Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Decreased mononuclear cell NR3C1 SKA2 and FKPB5 expression levels among adult survivors of suicide bombing terror attacks in childhood are associated with the development of PTSD

Abstract

Life threatening trauma and the development of PTSD during childhood, may each associate with transcriptional perturbation of immune cell glucocorticoid reactivity, yet their separable longer term contributions are less clear. The current study compared resting mononuclear cell gene expression levels of the nuclear receptor, subfamily 3, member 1 (NR3C1) coding the glucocorticoid receptor, its trans-activator spindle and kinetochore-associated protein 2 (SKA2), and its co-chaperon FKBP prolyl isomerase 5 (FKBP5), between a cohort of young adults first seen at the Hadassah Emergency Department (ED) after surviving a suicide bombing terror attack during childhood, and followed longitudinally over the years, and matched healthy controls not exposed to life threatening trauma. While significant reductions in mononuclear cell gene expression levels were observed among young adults for all three transcripts following early trauma exposure, the development of subsequent PTSD beyond trauma exposure, accounted for a small but significant portion of the variance in each of the three transcripts. Long-term perturbation in the expression of immune cell glucocorticoid response transcripts persists among young adults who develop PTSD following life threatening trauma exposure in childhood, denoting chronic dysregulation of immune stress reactivity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mononuclear cell transcript levels among early trauma vs. non-trauma exposed controls.
Fig. 2: Mononuclear cell transcript levels among subjects exposed to early trauma who did or did not develop PTSD, and non-trauma exposed controls.

Similar content being viewed by others

References

  1. van Bodegom M, Homberg JR, Henckens M. Modulation of the hypothalamic-pituitary-adrenal axis by early life stress exposure. Front Cell Neurosci. 2017;11:87.

    PubMed  PubMed Central  Google Scholar 

  2. Danese A, McEwen BS. Adverse childhood experiences, allostasis, allostatic load, and age-related disease. Physiol Behav. 2012;106:29–39.

    PubMed  CAS  Google Scholar 

  3. Cattane N, Vernon AC, Borsini A, Scassellati C, Endres D, Capuron L, et al. European College of Neuropsychopharmacology ImmunoNeuroPsychiatry Thematic Working G. Preclinical animal models of mental illnesses to translate findings from the bench to the bedside: Molecular brain mechanisms and peripheral biomarkers associated to early life stress or immune challenges. Eur Neuropsychopharmacol. 2022;58:55–79.

    PubMed  CAS  Google Scholar 

  4. Wieck A, Grassi-Oliveira R, Hartmann do Prado C, Teixeira AL, Bauer ME. Neuroimmunoendocrine interactions in post-traumatic stress disorder: focus on long-term implications of childhood maltreatment. Neuroimmunomodulation. 2014;21:145–51.

    PubMed  CAS  Google Scholar 

  5. Tursich M, Neufeld RW, Frewen PA, Harricharan S, Kibler JL, Rhind SG, et al. Association of trauma exposure with proinflammatory activity: a transdiagnostic meta-analysis. Transl Psychiatry. 2014;4:e413.

    PubMed  PubMed Central  CAS  Google Scholar 

  6. Baumeister D, Akhtar R, Ciufolini S, Pariante CM, Mondelli V. Childhood trauma and adulthood inflammation: a meta-analysis of peripheral C-reactive protein, interleukin-6 and tumour necrosis factor-alpha. Mol Psychiatry. 2016;21:642–9.

    PubMed  CAS  Google Scholar 

  7. Lin JE, Neylan TC, Epel E, O’Donovan A. Associations of childhood adversity and adulthood trauma with C-reactive protein: a cross-sectional population-based study. Brain Behav Immun. 2016;53:105–12.

    PubMed  CAS  Google Scholar 

  8. Peruzzolo TL, Pinto JV, Roza TH, Shintani AO, Anzolin AP, Gnielka V, et al. Inflammatory and oxidative stress markers in post-traumatic stress disorder: a systematic review and meta-analysis. Mol Psychiatry. 2022;27:3150–63.

    PubMed  CAS  Google Scholar 

  9. O’Donnell CJ, Schwartz Longacre L, Cohen BE, Fayad ZA, Gillespie CF, et al. Posttraumatic stress disorder and cardiovascular disease: state of the science, knowledge gaps, and research opportunities. JAMA Cardiol. 2021;6:1207–16.

