Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Expert Review
  • Published:

Mechanisms and molecular targets surrounding the potential therapeutic effects of psychedelics

Abstract

Psychedelics, also known as classical hallucinogens, have been investigated for decades due to their potential therapeutic effects in the treatment of neuropsychiatric and substance use disorders. The results from clinical trials have shown promise for the use of psychedelics to alleviate symptoms of depression and anxiety, as well as to promote substantial decreases in the use of nicotine and alcohol. While these studies provide compelling evidence for the powerful subjective experience and prolonged therapeutic adaptations, the underlying molecular reasons for these robust and clinically meaningful improvements are still poorly understood. Preclinical studies assessing the targets and circuitry of the post-acute effects of classical psychedelics are ongoing. Current literature is split between a serotonin 5-HT2A receptor (5-HT2AR)-dependent or -independent signaling pathway, as researchers are attempting to harness the mechanisms behind the sustained post-acute therapeutically relevant effects. A combination of molecular, behavioral, and genetic techniques in neuropharmacology has begun to show promise for elucidating these mechanisms. As the field progresses, increasing evidence points towards the importance of the subjective experience induced by psychedelic-assisted therapy, but without further cross validation between clinical and preclinical research, the why behind the experience and its translational validity may be lost.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Chemical structures of psychedelic and non-psychedelic 5-HT2A receptor agonists.
Fig. 2: Orientation of LSD (top) and Lisuride (bottom) in the binding pocket of the 5-HT2A receptor.
Fig. 3: 5-HT2A receptor signaling pathways and their downstream effects.
Fig. 4: Summary schematic of the ongoing research fields in psychedelics.

Similar content being viewed by others

References

  1. Nichols DE. Psychedelics. Pharm Rev. 2016;68:264.

    PubMed  PubMed Central  CAS  Google Scholar 

  2. Glennon RA. Classical hallucinogens: an introductory overview. NIDA Res Monogr. 1994;146:4–32.

  3. Hanks JB, González-Maeso J. Hallucinogens: circuits, behavior, and translational models. neuropathology of drug addictions and substance misuse. Volume 2: stimulants, club and dissociative drugs, hallucinogens, steroids, inhalants and international aspects. Elsevier; 2016. p. 813–20.

  4. Hanks JB, González-Maeso J. Molecular and cellular basis of hallucinogen action. neuropathology of drug addictions and substance misuse. Volume 2: stimulants, club and dissociative drugs, hallucinogens, steroids, inhalants and international aspects. Elsevier; 2016. p. 803–12.

  5. López-Giménez JF, González-Maeso J. Hallucinogens and serotonin 5-HT2A receptor-mediated signaling pathways. Curr Top Behav Neurosci. 2018;36:45–73.

    PubMed  PubMed Central  Google Scholar 

  6. Hofmann A. LSD: my problem child. New York: McGraw-Hil; 1980.

  7. González-Maeso J, Sealfon SC. Psychedelics and schizophrenia. Trends Neurosci. 2009;32:225–32.

    PubMed  Google Scholar 

  8. Vollenweider FX, Vollenweider-Scherpenhuyzen Margreet FI, Babler A, Vogel H, Hell D. Psilocybin induces schizophrenia like psychosis in humans via serotonin-2 agonist action. Neuro Rep. 1998;19:2897–3902.

    Google Scholar 

  9. Young BG. A phenomenological comparison of LSD and schizophrenic states. Br J Psychiatry. 1974;124:64–74.

    PubMed  CAS  Google Scholar 

  10. Hermle L, Ftinfgeld M, Oepen G, Botsch H, Borchardt D, Gouzoulis E, et al. Mescaline-induced psychopathological, neuropsychological, and neurometabolic effects in normal subjects: experimental psychosis as a tool for psychiatric research. Biol Psychiatry. 1992;32:976–91.

  11. Hoch PH, Cattell JP, Pennes HH. Effects of mescaline and lysergic acid (d-LSD-25).

  12. Anastasopoulos G, Photiades H. Effects of LSD-25 on relatives of schizophrenic patients. Ment Sci. 1962;108:95–8.

  13. Reynolds GP, Rossor MN, Iversen LL. Preliminary studies of human cortical 5-HT receptors and their involvement in schizophrenia and neuroleptic drug action. J Neural Transm Suppl. 1983;18:273–7.

    PubMed  CAS  Google Scholar 

  14. Wolf G, Singh S, Blakolmer K, Lerer L, Lifschytz T, Heresco-Levy U, et al. Could psychedelic drugs have a role in the treatment of schizophrenia? Rationale and strategy for safe implementation. Mol Psychiatry. 2022;28:44–58.

    PubMed  Google Scholar 

  15. Colpaert FC. Discovering risperidone: the LSD model of psychopathology. Nat Rev Drug Discov. 2003;2:315–20.

    PubMed  CAS  Google Scholar 

  16. Busch AK, Johnson WC. L.S.D. 25 as an aid in psychotherapy; preliminary report of a new drug. Dis Nerv Syst. 1950;11:241–3.

  17. Kupferschmidt K. High hopes. Science (1979). 2014;345:18–23.

    CAS  Google Scholar 

  18. Clark P, Jay M. Mescaline: A Global History of the First Psychedelic, Social History of Medicine, 2020;33:1032–3.

  19. Nutt JD, King AL, Nichols ED. Effects of Schedule I drug laws on neuroscience research and treatment innovation. Nat Neurosci Rev. 2013;14:577–85.

    CAS  Google Scholar 

  20. Oram M. Efficacy and enlightenment: LSD psychotherapy and the drug amendments of 1962. J Hist Med Allied Sci. 2014;69:221–50.

    PubMed  Google Scholar 

  21. de Osório FL, Sanches RF, Macedo LR, dos Santos RG, Maia-De-Oliveira JP, Wichert-Ana L, et al. Antidepressant effects of a single dose of ayahuasca in patients with recurrent depression: a preliminary report. Braz J Psychiatry. 2015;37:13–20.

    PubMed  Google Scholar 

  22. Griffiths RR, Johnson MW, Carducci MA, Umbricht A, Richards WA, Richards BD, et al. Psilocybin produces substantial and sustained decreases in depression and anxiety in patients with life-threatning cancer: a randomized double-blind trial. Psychopharmacology. 2016;30:1181–97.

    CAS  Google Scholar 

  23. Carhart-Harris RL, Bolstridge M, Rucker J, Day CMJ, Erritzoe D, Kaelen M, et al. Psilocybin with psychological support for treatment-resistant depression: an open-label feasibility study. Lancet Psychiatry. 2016;3:619–27.

    PubMed  Google Scholar 

  24. Nichols DE. Chemistry and structure–activity relationships of psychedelics. Curr Top Behav Neurosci. 2017;36:1–43.

    Google Scholar 

  25. Nichols DE, Nichols CD, Hendricks PS. Proposed consensus statement on defining psychedelic drugs. Psychedelic Medicine. 2022;1:12–13. https://doi.org/10.1089/PSYMED.2022.0008.

  26. Nichols DE. Entactogens: how the name for a novel class of psychoactive agents originated. Front Psychiatry. 2022;13:863088.

    PubMed  PubMed Central  Google Scholar 

  27. Dai R, Larkin TE, Huang Z, Tarnal V, Picton P, Vlisides PE, et al. Classical and non-classical psychedelic drugs induce common network changes in human cortex. Neuroimage. 2023;273:120097.

    PubMed  Google Scholar 

  28. Inserra A, De Gregorio D, Gobbi G. Psychedelics in psychiatry: neuroplastic, immunomodulatory, and neurotransmitter mechanisms. Pharm Rev. 2021;73:202–77.

    PubMed  CAS  Google Scholar 

  29. Halberstadt AL, Geyer MA.Multiple receptors contribute to the behavioral effects of indoleamine hallucinogens.Neuropharmacology. 2011;61:364–81. https://doi.org/10.1016/j.neuropharm.2011.01.017.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Chadeayne AR, Manke DR, Pham DNK, Reid BG, Golen JA. Active metabolite of aeruginascin (4-Hydroxy-N,N,N-trimethyltryptamine): synthesis, structure, and serotonergic binding affinity. ACS Omega. 2020;5:16940–3.

    PubMed  PubMed Central  CAS  Google Scholar 

  31. Roth BL, Lopez E, Patel S, Ley W, Kroeze K. The multiplicity of serotonin receptors: uselessly diverse molecules or an embarrassment of riches? Neuroscientist. 2000;6:252–62.

  32. Nichols DE, Frescas S, Marona-Lewicka D, Kurrasch-Orbaugh DM. Lysergamides of isomeric 2,4-dimethylazetidines map the binding orientation of the diethylamide moiety in the potent hallucinogenic agent N,N-diethyllysergamide (LSD). J Med Chem. 2002;45:4344–9.

    PubMed  CAS  Google Scholar 

  33. Appel NM, Mitchell WM, Garlick RK, Glennon RA, Teitler M, De Souza EB. Autoradiographic characterization of (+-)-1-(2,5-dimethoxy-4-[125I] iodophenyl)-2-aminopropane ([125I]DOI) binding to 5-HT2 and 5-HT1c receptors in rat brain. J Pharmacol Exp Ther. 1990;255:843–57.

