorepository for genetic studies of psychiatric disorders. Specifically Study 130: Data and biomaterials were collected as part of an in vivo and in vitro study of simvastatin as a modulator of Wnt/GSK3 signaling, supported by National Institutes of Health grant R21MH093958. This study is based at Massachusetts General Hospital. The Principal Investigators were Roy H. Perlis, M.D., MSc. and Stephen J. Haggarty, Ph.D. Study 163: Study participants were consented and enrolled, data and biomaterials were collected, and cell lines were generated at Massachusetts General Hospital as part of an NIMH/NHGRI Center of Excellence in Genomic Science grant (P50MH106933). The Neurobank PI is Roy Perlis, M.D., MSc; key MGH co-investigators included Hannah Brown, M.D., J. Niels Rosenquist, M.D., Ph.D., Steven Sheridan, Ph.D., and Jennifer Wang, Ph.D. The CEGS co-PIs are Isaac Kohane, M.D., Ph.D., and Roy H. Perlis, M.D., MSc.

Funding

This work was supported by NIH grants RO1MH113279 (to BAY) and RF1-AG048029 (to L-HT), and grants from The Ludwig Family Foundation (to BAY), and the Robert and Renee Belfer Family Foundation (to L-HT).

Author information

Authors and Affiliations

Authors

Contributions

KM, KHL, PLY, LA, and AS performed experiments, and MGC assisted in organoid maintenance and calcium imaging. JC and DD performed bioinformatics analysis. TK and LHT generated new iPSC lines. RHP contributed fibroblasts derived from human subjects for iPSC line generation. EAL, JT, and GMC provided consultation on the study. KM and BAY designed experiments and wrote the manuscript, and BAY directed the study.

Corresponding author

Correspondence to Bruce A. Yankner.

Ethics declarations

Competing interests

GMC is a cofounder and senior advisor for GCTherapeutics, Inc., which uses transcription factors for therapeutics. The other authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meyer, K., Ling, KH., Yeo, PL. et al. Impaired neural stress resistance and loss of REST in bipolar disorder. Mol Psychiatry (2023). https://doi.org/10.1038/s41380-023-02313-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41380-023-02313-7

Search

Quick links