    PubMed  Google Scholar 

  10. Pace TW, Heim CM. A short review on the psychoneuroimmunology of posttraumatic stress disorder: from risk factors to medical comorbidities. Brain Behav Immun. 2011;25:6–13.

    PubMed  CAS  Google Scholar 

  11. Shalev A, Benarroch F, Goltser-Dubner T, Canetti L, Saloner C, Roichman A, et al. Long-term immune alterations accompanying chronic posttraumatic stress disorder following exposure to suicide bomb terror incidents during childhood. Neuropsychobiology. 2017;76:130–5.

    PubMed  CAS  Google Scholar 

  12. Segman RH, Goltser-Dubner T, Weiner I, Canetti L, Galili-Weisstub E, Milwidsky A, et al. Blood mononuclear cell gene expression signature of postpartum depression. Mol Psychiatry. 2010;15:93–100.

    PubMed  CAS  Google Scholar 

  13. Kalla C, Goltser-Dubner T, Pevzner D, Canetti L, Mirman A, Ben-Yehuda A, et al. Resting mononuclear cell NR3C1 and SKA2 expression levels predict blunted cortisol reactivity to combat training stress among elite army cadets exposed to childhood adversity. Mol Psychiatry. 2021;26:6680–7.

    PubMed  CAS  Google Scholar 

  14. Eraly SA, Nievergelt CM, Maihofer AX, Barkauskas DA, Biswas N, Agorastos A, et al. Assessment of plasma C-reactive protein as a biomarker of posttraumatic stress disorder risk. JAMA Psychiatry. 2014;71:423–31.

    PubMed  PubMed Central  CAS  Google Scholar 

  15. van Zuiden M, Geuze E, Willemen HL, Vermetten E, Maas M, Amarouchi K, et al. Glucocorticoid receptor pathway components predict posttraumatic stress disorder symptom development: a prospective study. Biol Psychiatry. 2012;71:309–16.

    PubMed  Google Scholar 

  16. Palma-Gudiel H, Cordova-Palomera A, Leza JC, Fananas L. Glucocorticoid receptor gene (NR3C1) methylation processes as mediators of early adversity in stress-related disorders causality: a critical review. Neurosci Biobehav Rev. 2015;55:520–35.

    PubMed  CAS  Google Scholar 

  17. Romens SE, McDonald J, Svaren J, Pollak SD. Associations between early life stress and gene methylation in children. Child Dev. 2015;86:303–9.

    PubMed  Google Scholar 

  18. Gola H, Engler A, Morath J, Adenauer H, Elbert T, Kolassa IT, et al. Reduced peripheral expression of the glucocorticoid receptor alpha isoform in individuals with posttraumatic stress disorder: a cumulative effect of trauma burden. PLoS One. 2014;9:e86333.

    PubMed  PubMed Central  Google Scholar 

  19. Su TP, Zhang L, Chung MY, Chen YS, Bi YM, Chou YH, et al. Levels of the potential biomarker p11 in peripheral blood cells distinguish patients with PTSD from those with other major psychiatric disorders. J Psychiatr Res. 2009;43:1078–85.

    PubMed  Google Scholar 

  20. Schur RR, Boks MP, Rutten BPF, Daskalakis NP, de Nijs L, van Zuiden M, et al. Longitudinal changes in glucocorticoid receptor exon 1F methylation and psychopathology after military deployment. Transl Psychiatry. 2017;7:e1181.

    PubMed  PubMed Central  CAS  Google Scholar 

  21. Gonzalez Ramirez C, Villavicencio Queijeiro A, Jimenez Morales S, Barcenas Lopez D, Hidalgo Miranda A, Ruiz Chow A, et al. The NR3C1 gene expression is a potential surrogate biomarker for risk and diagnosis of posttraumatic stress disorder. Psychiatry Res. 2020;284:112797.

    PubMed  CAS  Google Scholar 

  22. Labonte B, Azoulay N, Yerko V, Turecki G, Brunet A. Epigenetic modulation of glucocorticoid receptors in posttraumatic stress disorder. Transl Psychiatry. 2014;4:e368.

    PubMed  PubMed Central  CAS  Google Scholar 

  23. Rice L, Waters CE, Eccles J, Garside H, Sommer P, Kay P, et al. Identification and functional analysis of SKA2 interaction with the glucocorticoid receptor. J Endocrinol 2008;198:499–509.