    PubMed  CAS  Google Scholar 

  34. Mckenna DJ, Peroutka SJ. Differentiation of 5=hydroxytryptamine, receptor subtypes using 125l-R-(-)2,5-dimethoxy-4-iodo-phenylisopropylamine and 3H-ketanserin. J Neurosci. 1989;9:3482–90. vol

    PubMed  PubMed Central  CAS  Google Scholar 

  35. Glennon RA, Young R, Benington F, Morin RD. Behavioral and serotonin receptor properties of 4-substituted derivatives of the hallucinogen 1-(2,5-dimethoxyphenyl)-2-aminopropane. J Med Chem. 1982;25:1163–8.

    PubMed  CAS  Google Scholar 

  36. Glennon RA, Titeler M, McKenney JD. Evidence for 5-HT2 involvement in the mechanism of action of hallucinogenic agents. Life Sci. 1984;35:2505–11.

    PubMed  CAS  Google Scholar 

  37. Hanks JB, González-Maeso J. Animal models of serotonergic psychedelics. ACS Chem Neurosci. 2013;4:33–42.

    PubMed  CAS  Google Scholar 

  38. Schmid Y, Enzler F, Gasser P, Grouzmann E, Preller KH, Vollenweider FX, et al. Acute effects of lysergic acid diethylamide in healthy subjects. Biol Psychiatry. 2015;78:544–53.

    PubMed  CAS  Google Scholar 

  39. Mack Whitaker-Azmitia P. The discovery of serotonin and its role in neuroscience. Neuropsychopharmacology. 1999;21:2S–8S.

  40. McCorvy JD, Roth BL. Structure and function of serotonin G protein-coupled receptors. Pharm Ther. 2015;150:129–42.

    CAS  Google Scholar 

  41. Mohammad-Zadeh LF, Moses L, Gwaltney-Brant SM. Serotonin: a review. J Vet Pharmacol Ther. 2008;31:187–99.

  42. Hannon J, Hoyer D. Molecular biology of 5-HT receptors. Behav Brain Res. 2008;195:198–213.

    PubMed  CAS  Google Scholar 

  43. Sharp T, Barnes NM. Central 5-HT receptors and their function; present and future. Neuropharmacology. 2020;177:108155.

    PubMed  CAS  Google Scholar 

  44. Sarkar P, Mozumder S, Bej A, Mukherjee S, Sengupta J, Chattopadhyay A. Structure, dynamics and lipid interactions of serotonin receptors: excitements and challenges. Biophys Rev 2021;13;101–22.

  45. Weis WI, Kobilka BK. The molecular basis of G protein–coupled receptor activation. Annu Rev Biochem. 2018;87:897.

    PubMed  PubMed Central  CAS  Google Scholar 

  46. Pincas H, González-Maeso J, Ruf-Zamojski F, Sealfon SC. G protein-coupled receptors. In: Belfiore, A., LeRoith, D. editors Principles of Endocrinology and Hormone Action. Endocrinology. Springer, Cham; 2018:85–120.

  47. Davies MN, Secker A, Freitas AA, Mendao M, Timmis J, Flower DR. On the hierarchical classification of G protein-coupled receptors. Bioinformatics. 2007;23:3113–8.

    PubMed  CAS  Google Scholar 

  48. Erlandson SC, McMahon C, Kruse AC. Structural basis for G protein–coupled receptor signaling. Annu Rev Biophys. 2018;47:1–18. https://doi.org/10.1146/Annurev-Biophys-070317-032931.

  49. Sato J, Makita N, Iiri T. Inverse agonism: the classic concept of GPCRs revisited. Endocr J. 2016;63:507–14.

    PubMed  CAS  Google Scholar 

  50. Hodavance SY, Gareri C, Torok RD, Rockman HA. G protein-coupled receptor biased agonism. J Cardiovasc Pharm. 2016;67:193–202.

    CAS  Google Scholar 

  51. Oldham WM, Hamm HE. Structural basis of function in heterotrimeric G proteins. Q Rev Biophys. 2006;39:117–66.

    PubMed  CAS  Google Scholar 

  52. Oldham WM, Hamm HE. Heterotrimeric G protein activation by G-protein-coupled receptors. Nat Rev Mol Cell Biol. 2007;9:60–71.

    Google Scholar 

  53. Logothetis DE, Kurachi Y, Galper J, Neer EJ, Clapham DE. The beta gamma subunits of GTP-binding proteins activate the muscarinic K+ channel in heart. Nature. 1987;325:321–6.

    PubMed  CAS  Google Scholar 

  54. Barnes NM, Ahern GP, Becamel C, Bockaert J, Camilleri M, Chaumont-Dubel S, et al. International union of basic and clinical pharmacology. Cx. Classification of receptors for 5-hydroxytryptamine; pharmacology and function. Pharm Rev. 2021;73:310–520.

    PubMed  PubMed Central  CAS  Google Scholar 

  55. Raymond JR, Mukhin YV, Gelasco A, Turner J, Collinsworth G, Gettys TW, et al. Multiplicity of mechanisms of serotonin receptor signal transduction. Pharm Ther. 2001;92:179–212.

    CAS  Google Scholar 

  56. Celada P, Puig MV, Artigas F, Wong-Lin K, Gruber A. Serotonin modulation of cortical neurons and networks. Front. Integr. Neurosci. 2013;7:25.

  57. Matos FF, Urban C, Yocca FD. Serotonin (5-HT) release in the dorsal raphe and ventral hippocampus: raphe control of somatodendritic and terminal 5-HT release. J Neural Transm. 1996;103:173–90.

    PubMed  CAS  Google Scholar 

  58. López-Giménez JF, Mengod G, Palacios JM, Teresa Vilaró M. Human striosomes are enriched in 5-HT2A receptors: autoradiographical visualization with [3H]MDL100,907, [125I](±)DOI and [3H]ketanserin. Eur J Neurosci. 1999;11:3761–5.

    PubMed  Google Scholar 

  59. Schreiber R, Newman-Tancredi A. Improving cognition in schizophrenia with antipsychotics that elicit neurogenesis through 5-HT1A receptor activation. Neurobiol Learn Mem. 2014;110:72–80.

    PubMed  CAS  Google Scholar 

  60. Gardier AM, Malagié I, Trillat AC, Jacquot C, Artigas F. Role of 5-HT1A autoreceptors in the mechanism of action of serotoninergic antidepressant drugs: recent findings from in vivo microdialysis studies. Fundam Clin Pharm. 1996;10:16–27.

    CAS  Google Scholar 

  61. Artigas F, Nutt D, Shelton R. Mechanism of action of antidepressants. Psychopharmacol Bull. 2002 Summer;36 Suppl 2:123–32.

  62. Moutkine I, Collins EL, Béchade C, Maroteaux L. Evolutionary considerations on 5-HT2 receptors. Pharm Res. 2019;140:14–20.

    CAS  Google Scholar 

  63. Elangbam CS. Drug-induced valvulopathy: an update. Toxicol Pathol. 2010;38:837–48.

    PubMed  CAS  Google Scholar 

  64. Pazos A, Hoyer D, Palacios JM. The binding of serotonergic ligands to the porcine choroid plexus: characterization of a new type of serotonin recognition site. Eur J Pharm. 1984;106:539–46.

    CAS  Google Scholar 

  65. Adlersberg M, Arango V, Hsiung S-C, Mann JJ, Underwood MD, Liu K-P, et al. In vitro autoradiography of serotonin 5-HT 2A/2C receptor-activated G protein: guanosine-5-(-[35 S]Thio)triphosphate binding in rat brain. J Neurosci Res. 2000;61:674–85.

    PubMed  CAS  Google Scholar 

  66. Wold EA, Wild CT, Cunningham KA, Zhou J. Targeting the 5-HT2C receptor in biological context and the current state of 5-HT2C receptor ligand development. Curr Top Med Chem. 2019;19:1381.

    PubMed  PubMed Central  CAS  Google Scholar 

  67. Tecott LH, Sun LM, Akana SF, Strack AM, Lowenstein DH, Dallman MF, et al. Eating disorder and epilepsy in mice lacking 5-HT2C serotonin receptors. Nature. 1995;374:542–46.

    PubMed  CAS  Google Scholar 

  68. López-Giménez JF, Mengod G, Palacios JM, Vilaró MT. Selective visualization of rat brain 5-HT2A receptors by autoradiography with [3H]MDL 100,907. Naunyn-Schmiedeberg’s Arch Pharmacol. 1997;356:446–54.

    Google Scholar 

  69. López-Giménez JF, Vilaró MT, Palacios JM, Mengod G. [3H]MDL 100,907 labels 5-HT2A serotonin receptors selectively in primate brain. Neuropharmacology. 1998;37:1147–58.

    PubMed  Google Scholar 

  70. López-Giménez JF, Tecott LH, Palacios JM, Mengod G, Vilaró MT. Serotonin 2C receptor knockout mice: autoradiographic analysis of multiple serotonin receptors. J Neurosci Res. 2002;67:69–85.

    PubMed  Google Scholar 

  71. Berger M, Gray JA, Roth BL. The expanded biology of serotonin. Annu Rev Med. 2009;60:355.

    PubMed  PubMed Central  CAS  Google Scholar 

  72. Miyamoto S, Miyake N, Jarskog LF, Fleischhacker WW, Lieberman JA. Pharmacological treatment of schizophrenia: a critical review of the pharmacology and clinical effects of current and future therapeutic agents. Mol Psychiatry. 2012;17:1206–27. 12. 2012;17

    PubMed  CAS  Google Scholar 

  73. Meltzer HY. Update on typical and atypical antipsychotic drugs. Annu Rev Med. 2013;64:393–406. https://doi.org/10.1146/Annurev-Med-050911-161504.