    PubMed  PubMed Central  CAS  Google Scholar 

  24. Guintivano J, Brown T, Newcomer A, Jones M, Cox O, Maher BS, et al. Identification and replication of a combined epigenetic and genetic biomarker predicting suicide and suicidal behaviors. Am J Psychiatry. 2014;171:1287–96.

    PubMed  PubMed Central  Google Scholar 

  25. Boks MP, Rutten BP, Geuze E, Houtepen LC, Vermetten E, Kaminsky Z, et al. SKA2 methylation is involved in cortisol stress reactivity and predicts the development of post-traumatic stress disorder (PTSD) after military deployment. Neuropsychopharmacology. 2016;41:1350–6.

    PubMed  CAS  Google Scholar 

  26. Binder EB. The role of FKBP5, a co-chaperone of the glucocorticoid receptor in the pathogenesis and therapy of affective and anxiety disorders. Psychoneuroendocrinology. 2009;34:S186–95.

    PubMed  CAS  Google Scholar 

  27. Levy-Gigi E, Szabo C, Kelemen O, Keri S. Association among clinical response, hippocampal volume, and FKBP5 gene expression in individuals with posttraumatic stress disorder receiving cognitive behavioral therapy. Biol Psychiatry. 2013;74:793–800.

    PubMed  CAS  Google Scholar 

  28. Yehuda R, Cai G, Golier JA, Sarapas C, Galea S, Ising M, et al. Gene expression patterns associated with posttraumatic stress disorder following exposure to the World Trade Center attacks. Biol Psychiatry. 2009;66:708–11.

    PubMed  CAS  Google Scholar 

  29. Sarapas C, Cai G, Bierer LM, Golier JA, Galea S, Ising M, et al. Genetic markers for PTSD risk and resilience among survivors of the World Trade Center attacks. Dis Markers. 2011;30:101–10.

    PubMed  PubMed Central  Google Scholar 

  30. Szabo C, Kelemen O, Keri S. Changes in FKBP5 expression and memory functions during cognitive-behavioral therapy in posttraumatic stress disorder: a preliminary study. Neurosci Lett. 2014;569:116–20.

    PubMed  CAS  Google Scholar 

  31. Kuan PF, Waszczuk MA, Kotov R, Clouston S, Yang X, Singh PK, et al. Gene expression associated with PTSD in World Trade Center responders: An RNA sequencing study. Transl Psychiatry. 2017;7:1297.

    PubMed  PubMed Central  Google Scholar 

  32. Kuan PF, Yang X, Clouston S, Ren X, Kotov R, Waszczuk M, et al. Cell type-specific gene expression patterns associated with posttraumatic stress disorder in World Trade Center responders. Transl Psychiatry. 2019;9:1.

    PubMed  PubMed Central  CAS  Google Scholar 

  33. Klengel T, Mehta D, Anacker C, Rex-Haffner M, Pruessner JC, Pariante CM, et al. Allele-specific FKBP5 DNA demethylation mediates gene-childhood trauma interactions. Nat Neurosci. 2013;16:33–41.

    PubMed  CAS  Google Scholar 

  34. Yin H, Galfalvy H, Pantazatos SP, Huang YY, Rosoklija GB, Dwork AJ, et al. Glucocorticoid receptor-related genes: genotype and brain gene expression relationships to suicide and major depressive disorder. Depress Anxiety. 2016;33:531–40.

    PubMed  PubMed Central  CAS  Google Scholar 

  35. Watkeys OJ, Kremerskothen K, Quide Y, Fullerton JM, Green MJ. Glucocorticoid receptor gene (NR3C1) DNA methylation in association with trauma, psychopathology, transcript expression, or genotypic variation: a systematic review. Neurosci Biobehav Rev. 2018;95:85–122.

    PubMed  CAS  Google Scholar 

  36. Katrinli S, Oliveira NCS, Felger JC, Michopoulos V, Smith AK. The role of the immune system in posttraumatic stress disorder. Transl Psychiatry. 2022;12:313.

    PubMed  PubMed Central  CAS  Google Scholar 

  37. DePierro J, Lepow L, Feder A, Yehuda R. Translating molecular and neuroendocrine findings in posttraumatic stress disorder and resilience to novel therapies. Biol Psychiatry. 2019;86:454–63.