  74. Amato D. Serotonin in antipsychotic drugs action. Behav Brain Res. 2015;277:125–35.

    PubMed  CAS  Google Scholar 

  75. González-Maeso J, Ang RL, Yuen T, Chan P, Weisstaub NV, López-Giménez JF, et al. Identification of a serotonin/glutamate receptor complex implicated in psychosis. Nature. 2008;452:93–97.

    PubMed  PubMed Central  Google Scholar 

  76. Muguruza C, Moreno JL, Umali A, Callado LF, Meana JJ, González-Maeso J. Dysregulated 5-HT2A receptor binding in postmortem frontal cortex of schizophrenic subjects. Eur Neuropsychopharmacol. 2013;23:852.

    PubMed  CAS  Google Scholar 

  77. García-Bea A, Miranda-Azpiazu P, Muguruza C, Marmolejo-Martinez-Artesero S, Diez-Alarcia R, Gabilondo AM, et al. Serotonin 5-HT2A receptor expression and functionality in postmortem frontal cortex of subjects with schizophrenia: selective biased agonism via Gαi1-proteins. Eur Neuropsychopharmacol. 2019;29:1453–63.

    PubMed  Google Scholar 

  78. Kurita M, Holloway T, GarcÃ- A-Bea A, Kozlenkov A, Friedman AK, Moreno JL, et al. HDAC2 regulates atypical antipsychotic responses through the modulation of mGlu2 promoter activity. Nat Neurosci. 2012;15:1245–54.

    PubMed  PubMed Central  CAS  Google Scholar 

  79. Ibi D, de La Fuente Revenga M, Kezunovic N, Muguruza C, Saunders JM, Gaitonde SA, et al. Antipsychotic-induced Hdac2 transcription via NF-κB leads to synaptic and cognitive side effects. Nat Neurosci. 2017;20:1247–59. 9. 2017;20

    PubMed  PubMed Central  CAS  Google Scholar 

  80. De La M, Revenga F, Ibi D, Saunders JM, Cuddy T, Ijaz MK, et al. HDAC2-dependent antipsychotic-like effects of chronic treatment with the HDAC inhibitor SAHA in mice HHS public access. Neuroscience. 2018;388:102–17.

    Google Scholar 

  81. Sealfon SC, Chi L, Ebersolell BJ, Rodier V, Zhang D, Ballesterostz JA, et al. Related contribution of specific helix 2 and 7 residues to conformational activation of the serotonin 5-HT2A receptor*. J Biol Chem. 1995;270:16683–8. vol

    PubMed  CAS  Google Scholar 

  82. Ebersole BJ, Visiers I, Weinstein H, Sealfon SC. Molecular basis of partial agonism: orientation of indoleamine ligands in the binding pocket of the human serotonin 5-HT2A receptor determines relative efficacy. Mol Pharmacol. 2003;63:36–43.

  83. Almaula N, Ebersole BJ, Zhang D, Weinstein H, Sealfon SC. Mapping the binding site pocket of the serotonin 5-hydroxytryptamine 2A receptor Ser 3.36(159) provides a second interaction site for the protonated amine of serotonin but not of lysergic acid diethylamide or bufotenin*. J Biol Chem. 1996;271:14672–5.

  84. Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, et al. Crystal structure of rhodopsin: a G protein-coupled receptor. Science. 2000;289:739–45.

    PubMed  CAS  Google Scholar 

  85. Wang C, Jiang Y, Ma J, Wu H, Wacker D, Katritch V, et al. Structural basis for molecular recognition at serotonin receptors. Science. 2013;340:610.

    PubMed  PubMed Central  CAS  Google Scholar 

  86. Liu W, Wacker D, Gati C, Han GW, James D, Wang D, et al. Serial femtosecond crystallography of G protein-coupled receptors. Science. 2013;342:1521–4.

    PubMed  PubMed Central  CAS  Google Scholar 

  87. Wacker D, Wang S, McCorvy JD, Betz RM, Venkatakrishnan AJ, Levit A, et al. Crystal structure of an LSD-bound human serotonin receptor. Cell. 2017;168:377–389.e12.

    PubMed  PubMed Central  CAS  Google Scholar 

  88. Kimura KT, Asada H, Inoue A, Marie F, Kadji N, Im D, et al. Structures of the 5-HT 2A receptor in complex with the antipsychotics risperidone and zotepine. Nature. 2019;26:121–8.

    CAS  Google Scholar 

  89. Ballesteros JA, Weinstein H. Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors. Methods Neurosci. 1995;25:366–428.

    CAS  Google Scholar 

  90. Wu Y, Zeng L, Zhao S. Ligands of adrenergic receptors: a structural point of view. Biomolecules. 2021. 2021. https://doi.org/10.3390/biom11070936.

  91. Wacker D, Wang C, Katritch V, Han GW, Huang X-P, Vardy E, et al. Structural features for functional selectivity at serotonin receptors. Science. 2013;340:615–9.

  92. Kim K, Che T, Panova O, DiBerto JF, Lyu J, Krumm BE, et al. Structure of a hallucinogen-activated Gq-coupled 5-HT2A serotonin receptor. Cell. 2020;182:1574–1588.e19.

    PubMed  PubMed Central  CAS  Google Scholar 

  93. Moreno JL, Miranda-Azpiazu P, García-Bea A, Younkin J, Cui M, Kozlenkov A, et al. Allosteric signaling through an mGlu2 and 5-HT2A heteromeric receptor complex and its potential contribution to schizophrenia. Sci Signal. 2016;9:ra5.

    PubMed  PubMed Central  Google Scholar 

  94. Urban JD, Clarke WP, Von Zastrow M, Nichols DE, Kobilka B, Weinstein H, et al. Functional selectivity and classical concepts of quantitative pharmacology. J Pharmacol Exp Ther. 2007;320:1–13.

    PubMed  CAS  Google Scholar 

  95. Gonzalez-Maeso J, Sealfon S. Agonist-trafficking and hallucinogens. Curr Med Chem. 2009;16:1017–27.

    PubMed  CAS  Google Scholar 

  96. Cao D, Yu J, Wang H, Luo Z, Liu X, He L, et al. Structure-based discovery of nonhallucinogenic psychedelic analogs. Science. 2022;375:403–11.

  97. González-Maeso J, Weisstaub NV, Zhou M, Chan P, Ivic L, Ang R, et al. Hallucinogens recruit specific cortical 5-HT2A receptor-mediated signaling pathways to affect behavior. Neuron. 2007;53:439–52.

    PubMed  Google Scholar 

  98. Geyer MA, Vollenweider FX. Serotonin research: contributions to understanding psychoses. Trends Pharm Sci. 2008;29:445–53.

    PubMed  CAS  Google Scholar 

  99. Kometer M, Schmidt A, Jäncke L, Vollenweider FX. Activation of serotonin 2A receptors underlies the psilocybin-induced effects on α oscillations, N170 visual-evoked potentials, and visual hallucinations. J Neurosci. 2013;33:10544–51.

    PubMed  PubMed Central  CAS  Google Scholar 

  100. González-Maeso J, Yuen T, Ebersole BJ, Wurmbach E, Lira A, Zhou M, et al. Transcriptome fingerprints distinguish hallucinogenic and nonhallucinogenic 5-hydroxytryptamine 2A receptor agonist effects in mouse somatosensory cortex. J Neurosci. 2003;23:8836–43.

    PubMed  PubMed Central  Google Scholar 

  101. Karaki S, Becamel C, Murat S, Cour CML, Millan MJ, Prezeau L, et al. Quantitative phosphoproteomics unravels biased phosphorylation of serotonin 2A receptor at Ser280 by hallucinogenic versus nonhallucinogenic agonists. Mol Cell Proteom. 2014;13:1273.

    CAS  Google Scholar 

  102. Aghajanian GK, Marek GJ. Serotonin and hallucinogens. Neuropsychopharmacology. 1999;21:16–23.

    Google Scholar 

  103. Jakab RL, Goldman-Rakic PS. 5-Hydroxytryptamine2A serotonin receptors in the primate cerebral cortex: possible site of action of hallucinogenic and antipsychotic drugs in pyramidal cell apical dendrites. Proc Natl Acad Sci USA. 1998;95:735–40.

    PubMed  PubMed Central  CAS  Google Scholar 

  104. Gewirtz JC, Marek GJ. Behavioral evidence for interactions between a hallucinogenic drug and group II metabotropic glutamate receptors. Neuropsychopharmacology. 2000;23:569–76.

    PubMed  CAS  Google Scholar 

  105. de la Fuente Revenga M, Shin JM, Vohra HZ, Hideshima KS, Schneck M, Poklis JL, et al. Fully automated head-twitch detection system for the study of 5-HT2A receptor pharmacology in vivo. Sci Rep. 2019;9:14247.

    PubMed  PubMed Central  Google Scholar 

  106. Moreno JL, Holloway T, Albizu L, Sealfon SC, González-Maeso J. Metabotropic glutamate mGlu2 receptor is necessary for the pharmacological and behavioral effects induced by hallucinogenic 5-HT2A receptor agonists. Neurosci Lett. 2011;493:76.

    PubMed  PubMed Central  CAS  Google Scholar 

  107. Benvenga MJ, Chaney SF, Baez M, Britton TC, Hornback WJ, Monn JA, et al. Metabotropic glutamate2 receptors play a key role in modulating head twitches induced by a serotonergic hallucinogen in mice. Front Pharm. 2018;9:208.

    Google Scholar 

  108. Saha S, González-Maeso J. The crosstalk between 5-HT2AR and mGluR2 in schizophrenia. Neuropharmacology. 2023;230:109489.

    PubMed  CAS  Google Scholar 

  109. Shah UH, González-Maeso J. Serotonin and glutamate interactions in preclinical schizophrenia models. ACS Chem Neurosci. 2019;10:3068–77.

    PubMed  CAS  Google Scholar 

  110. Schmid CL, Raehal KM, Bohn LM, Lefkowitz RJ. Agonist-directed signaling of the serotonin 2A receptor depends on-arrestin-2 interactions in vivo. Proc Natl Acad Sci USA. 2008;105:1079–84.

  111. Rodriguiz RM, Nadkarni V, Means CR, Pogorelov VM, Chiu Y-T, Roth BL, et al. LSD-stimulated behaviors in mice require β-arrestin 2 but not β-arrestin 1. Sci Rep. 2021;11:17690.

  112. Berno G, Zaccarelli M, Gori C, Tempestilli M, Antinori A, Perno CF, et al. Analysis of single-nucleotide polymorphisms (SNPs) in human CYP3A4 and CYP3A5 genes: potential implications for the metabolism of HIV drugs. BMC Med Genet. 2014;15:1–7.

  113. Ahmad T, Valentovic MA, Rankin GO. Effects of cytochrome P450 single nucleotide polymorphisms on methadone metabolism and pharmacodynamics. Biochem Pharmacol. 2018;153:196–204.

  114. Schmitz GP, Jain MK, Slocum ST, Roth BL. 5-HT 2A SNPs alter the pharmacological signaling of potentially therapeutic psychedelics. ACS Chem Neurosci. 2022;13:2386–98.

  115. Davies MA, Setola V, Strachan RT, Sheffler DJ, Salay E, Hufeisen SJ, et al. Pharmacologic analysis of non-synonymous coding h5-HT 2A SNPs reveals alterations in atypical antipsychotic and agonist efficacies. Pharmacogenom J. 2006;6:42–51.

    CAS  Google Scholar 

  116. Bermak JC, Li M, Bullock C, Zhou QY. Regulation of transport of the dopamine D1 receptor by a new membrane-associated ER protein. Nat Cell Biol. 2001;3:492–8.

    PubMed  CAS  Google Scholar 

  117. Petäjä-Repo UE, Hogue M, Laperrière A, Walker P, Bouvier M. Export from the endoplasmic reticulum represents the limiting step in the maturation and cell surface expression of the human delta opioid receptor. J Biol Chem. 2000;275:13727–36.

    PubMed  Google Scholar 

  118. Jacobsen SE, Ammendrup-Johnsen I, Jansen AM, Gether U, Lindegaard Madsen K, Bräuner-Osborne H. The GPRC6A receptor displays constitutive internalization and sorting to the slow recycling pathway. J Biol Chem. 2017:6910–26.

  119. Lopez-Gimenez JF, Vilaró MT, Milligan G. Morphine desensitization, internalization, and down-regulation of the mu opioid receptor is facilitated by serotonin 5-hydroxytryptamine2A receptor coactivation. Mol Pharm. 2008;74:1278–91.

    CAS  Google Scholar 

  120. Magalhaes AC, Holmes KD, Dale LB, Comps-Agrar L, Lee D, Yadav PN, et al. CRF receptor 1 regulates anxiety behavior via sensitization of 5-HT2 receptor signaling. Nat Neurosci. 2010;13:622–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  121. Cornea-hé Bert V, Riad M, Singh SK, Descarries L. Cellular and subcellular distribution of the serotonin 5-HT2A receptor in the central nervous system of adult rat. J Comp Neurol. 1999;409:187–209.

    Google Scholar 

  122. Cornea-Hébert V, Watkins KC, Roth BL, Kroeze WK, Gaudreau P, Leclerc N, et al. Similar ultrastructural distribution of the 5-HT2A serotonin receptor and microtubule-associated protein MAP1A in cortical dendrites of adult rat. Neuroscience. 2002;113:23–35.

    PubMed  Google Scholar 

  123. Doherty MD, Pickel VM. Ultrastructural localization of the serotonin 2A receptor in dopaminergic neurons in the ventral tegmental area. Brain Res. 2000;864:176–85.

    PubMed  CAS  Google Scholar 

  124. Moreno JL, Muguruza C, Umali A, Mortillo S, Holloway T, Pilar-Cuéllar F, et al. Identification of three residues essential for 5-hydroxytryptamine 2A-metabotropic glutamate 2 (5-HT2A·mGlu2) receptor heteromerization and its psychoactive behavioral function. J Biol Chem. 2012;287:44301.

    PubMed  PubMed Central  CAS  Google Scholar 

  125. von Zastrow M, Williams JT. Modulating neuromodulation by receptor membrane traffic in the endocytic pathway. Neuron. 2012;76:22.

    Google Scholar 

  126. Dunn HA, Walther C, Yuan GY, Caetano FA, Godin CM, Ferguson SSG. Role of SAP97 in the regulation of 5-HT2AR endocytosis and signaling. Mol Pharm. 2014;86:275–83.

    Google Scholar 

  127. Bhatnagar A, Willins DL, Gray JA, Woods J, Benovic JL, Roth BL. The dynamin-dependent, arrestin-independent internalization of 5-hydroxytryptamine 2A (5-HT2A) serotonin receptors reveals differential sorting of arrestins and 5-HT2A receptors during endocytosis. J Biol Chem. 2001;276:8269–77.

    PubMed  CAS  Google Scholar 

  128. Bhattacharyya S, Puri S, Miledi R, Panicker MM. Internalization and recycling of 5-HT 2A receptors activated by serotonin and protein kinase C-mediated mechanisms. PNAS. 2002;29:14470–5.

    Google Scholar 

  129. Raote I, Bhattacharyya S, Panicker MM. Functional selectivity in serotonin receptor 2A (5-HT2A) endocytosis, recycling, and phosphorylation. Mol Pharm. 2013;83:42–50.

    CAS  Google Scholar 

  130. Gray JA, Sheffler DJ, Bhatnagar A, Woods JA, Hufeisen SJ, Benovic JL, et al. Cell-type specific effects of endocytosis inhibitors on 5-hydroxytryptamine 2A receptor desensitization and resensitization reveal an arrestin-, GRK2-, and GRK5-independent mode of regulation in human embryonic kidney 293 cells. Mol Pharm. 2001;60:1020–30.

    CAS  Google Scholar 

  131. Toneatti R, Shin JM, Shah UH, Mayer CR, Saunders JM, Fribourg M, et al. Interclass GPCR heteromerization affects localization and trafficking. Sci Signal. 2020;13:3122.

    Google Scholar 

  132. Schmid CL, Streicher JM, Meltzer HY, Bohn LM. Clozapine acts as an agonist at serotonin 2A receptors to counter MK-801-induced behaviors through a βarrestin2-independent activation of Akt. Neuropsychopharmacology. 2014;39:1902–13.

    PubMed  PubMed Central  CAS  Google Scholar 

  133. Martín-Guerrero SM, Alonso P, Iglesias A, Cimadevila M, Brea J, Loza MI, et al. His452Tyr polymorphism in the human 5-HT2A receptor affects clozapine-induced signaling networks revealed by quantitative phosphoproteomics. Biochem Pharm. 2021;185:114440–114440.

    PubMed  Google Scholar 

  134. de la Fuente Revenga M, Ibi D, Cuddy T, Toneatti R, Kurita M, Ijaz MK, et al. Chronic clozapine treatment restrains via HDAC2 the performance of mGlu2 receptor agonism in a rodent model of antipsychotic activity. Neuropsychopharmacology. 2018;44:443–54. 2. 2018;44

    PubMed  PubMed Central  Google Scholar 

  135. Moreno JL, Holloway T, Umali A, Rayannavar V, Sealfon SC, González-Maeso J. Persistent effects of chronic clozapine on the cellular and behavioral responses to LSD in mice. Psychopharmacology. 2013;225:217.

    PubMed  CAS  Google Scholar 

  136. Magalhaes AC, Dunn H, Ferguson SSG. Regulation of GPCR activity, trafficking and localization by GPCR-interacting proteins. Br J Pharm. 2012;165:1717–36.

    CAS  Google Scholar 

  137. Vargas MV, Dunlap LE, Dong C, Carter SJ, Tombari RJ, Jami SA, et al. Psychedelics promote neuroplasticity through the activation of intracellular 5-HT2A receptors. Science. 2023;379:700–6.

    PubMed  CAS  Google Scholar 

  138. Lewis V, Bonniwell EM, Lanham JK, Ghaffari A, Sheshbaradaran H, Cao AB, et al. A non-hallucinogenic LSD analog with therapeutic potential for mood disorders. Cell Rep. 2023;42:112203.