    PubMed  PubMed Central  CAS  Google Scholar 

  38. Passos IC, Vasconcelos-Moreno MP, Costa LG, Kunz M, Brietzke E, Quevedo J, et al. Inflammatory markers in post-traumatic stress disorder: a systematic review, meta-analysis, and meta-regression. Lancet Psychiatry. 2015;2:1002–12.

    PubMed  Google Scholar 

  39. Hori H, Kim Y. Inflammation and post-traumatic stress disorder. Psychiatry Clin Neurosci. 2019;73:143–53.

    PubMed  Google Scholar 

  40. Gupta S, Guleria RS. Involvement of nuclear factor-kappaB in inflammation and neuronal plasticity associated with post-traumatic stress disorder. Cells. 2022;11:2034.

    PubMed  PubMed Central  CAS  Google Scholar 

  41. Edmondson D, von Kanel R. Post-traumatic stress disorder and cardiovascular disease. Lancet Psychiatry. 2017;4:320–9.

    PubMed  PubMed Central  Google Scholar 

  42. Boscarino JA. A prospective study of PTSD and early-age heart disease mortality among Vietnam veterans: implications for surveillance and prevention. Psychosom Med. 2008;70:668–76.

    PubMed  PubMed Central  Google Scholar 

  43. Daskalakis NP, Cohen H, Cai G, Buxbaum JD, Yehuda R. Expression profiling associates blood and brain glucocorticoid receptor signaling with trauma-related individual differences in both sexes. Proc Natl Acad Sci USA. 2014;111:13529–34.

    PubMed  PubMed Central  CAS  Google Scholar 

  44. Zaba M, Kirmeier T, Ionescu IA, Wollweber B, Buell DR, Gall-Kleebach DJ, et al. Identification and characterization of HPA-axis reactivity endophenotypes in a cohort of female PTSD patients. Psychoneuroendocrinology. 2015;55:102–15.

    PubMed  CAS  Google Scholar 

  45. Gadek-Michalska A, Tadeusz J, Rachwalska P, Bugajski J. Cytokines, prostaglandins and nitric oxide in the regulation of stress-response systems. Pharm Rep. 2013;65:1655–62.

    CAS  Google Scholar 

  46. Menard C, Pfau ML, Hodes GE, Kana V, Wang VX, Bouchard S, et al. Social stress induces neurovascular pathology promoting depression. Nat Neurosci. 2017;20:1752–60.

    PubMed  PubMed Central  CAS  Google Scholar 

  47. Borsini A, Zunszain PA, Thuret S, Pariante CM. The role of inflammatory cytokines as key modulators of neurogenesis. Trends Neurosci. 2015;38:145–57.

    PubMed  CAS  Google Scholar 

  48. Van Moortel L, Gevaert K, De Bosscher K. Improved glucocorticoid receptor ligands: fantastic beasts, but how to find them? Front Endocrinol (Lausanne). 2020;11:559673.

    PubMed  Google Scholar 

  49. Florido A, Velasco ER, Monari S, Cano M, Cardoner N, Sandi C, et al. Glucocorticoid-based pharmacotherapies preventing PTSD. Neuropharmacology. 2023;224:109344.

    PubMed  CAS  Google Scholar 

  50. Dunlop BW, Wong A. The hypothalamic-pituitary-adrenal axis in PTSD: pathophysiology and treatment interventions. Prog Neuropsychopharmacol Biol Psychiatry. 2019;89:361–79.

    PubMed  CAS  Google Scholar 

Download references

Funding

The study was supported in part by the Herman-Danna Foundation.

Author information

Authors and Affiliations

Authors

Contributions

RS, TGD, AS, FB, and EGW designed and guided the study. RS, AS, FB, EGW, CK, RM, JM, and CS participated in the clinical procedures. TGD, DP, OO, RA, and ML preformed the molecular work. TGD, LC, RS, and AL preformed the statistical analyses. TGD and RS wrote the manuscript with substantive edits from AS, EGW, and FB.

Corresponding author

Correspondence to Ronen Segman.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goltser-Dubner, T., Shalev, A., Benarroch, F. et al. Decreased mononuclear cell NR3C1 SKA2 and FKPB5 expression levels among adult survivors of suicide bombing terror attacks in childhood are associated with the development of PTSD. Mol Psychiatry 28, 3851–3855 (2023). https://doi.org/10.1038/s41380-023-02278-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-023-02278-7

Search

Quick links