    PubMed  PubMed Central  CAS  Google Scholar 

  139. Farrelly LA, thompson robert, Zhao S, Lepack A, Lyu Y, Bhanu NV, et al. Histone serotonylation is a permissive modification that enhances TFIID binding to H3K4me3. Nature. https://doi.org/10.1038/s41586-019-1024-7.

  140. Vázquez-Borsetti P, Cortés R, Artigas F. Pyramidal neurons in rat prefrontal cortex projecting to ventral tegmental area and dorsal raphe nucleus express 5-HT2A receptors. Cereb Cortex. 2009;19:1678–86.

    PubMed  Google Scholar 

  141. Brog JS, Salyapongse A, Deutch AY, Zahm DS. The patterns of afferent innervation of the core and shell in the “Accumbens” part of the rat ventral striatum: Immunohistochemical detection of retrogradely transported fluoro-gold. J Comp Neurol. 1993;338:255–78.

    PubMed  CAS  Google Scholar 

  142. Mocci G, Jiménez-Sánchez L, Adell A, Cortés R, Artigas F. Expression of 5-HT2A receptors in prefrontal cortex pyramidal neurons projecting to nucleus accumbens. Potential relevance for atypical antipsychotic action. Neuropharmacology. 2014;79:49–58.

    PubMed  CAS  Google Scholar 

  143. Burke DA, Alvarez VA. Serotonin receptors contribute to dopamine depression of lateral inhibition in the nucleus accumbens. Cell Rep. 2022;39:110795.

    PubMed  PubMed Central  CAS  Google Scholar 

  144. Bombardi C. Neuronal localization of the 5-HT2 receptor family in the amygdaloid complex. Front Pharm. 2014;5:68.

    Google Scholar 

  145. Aghajanian GK, Foote WE, Sheard MH. Lysergic acid diethylamide: sensitive neuronal units in the midbrain raphe. Science (1979). 1968;161:706–8.

    CAS  Google Scholar 

  146. Davoudian PA, Shao L-X, Kwan AC. Shared and distinct brain regions targeted for immediate early gene expression by ketamine and psilocybin. ACS Chem Neurosci. 2023;14:468–80.

    PubMed  CAS  Google Scholar 

  147. Rijsketic DR, Casey AB, Barbosa DAN, Zhang X, Hietamies TM, Ramirez-Ovalle G, et al. UNRAVELing the synergistic effects of psilocybin and environment on brain-wide immediate early gene expression in mice. Neuropsychopharmacology. 2023;2023. https://doi.org/10.1038/s41386-023-01613-4.

  148. Yan QS. Activation of 5-HT(2A/2C) receptors within the nucleus accumbens increases local dopaminergic transmission. Brain Res Bull. 2000;51:75–81.

    PubMed  CAS  Google Scholar 

  149. Maze I, Covingtoni HE, Dietz DM, Laplant Q, Renthal W, Russo SJ, et al. Essential role of the histone methyltransferase G9a in cocaine-induced plasticity. Science. 2010;327:213.

    PubMed  PubMed Central  CAS  Google Scholar 

  150. Barrett FS, Doss MK, Sepeda ND, Pekar JJ, Griffiths RR. Emotions and brain function are altered up to one month after a single high dose of psilocybin. Sci Rep. 2020;10:1–14. 1. 2020;10

    Google Scholar 

  151. Preller KH, Burt JB, Ji JL, Schleifer CH, Adkinson BD, Stämpfli P, et al. Changes in global and thalamic brain connectivity in LSD-induced altered states of consciousness are attributable to the 5-HT2A receptor. Elife. 2018;7:e35082.

    PubMed  PubMed Central  Google Scholar 

  152. Daws RE, Timmermann C, Giribaldi B, Sexton JD, Wall MB, Erritzoe D, et al. Increased global integration in the brain after psilocybin therapy for depression. Nat Med. 2022;2022. https://doi.org/10.1038/S41591-022-01744-Z.

  153. Carhart-Harris RL, Roseman L, Bolstridge M, Demetriou L, Pannekoek JN, Wall MB, et al. Psilocybin for treatment-resistant depression: fMRI-measured brain mechanisms. Sci Rep. 2017;7:13187. https://doi.org/10.1038/s41598-017-13282-7.

  154. Carhart-Harris RL, Friston KJ. REBUS and the anarchic brain: toward a unified model of the brain action of psychedelics. Pharmacol Rev. 2019 Jul;71(3):316-344. https://doi.org/10.1124/pr.118.017160.

  155. Wagner IC, van Buuren M, Fernández G. Thalamo-cortical coupling during encoding and consolidation is linked to durable memory formation. Neuroimage. 2019;197:80–92.

    PubMed  Google Scholar 

  156. Doss MK, Madden MB, Gaddis A, Nebel MB, Griffiths RR, Mathur BN, et al. Models of psychedelic drug action: modulation of cortical-subcortical circuits. Brain. 2022;145:441–56.

  157. Maclean KA, Leoutsakos J-MS, Johnson MW, Griffiths RR. Factor analysis of the mystical experience questionnaire: a study of experiences occasioned by the hallucinogen psilocybin. J Sci Study Relig. 2012;51:721–37. https://doi.org/10.1111/j.1468-5906.2012.01685.x.

  158. Barrett FS, Johnson MW, Griffiths RR. Validation of the revised Mystical Experience Questionnaire in experimental sessions with psilocybin. J Psychopharmacol. 2015;29:1182–90.

  159. Liechti ME, Dolder PC, Schmid Y. Alterations of consciousness and mystical-type experiences after acute LSD in humans. Psychopharmacology. 2017;234:1499.

    PubMed  CAS  Google Scholar 

  160. Julian LJ. Measures of anxiety: State-Trait Anxiety Inventory (STAI), Beck Anxiety Inventory (BAI), and Hospital Anxiety and Depression Scale-Anxiety (HADS-A). Arthritis Care Res (Hoboken). 2011;63:S467–72.

  161. Rosner RI. Beck Depression Inventory (BDI). The encyclopedia of clinical psychology. 2015:1–6. https://doi.org/10.1002/9781118625392.wbecp261.

  162. Smarr KL, Keefer AL. Measures of depression and depressive symptoms: Beck Depression Inventory-II (BDI-II), Center for Epidemiologic Studies Depression Scale (CES-D), Geriatric Depression Scale (GDS), Hospital Anxiety and Depression Scale (HADS), and Patient Health Questionnaire-9 (PHQ-9). Arthritis Care Res. 2011;63:S454–66.

    Google Scholar 

  163. Kelly JR, Gillan CM, Prenderville J, Kelly C, Harkin A, Clarke G, et al. Psychedelic therapy’s transdiagnostic effects: a research domain criteria (RDoC) perspective. Front Psychiatry. 2021;12:800072.

    PubMed  PubMed Central  Google Scholar 

  164. Halberstadt AL, Van Der Heijden I, Ruderman MA, Risbrough VB, Gingrich JA, Geyer MA, et al. 5-HT2A and 5-HT2C receptors exert opposing effects on locomotor activity in mice. Neuropsychopharmacology. 2009;34:1958–67.

    PubMed  CAS  Google Scholar 

  165. Vohra HZ, Saunders JM, Jaster AM, de la Fuente Revenga M, Jimenez J, Fernández-Teruel A, et al. Sex-specific effects of psychedelics on prepulse inhibition of startle in 129S6/SvEv mice. Psychopharmacology. 2021;2021. https://doi.org/10.1007/S00213-021-05913-9.

  166. Páleníček T, Hliňák Z, Bubeníková-Valešová V, Novák T, Horáček J. Sex differences in the effects of N,N-diethyllysergamide (LSD) on behavioural activity and prepulse inhibition. Prog Neuropsychopharmacol Biol Psychiatry. 2010;34:588–96.

    PubMed  Google Scholar 

  167. Halberstadt AL, Geyer MA. Characterization of the head-twitch response induced by hallucinogens in mice Detection of the behavior based on the dynamics of head movement. https://doi.org/10.1007/s00213-013-3006-z.

  168. Canal CE, Morgan D. Head-twitch response in rodents induced by the hallucinogen 2,5-dimethoxy-4-iodoamphetamine: a comprehensive history, a re-evaluation of mechanisms, and its utility as a model. Drug Test Anal. 2012;4:556–76.

    PubMed  PubMed Central  CAS  Google Scholar 

  169. de la Fuente Revenga M, Vohra HZ, González-Maeso J. Automated quantification of head-twitch response in mice via ear tag reporter coupled with biphasic detection. J Neurosci Methods. 2020;334:108595.

    PubMed  PubMed Central  Google Scholar 

  170. Jaster AM, Younkin J, Cuddy T, de la Fuente Revenga M, Poklis JL, Dozmorov MG, et al. Differences across sexes on head-twitch behavior and 5-HT2A receptor signaling in C57BL/6J mice. Neurosci Lett. 2022;788:136836.

    PubMed  PubMed Central  CAS  Google Scholar 

  171. Corne SJ, Pickering RW. A possible correlation between drug-induced hallucinations in man and a behavioural response in mice. Psychopharmacologia. 1967;11:65–78.

    PubMed  CAS  Google Scholar 

  172. CORNE SJ, PICKERING RW, WARNER BT. A method for assessing the effects of drugs on the central actions of 5-hydroxytryptamine. Br J Pharm Chemother. 1963;20:106–20.

    CAS  Google Scholar 

  173. Keller DL, Umbreit WW. ‘Permanent’ alteration of behavior in mice by chemical and psychological means. Science. 1956;124:723–4.

    PubMed  CAS  Google Scholar 

  174. Jaster AM, Elder H, Marsh SA, de la Fuente Revenga M, Negus SS, González-Maeso J. Effects of the 5-HT2A receptor antagonist volinanserin on head-twitch response and intracranial self-stimulation depression induced by different structural classes of psychedelics in rodents. Psychopharmacology. 2022;1:1–13.

    Google Scholar 

  175. Hesselgrave N, Troppoli TA, Wulff AB, Cole AB, Thompson SM. Harnessing psilocybin: antidepressant-like behavioral and synaptic actions of psilocybin are independent of 5-HT2R activation in mice. https://doi.org/10.1073/pnas.2022489118/-/DCSupplemental.

  176. Shao LX, Liao C, Gregg I, Davoudian PA, Savalia NK, Delagarza K, et al. Psilocybin induces rapid and persistent growth of dendritic spines in frontal cortex in vivo. Neuron. 2021;109:2535.

    PubMed  PubMed Central  CAS  Google Scholar 

  177. Willins DL, Meltzer HY. Direct injection of 5-HT2A receptor agonists into the medial prefrontal cortex produces a head-twitch response in rats. J Pharm Exp Ther. 1997;282:699–706.

    CAS  Google Scholar 

  178. Marona-Lewicka D, Thisted RA, Nichols DE. Distinct temporal phases in the behavioral pharmacology of LSD: Dopamine D2 receptor-mediated effects in the rat and implications for psychosis. Psychopharmacology. 2005;180:427–35.

    PubMed  CAS  Google Scholar 

  179. Fattore L, Marti M, Mostallino R, Castelli MP. Sex and gender differences in the effects of novel psychoactive substances. Brain Sci. 2020;10:606. VolPage2020;10:606

    PubMed  PubMed Central  CAS  Google Scholar 

  180. Gukasyan N, Narayan SK. Menstrual changes and reversal of amenorrhea induced by classic psychedelics: a case series. 2023:1–6. https://doi.org/10.1080/0279107220222157350.

  181. Brookshire BR, Jones SR. Direct and indirect 5-HT receptor agonists produce gender-specific effects on locomotor and vertical activities in C57 BL/6J mice. Pharm Biochem Behav. 2009;94:194–203.

    CAS  Google Scholar 

  182. Korpi ER, den Hollander B, Farooq U, Vashchinkina E, Rajkumar R, Nutt DJ, et al. Mechanisms of action and persistent neuroplasticity by drugs of abuse. Pharm Rev. 2015;67:872–1004.

    PubMed  CAS  Google Scholar 

  183. Mendes FR, Costa CdosS, Wiltenburg VD, Morales-Lima G, Fernandes JAB, Filev R. Classic and non‐classic psychedelics for substance use disorder: a review of their historic, past and current research. Addic Neurosci. 2022;3:100025.

    Google Scholar 

  184. Nichols DE, Grob CS. Is LSD toxic? For Sci Int. 2018;284:141–5.

    CAS  Google Scholar 

  185. Haden M, Woods B, Sc M. LSD overdoses: three case reports. J Stud Alcohol Drugs. 2020;81:115–8. vol

    PubMed  Google Scholar 

  186. Roberts DM, Premachandra KH, Chan BS, Auld R, Jiranantakan T, Ewers C, et al. A cluster of lysergic acid diethylamide (LSD) poisonings following insufflation of a white powder sold as cocaine. Clin Toxicol. 2021;59:969–74.

    CAS  Google Scholar 

  187. Simonsson O, Sexton JD, Hendricks PS. Associations between lifetime classic psychedelic use and markers of physical health. J Psychopharmacol. 2021;35:447–52. Https://DoiOrg/101177/0269881121996863

    PubMed  PubMed Central  Google Scholar 

  188. Hendricks PS, Thorne CB, Clark CB, Coombs DW, Johnson MW. Classic psychedelic use is associated with reduced psychological distress and suicidality in the United States adult population. J Psychopharmacol. 2015;29:280–8.

    PubMed  CAS  Google Scholar 

  189. De La Fuente Revenga M, Jaster AM, McGinn J, Silva G, Saha S, González-Maeso J. Tolerance and cross-tolerance among psychedelic and nonpsychedelic 5-HT2A receptor agonists in mice. ACS Chem Neurosci. 2022;13:2436–48.

    PubMed  Google Scholar 

  190. Buchborn T, Lyons T, Knöpfel T. Tolerance and tachyphylaxis to head twitches induced by the 5-HT2A agonist 25CN-NBOH in mice. Front Pharm. 2018;9:17.

    Google Scholar 

  191. Grim TW, Acevedo-Canabal A, Bohn LM. Toward directing opioid receptor signaling to refine opioid therapeutics. Biol Psychiatry. 2020;87:15.

    PubMed  CAS  Google Scholar 

  192. Goodwin AK. An intravenous self-administration procedure for assessing the reinforcing effects of hallucinogens in nonhuman primates. J Pharm Toxicol Methods. 2016;82:31–36.

    CAS  Google Scholar 

  193. Simmler LD, Li Y, Hadjas LC, Hiver A, van Zessen R, Lüscher C. Dual action of ketamine confines addiction liability. Nature. 2022;608:368.

    PubMed  CAS  Google Scholar 

  194. Baker LE. Hallucinogens in drug discrimination. Curr Top Behav Neurosci. 2018;36:201–19.

    PubMed  CAS  Google Scholar 

  195. McMahon LR. The rise (and fall?) of drug discrimination research. Drug Alcohol Depend. 2015;151:284.

    PubMed  PubMed Central  Google Scholar 

  196. Stevens Negus S, Miller LL. Intracranial self-stimulation to evaluate abuse potential of drugs. Pharm Rev. 2014;66:869–917.

    PubMed  Google Scholar 

  197. Altarifi AA, Rice C, Stevens Negus S. Abuse-related effects of mu opioid analgesics in an assay of intracranial self-stimulation in rats: modulation by chronic morphine exposure. Behav Pharmacol. 2013;24:459-70. https://doi.org/10.1097/FBP.0b013e328364c0bd.

  198. Sakloth F, Leggett E, Moerke MJ, Townsend EA, Banks ML, Negus SS. Effects of acute and repeated treatment with serotonin 5-HT2A receptor agonist hallucinogens on intracranial self-stimulation in rats. Exp Clin Psychopharmacol. 2019;27:215–26.

    PubMed  PubMed Central  CAS  Google Scholar 

  199. Carhart-Harris R, Giribaldi B, Watts R, Baker-Jones M, Murphy-Beiner A, Murphy R, et al. Trial of psilocybin versus escitalopram for depression. N Engl J Med. 2021;384:1402–11.

    PubMed  CAS  Google Scholar 

  200. Davis AK, Barrett FS, May DG, Cosimano MP, Sepeda ND, Johnson MW, et al. Effects of psilocybin-assisted therapy on major depressive disorder: a randomized clinical trial. JAMA Psychiatry. 2021;78:481–9.

    PubMed  Google Scholar 

  201. Gukasyan N, Davis AK, Barrett FS, Cosimano MP, Sepeda ND, Johnson MW, et al. Efficacy and safety of psilocybin-assisted treatment for major depressive disorder: prospective 12-month follow-up. J Psychopharmacol. 2022;36:151–8.

    PubMed  PubMed Central  CAS  Google Scholar 

  202. Goodwin GM, Aaronson ST, Alvarez O, Arden PC, Baker A, Bennett JC, et al. Single-dose psilocybin for a treatment-resistant episode of major depression. N Engl J Med. 2022;387:1637–48.

    PubMed  CAS  Google Scholar 

  203. Carhart-Harris RL, Bolstridge M, Day CMJ, Rucker J, Watts R, Erritzoe DE, et al. Psilocybin with psychological support for treatment-resistant depression: six-month follow-up. Psychopharmacology. 2018;235:399–408.

    PubMed  CAS  Google Scholar 

  204. Nikolaidis A, Lancelotta R, Gukasyan N, Griffiths RR, Barrett FS, Davis AK. Subtypes of the psychedelic experience have reproducible and predictable effects on depression and anxiety symptoms. J Affect Disord. 2023;324:239–49.

    PubMed  Google Scholar 

  205. Gasser P, Holstein D, Yvonne Michel Þ, Rick Doblin þ, Yazar-Klosinski B, et al. Safety and efficacy of lysergic acid diethylamide-assisted psychotherapy for anxiety associated with life-threatening diseases. J Nerv Ment Dis. 2014 Jul;202(7):513-20. https://doi.org/10.1097/NMD.0000000000000113.

  206. Singleton SP, Wang JB, Mithoefer M, Hanlon C, George MS, Mithoefer A, et al. Altered brain activity and functional connectivity after MDMA-assisted therapy for post-traumatic stress disorder. Front Psychiatry. 2023;13:3012.

    Google Scholar 

  207. Johnson MW, Garcia-Romeu, Roland A, Griffiths RR. Long-term follow-up of psilocybin-facilitated smoking cessation. Am J Drug Alcohol Abus. 2017;43:55–60.

    Google Scholar 

  208. Johnson MW. Classic psychedelics in addiction treatment: the case for psilocybin in tobacco smoking cessation. Curr Top Behav Neurosci. 2022;56:213-227. https://doi.org/10.1007/7854_2022_327.

  209. Bogenschutz MP, Forcehimes AA, Pommy JA, Wilcox CE, Barbosa P, Strassman RJ. Psilocybin-assisted treatment for alcohol dependence: a proof-of-concept study. J Psychopharmacol. 2015;29:289–99.

    PubMed  CAS  Google Scholar 

  210. Bogenschutz MP, Ross S, Bhatt S, Baron T, Forcehimes AA, Laska E, et al. Percentage of heavy drinking days following psilocybin-assisted psychotherapy vs placebo in the treatment of adult patients with alcohol use disorder. J Am Med Assoc. 2022;2022. https://doi.org/10.1001/jamapsychiatry.2022.2096.

  211. Schimmel N, Breeksema JJ, Sanne Smith-Apeldoorn Y, Jolien V, van den Brink W, Schoevers RA. Psychedelics for the treatment of depression, anxiety, and existential distress in patients with a terminal illness: a systematic review. Psychopharmacology (Berl). 2022 Jan;239(1):15-33.

  212. Agin-Liebes GI, Malone T, Yalch MM, Mennenga SE, Ponté KL, Guss J, et al. Long-term follow-up of psilocybin-assisted psychotherapy for psychiatric and existential distress in patients with life-threatening cancer. J Psychopharmacol. 2020;34:155–66.

    PubMed  Google Scholar 

  213. Cryan JF, Valentino RJ, Lucki I. Assessing substrates underlying the behavioral effects of antidepressants using the modified rat forced swimming test. Neurosci Biobehav Rev. 2005;29:547–69.

    PubMed  CAS  Google Scholar 

  214. Cameron LP, Tombari RJ, Lu J, Pell AJ, Hurley ZQ, Ehinger Y, et al. A non-hallucinogenic psychedelic analogue with therapeutic potential. Nature. 2021;589:474–9.

    PubMed  CAS  Google Scholar 

  215. Cameron LP, Patel SD, Vargas MV, Barragan EV, Saeger HN, Warren HT, et al. 5-HT2ARs mediate therapeutic behavioral effects of psychedelic tryptamines. ACS Chem Neurosci. 2023;2023. https://doi.org/10.1021/ACSCHEMNEURO.2C00718.

  216. Cameron LP, Benson CJ, Defelice BC, Fiehn O, Olson DE. Chronic, intermittent microdoses of the psychedelic N,N-dimethyltryptamine (DMT) produce positive effects on mood and anxiety in rodents. ACS Chem Neurosci. 2019. 2019;10:3261–70. https://doi.org/10.1021/acschemneuro.8b00692.

  217. de la Fuente Revenga M, Zhu B, Guevara CA, Naler LB, Saunders JM, Zhou Z, et al. Prolonged epigenomic and synaptic plasticity alterations following single exposure to a psychedelic in mice. Cell Rep. 2021;37:109836.

    PubMed  Google Scholar 

  218. Ly C, Greb AC, Cameron LP, Wong JM, Barragan EV, Wilson PC, et al. Psychedelics promote structural and functional neural plasticity. Cell Rep. 2018;23:3170.

    PubMed  PubMed Central  CAS  Google Scholar 

  219. Berthoux C, Barre A, Bockaert J, Marin P, Bécamel C. Sustained activation of postsynaptic 5-HT2A receptors gates plasticity at prefrontal cortex synapses. Cereb Cortex. 2019;29:1659–69.

    PubMed  Google Scholar 

  220. Moliner R, Girych M, Brunello CA, Kovaleva V, Biojone C, Enkavi G, et al. Psychedelics promote plasticity by directly binding to BDNF receptor TrkB. Nat Neurosci. 2023;26:1032–41.

    PubMed  PubMed Central  CAS  Google Scholar 

  221. Canal CE, Murnane KS. The serotonin 5-HT2C receptor and the non-addictive nature of classic hallucinogens. J Psychopharmacol. 2016;31:127–43. https://doi.org/10.1177/0269881116677104.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  222. Spanagel R. Animal models of addiction. Dialogues Clin Neurosci. 2017;19:247–58.

  223. McKendrick G, Garrett H, Jones HE, McDevitt DS, Sharma S, et al. Ketamine Blocks Morphine-Induced Conditioned Place Preference and Anxiety-Like Behaviors in Mice. Front Behav Neurosci. 2020;14:75. https://doi.org/10.3389/fnbeh.2020.00075.

  224. Herzig V, Capuani EMI, Kovar KA, Schmidt WJ. Effects of MPEP on expression of food-, MDMA- or amphetamine-conditioned place preference in rats. Addic Biol. 2005;10:243–9.

    CAS  Google Scholar 

  225. Alper K, Cange J, Sah R, Schreiber-Gregory D, Sershen H, Vinod KY. Psilocybin sex-dependently reduces alcohol consumption in C57BL/6J mice. Front Pharm. 2023;13:5314.

    Google Scholar 

  226. Alper K, Dong B, Shah R, Sershen H, Vinod KY. LSD administered as a single dose reduces alcohol consumption in C57BL/6J Mice. Front Pharm. 2018;9:994.

    Google Scholar 

  227. McCool B, Rosenwasser A, Lovinger DM, Alper kennethalper K, Yaragudri Vinod nyumcorg K, Alper K, et al. LSD Administered as a single dose reduces alcohol consumption in C57BL/6J mice. 2018;2018. https://doi.org/10.3389/fphar.2018.00994.

  228. Oppong-Damoah A, Curry KE, Blough BE, Rice KC, Murnane KS. Effects of the synthetic psychedelic 2,5-dimethoxy-4-iodoamphetamine (DOI) on ethanol consumption and place conditioning in male mice. Psychopharmacology. 2019;236:3567–78.

    PubMed  PubMed Central  CAS  Google Scholar 

  229. Yaden DB, Griffiths RR. The subjective effects of psychedelics are necessary for their enduring therapeutic effects. ACS Pharm Transl Sci. 2021;4:568–72.

    CAS  Google Scholar 

  230. Jaster AM, de la Fuente Revenga M, González-Maeso J. Molecular targets of psychedelic-induced plasticity. J Neurochem. 2021;2021. https://doi.org/10.1111/JNC.15536.

  231. Olson DE. The subjective effects of psychedelics may not be necessary for their enduring therapeutic effects. ACS Pharm Transl Sci. 2021;4:563–7.

    CAS  Google Scholar 

  232. Olson DE. Biochemical mechanisms underlying psychedelic-induced neuroplasticity. Biochemistry. 2022;61:127–36.

  233. Kwan AC, Olson DE, Preller KH, Roth BL. The neural basis of psychedelic action. Nat Neurosci. 2022;25:1407–19.

    PubMed  PubMed Central  CAS  Google Scholar 

  234. Hibicke M, Landry AN, Kramer HM, Talman ZK, Nichols CD. Psychedelics, but not ketamine, produce persistent antidepressant-like effects in a rodent experimental system for the study of depression. ACS Chem Neurosci. 2020;11:864–71.

  235. Qu Y, Chang L, Ma L, Wan X, Hashimoto K. Rapid antidepressant-like effect of non-hallucinogenic psychedelic analog lisuride, but not hallucinogenic psychedelic DOI, in lipopolysaccharide-treated mice. Pharm Biochem Behav. 2023;222:173500.

    CAS  Google Scholar 

  236. Murnane KS. Serotonin 2A receptors are a stress response system: implications for post-traumatic stress disorder. Behav Pharmacol. 2019;30:151–62. https://doi.org/10.1097/FBP.0000000000000459.

  237. Steinberg LJ, Rubin-Falcone H, Galfalvy HC, Kaufman J, Miller JM, Elizabeth Sublette M, et al. Cortisol stress response and in vivo pet imaging of human brain serotonin 1A receptor binding. Int J Neuropsychopharmacol. 2019;22:329–38.

  238. Jaggar M, Weisstaub N, Gingrich JA, Vaidya VA. 5-HT2A receptor deficiency alters the metabolic and transcriptional, but not the behavioral, consequences of chronic unpredictable stress. Neurobiol Stress. 2017;7:89–102.

    PubMed  PubMed Central  Google Scholar 

  239. Saunders JM, Muguruza C, Sierra S, Moreno JL, Callado LF, Meana JJ, et al. Glucocorticoid receptor dysregulation underlies 5-HT2AR-dependent synaptic and behavioral deficits in a mouse neurodevelopmental disorder model. J Biol Chem. 2022;298:102481.

    PubMed  PubMed Central  CAS  Google Scholar 

  240. Levit Kaplan A, Confair DN, Kim K, Barros-Álvarez X, Rodriguiz RM, Yang Y, et al. Bespoke library docking for 5-HT 2A receptor agonists with antidepressant activity. Nature. 2022;610:582–91. https://doi.org/10.1038/s41586-022-05258-z.

  241. Pacheco AT, Olson RJ, Garza G, Moghaddam B. Acute psilocybin enhances cognitive flexibility in rats. Neuropsychopharmacology. 2023;48:1011–20.

  242. Odland AU, Kristensen JL, Andreasen JT. Investigating the role of 5-HT2A and 5-HT2C receptor activation in the effects of psilocybin, DOI, and citalopram on marble burying in mice. Behav Brain Res. 2021;401:113093.

    PubMed  CAS  Google Scholar 

  243. Plach M, Schäfer T, Oscar Borroto-Escuela D, Weikert D, Gmeiner P, Fuxe K, et al. Differential allosteric modulation within dopamine D 2 R-neurotensin NTS1R and D 2 R-serotonin 5-HT 2A R receptor complexes gives bias to intracellular calcium signalling. Sci Rep. 2019;9:16312. https://doi.org/10.1038/s41598-019-52540-8.

  244. Meredith GE. The synaptic framework for chemical signaling in nucleus accumbens. Ann N Y Acad Sci. 1999;877:140–56.

  245. Russo SJ, Dietz DM, Dumitriu D, Morrison JH, Malenka RC, Nestler EJ. The addicted synapse: mechanisms of synaptic and structural plasticity in nucleus accumbens. Trends Neurosci. 2010;33:267–76.

    PubMed  PubMed Central  CAS  Google Scholar 

  246. Pickel VM, Chan J. Ultrastructural localization of the serotonin transporter in limbic and motor compartments of the nucleus accumbens. J Neurosci. 1999;19:7356–66.

    PubMed  PubMed Central  CAS  Google Scholar 

  247. Zayara AE, McIver G, Valdivia PN, Lominac KD, McCreary AC, Szumlinski KK. Blockade of nucleus accumbens 5-HT2A and 5-HT2C receptors prevents the expression of cocaine-induced behavioral and neurochemical sensitization in rats. Psychopharmacology. 2011;213:321–35.

    PubMed  CAS  Google Scholar 

  248. Robinson ES, Dalley JW, Theobald DE, Glennon JC, Pezze MA, Murphy ER, et al. Opposing roles for 5-HT 2A and 5-HT 2C receptors in the nucleus accumbens on inhibitory response control in the 5-choice serial reaction time task. Neuropsychopharmacology. 2008;33:2398–406.

    PubMed  CAS  Google Scholar 

  249. Kozell LB, Eshleman AJ, Swanson TL, Bloom SH, Wolfrum KM, Schmachtenberg JL, et al. Pharmacologic activity of substituted tryptamines at 5-HT2AR, 5-HT2CR, 5-HT1AR, and SERT. J Pharmacol Exp Ther. 2023:JPET-AR-2022-001454.

  250. Polter AM, Li X. 5-HT1A receptor-regulated signal transduction pathways in brain. Cell Signal. 2010;22:1406–12.

    PubMed  PubMed Central  CAS  Google Scholar 

  251. Riga MS, Bortolozzi A, Campa L, Artigas F, Celada P. The serotonergic hallucinogen 5-methoxy-N,N-dimethyltryptamine disrupts cortical activity in a regionally-selective manner via 5-HT1A and 5-HT2A receptors. Neuropharmacology. 2016;101:370–8.

    PubMed  CAS  Google Scholar 

  252. de Montigny C, Aghajanian GK. Preferential action of 5-methoxytryptamine and 5-methoxydimethyltryptamine on presynaptic serotonin receptors: a comparative iontophoretic study with LSD and serotonin. Neuropharmacology. 1977;16:811–8.

    Google Scholar 

  253. McCall RB. Neurophysiological effects of hallucinogens on serotonergic neuronal systems. Neurosci Biobehav Rev. 1982;6:509–14.

    PubMed  CAS  Google Scholar 

  254. Madsen MK, Fisher PM, Burmester D, Dyssegaard A, Stenbæk DS, Kristiansen S, et al. Psychedelic effects of psilocybin correlate with serotonin 2A receptor occupancy and plasma psilocin levels. Neuropsychopharmacology. 2019;44:1328.

    PubMed  PubMed Central  CAS  Google Scholar 

  255. Preller KH, Herdener M, Pokorny T, Liechti ME, Seifritz E, Correspondence FXV. The fabric of meaning and subjective effects in LSD-induced states depend on serotonin 2A receptor activation. Curr Biol. 2017;27:451–7.

    PubMed  CAS  Google Scholar 

  256. Griffiths RR, Richards WA, Johnson MW, McCann UD, Jesse R. Mystical-type experiences occasioned by psilocybin mediate the attribution of personal meaning and spiritual significance 14 months later. J Psychopharmacol. 2008;22:621.

    PubMed  PubMed Central  CAS  Google Scholar 

  257. Garcia-Romeu A, Griffiths RR, Johnson MW. Psilocybin-occasioned mystical experiences in the treatment of tobacco addiction. Curr Drug Abuse Rev. 2014;7:157–64.

  258. Nakamura K, Ikoma Y, Kimura K, Nakada Y, Kobayashi S, Yamaguchi M, et al. Effects in animal models of depression of lisuride alone and upon coadministration with antidepressants. Nihon Yakurigaku Zasshi. 1989;94:81–89.

    PubMed  CAS  Google Scholar 

  259. Cunningham MJ, Bock HA, Serrano IC, Bechand B, Vidyadhara DJ, Bonniwell EM, et al. Pharmacological mechanism of the non-hallucinogenic 5-HT2A agonist ariadne and analogs. ACS Chem Neurosci. 2023;14:119–35.

    PubMed  CAS  Google Scholar 

  260. Gukasyan N, Nayak SM. Psychedelics, placebo effects, and set and setting: Insights from common factors theory of psychotherapy. Transcult Psychiatry. 2022;59:652–64. https://doi.org/10.1177/1363461520983684.

  261. Bhatia A, Appelbaum PS, Wisner KL. Unblinding in randomized controlled trials: a research ethics case. Ethics Hum Res. 2021;43:28–34.

    PubMed  PubMed Central  Google Scholar 

  262. Cameron LP. Citizen science asking questions of psychedelic microdosing. Elife. 2021;10:e66920.

    PubMed  PubMed Central  Google Scholar 

  263. Aday JS, Heifets BD, Pratscher SD, Bradley E, Rosen R, Woolley JD. Great expectations: recommendations for improving the methodological rigor of psychedelic clinical trials. Psychopharmacology. 2022;239:1989–2010.

    PubMed  PubMed Central  CAS  Google Scholar 

  264. Butler M, Jelen L, Rucker J. Expectancy in placebo-controlled trials of psychedelics: if so, so what? Psychopharmacology. 2022;239:3047–55.

    PubMed  PubMed Central  CAS  Google Scholar 

  265. von Rotz R, Schindowski EM, Jungwirth J, Schuldt A, Rieser NM, Zahoranszky K, et al. Single-dose psilocybin-assisted therapy in major depressive disorder: a placebo-controlled, double-blind, randomised clinical trial. EClinicalMedicine. 2022;56:101809.

  266. Cavanna F, Muller S, de la Fuente LA, Zamberlan F, Palmucci M, Janeckova L, et al. Microdosing with psilocybin mushrooms: a double-blind placebo-controlled study. Transl Psychiatry. 2022;12:1–11.

    Google Scholar 

  267. Yanakieva S, Polychroni N, Family N, Williams LTJ, Luke DP, Terhune DB. The effects of microdose LSD on time perception: a randomised, double-blind, placebo-controlled trial. Psychopharmacology. 2019;236:1159–70.

    PubMed  CAS  Google Scholar 

  268. Carbonaro TM, Johnson MW, Hurwitz E, Griffiths RR. Double-blind comparison of the two hallucinogens psilocybin and dextromethorphan: similarities and differences in subjective experiences. Psychopharmacology. 2018;235:521–34.

    PubMed  CAS  Google Scholar 

  269. Becker AM, Klaiber A, Holze F, Istampoulouoglou I, Duthaler U, Varghese N, et al. Ketanserin reverses the acute response to LSD in a randomized, double-blind, placebo-controlled, crossover study in healthy subjects. Int J Neuropsychopharmacol. 2022;2022. https://doi.org/10.1093/IJNP/PYAC075.

  270. Gukasyan N. On blinding and suicide risk in a recent trial of psilocybin-assisted therapy for treatment-resistant depression. Med. 2023;4:8–9.

    PubMed  CAS  Google Scholar 

  271. Breeksema JJ, Kuin BW, Kamphuis J, van den Brink W, Vermetten E, Schoevers RA. Adverse events in clinical treatments with serotonergic psychedelics and MDMA: a mixed-methods systematic review. J Psychopharmacol. 2022;36:1100–17.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank J. Rolquin for his assistance with computational ligand docking analysis.

Funding

This work was supported by NIH grants R01MH084894, P30DA033934, and F31DA057818. Figures were created using biorender.com

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization (AMJ, JGM), Writing – original draft (AMJ), Writing – review and editing (JGM), Funding acquisition (AMJ, JGM), Supervision (JGM).

Corresponding author

Correspondence to Javier González-Maeso.

Ethics declarations

Competing interests

JGM has or has had sponsored research contracts with Terran Biosciences, Gonogo Solutions, and Noetic Fund, and serves on scientific advisory boards for Adelia Therapeutics, Cognesy Therapeutics, and Psylo. AMJ has a consulting contract with Terran Biosciences.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaster, A.M., González-Maeso, J. Mechanisms and molecular targets surrounding the potential therapeutic effects of psychedelics. Mol Psychiatry 28, 3595–3612 (2023). https://doi.org/10.1038/s41380-023-02274-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-023-02274-x

This article is cited by

Search

Quick links