Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nurture outpaces nature: fostering with an attentive mother alters social dominance in a mouse model of stress sensitivity

Abstract

Maternal care is critical for epigenetic programming during postnatal brain development. Stress is recognized as a critical factor that may affect maternal behavior, yet owing to high heterogeneity in stress response, its impact varies among individuals. We aimed here to understand the connection between inborn stress vulnerability, maternal care, and early epigenetic programming using mouse populations that exhibit opposite poles of the behavioral spectrum (social dominance [Dom] and submissiveness [Sub]) and differential response to stress. In contrast to stress-resilient Dom dams, stress-vulnerable Sub dams exhibit significantly lower maternal attachment, serum oxytocin, and colonic Lactobacillus reuteri populations. Sub offspring showed a reduced hippocampal expression of key methylation genes at postnatal day (PND) 7 and a lack of developmentally-dependent increase in 5-methylcytosine (5-mC) at PND 21. In addition, Sub pups exhibit significant hypermethylation of gene promoters connected with glutamatergic synapses and behavioral responses. We were able to reverse the submissive endophenotype through cross-fostering Sub pups with Dom dams (Sub/D). Thus, Sub/D pups exhibited elevated hippocampal expression of DNMT3A at PND 7 and increased 5-mC levels at PND 21. Furthermore, adult Sub/D offspring exhibited increased sociability, social dominance, and hippocampal glutamate and monoamine levels resembling the neurochemical profile of Dom mice. We postulate that maternal inborn stress vulnerability governs epigenetic patterning sculpted by maternal care and intestinal microbiome diversity during early developmental stages and shapes the array of gene expression patterns that may dictate neuronal architecture with a long-lasting impact on stress sensitivity and the social behavior of offspring.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Sub dams exhibit poor maternal care, low serum oxytocin, and low Lactobacillus reuteri abundance in the intestinal microbiome, impacting pup behavior and hippocampal epigenetics machinery.
Fig. 2: Differential methylation patterns in hippocampi of dominant and submissive mice.
Fig. 3: Gene set enrichment analysis (GSEA).
Fig. 4: Cross-fostering with Dom mothers improves Sub pup methylation-related gene expression, development, and metabolic features.
Fig. 5: Cross-fostering of Sub mice produced improved social and anxiety-like/repetitive behaviors.
Fig. 6: Assessment of hippocampal neurochemistry and neurophysiology in cross-fostered mice.

Similar content being viewed by others

References

  1. McEwen BS, McEwen CA. Social, psychological, and physiological reactions to stress. In: Emerging trends in the social and behavioral sciences: an interdisciplinary, searchable, and linkable resource; 2015. John Wiley & Sons, Hoboken, New Jersey, USA. p. 1–15.

  2. Moffitt TE. Childhood exposure to violence and lifelong health: clinical intervention science and stress-biology research join forces. Dev Psychopathol. 2013;25:1619–34.

    PubMed  Google Scholar 

  3. Shonkoff JP. Leveraging the biology of adversity to address the roots of disparities in health and development. Proc Natl Acad Sci USA. 2012;109:17302–7.

    PubMed  PubMed Central  CAS  Google Scholar 

  4. Flati T, Gioiosa S, Chillemi G, Mele A, Oliverio A, Mannironi C, et al. A gene expression atlas for different kinds of stress in the mouse brain. Sci Data. 2020;7:1–18.

    Google Scholar 

  5. Zambon A, Rico LC, Herman M, Gundacker A, Telalovic A, Hartenberger L-M, et al. Gestational immune activation disrupts hypothalamic neurocircuits of maternal care behavior. Mol Psychiatry. 2022;1–15. https://doi.org/10.1038/s41380-022-01602-x. Online ahead of print.

  6. Fogaça MV, Duman RS. Cortical GABAergic dysfunction in stress and depression: new insights for therapeutic interventions. Front Cell Neurosci. 2019;13:87.

  7. Bagot RC, van Hasselt FN, Champagne DL, Meaney MJ, Krugers HJ, Joëls M. Maternal care determines rapid effects of stress mediators on synaptic plasticity in adult rat hippocampal dentate gyrus. Neurobiol Learn Mem. 2009;92:292–300.

    PubMed  Google Scholar 

  8. Babineau V, Fonge YN, Miller ES, Grobman WA, Ferguson PL, Hunt KJ, et al. Associations of maternal prenatal stress and depressive symptoms with childhood neurobehavioral outcomes in the ECHO Cohort of the NICHD Fetal Growth Studies: fetal growth velocity as a potential mediator. J Am Acad Child Adolesc Psychiatry. 2022;61:1155–67.

  9. Smith SE, Li J, Garbett K, Mirnics K, Patterson PH. Maternal immune activation alters fetal brain development through interleukin-6. J Neurosci. 2007;27:10695–702.

    PubMed  PubMed Central  CAS  Google Scholar 

  10. Ibrahim Y, Kearney S, Levkovich T, Springer A, Mirabal S, Poutahidis T, et al. Maternal gut microbes control offspring sex and survival. J Probiotics Health. 2015;2:120.

    Google Scholar 

  11. Weinstock M. Prenatal stressors in rodents: effects on behavior. Neurobiol Stress. 2017;6:3–13.

    PubMed  Google Scholar 

  12. Diego MA, Jones NA, Field T, Hernandez-Reif M, Schanberg S, Kuhn C, et al. Maternal psychological distress, prenatal cortisol, and fetal weight. Psychosom Med. 2006;68:747–53.

    PubMed  Google Scholar 

  13. Champagne F, Diorio J, Sharma S, Meaney MJ. Naturally occurring variations in maternal behavior in the rat are associated with differences in estrogen-inducible central oxytocin receptors. Proc Natl Acad Sci USA. 2001;98:12736–41.

    PubMed  PubMed Central  CAS  Google Scholar 

  14. Francis D, Diorio J, Liu D, Meaney MJ. Nongenomic transmission across generations of maternal behavior and stress responses in the rat. Science. 1999;286:1155–8.

    PubMed  CAS  Google Scholar 

  15. Gonzalez A, Lovic V, Ward GR, Wainwright PE, Fleming AS. Intergenerational effects of complete maternal deprivation and replacement stimulation on maternal behavior and emotionality in female rats. Dev Psychobiol. 2001;38:11–32.

    PubMed  CAS  Google Scholar 

  16. Aristizabal MJ, Anreiter I, Halldorsdottir T, Odgers CL, McDade TW, Goldenberg A, et al. Biological embedding of experience: a primer on epigenetics. Proc Natl Acad Sci USA. 2020;117:23261–9.

    PubMed  CAS  Google Scholar 

  17. Austerberry C, Fearon P. An overview of developmental behavioral genetics. In: Developmental human behavioral epigenetics. 2021. Academic Press, Cambridge, Massachusetts, USA. p. 59–80.

  18. Dulac C, O’Connell LA, Wu Z. Neural control of maternal and paternal behaviors. Science. 2014;345:765–70.

    PubMed  PubMed Central  CAS  Google Scholar 

  19. Hellstrom IC, Dhir SK, Diorio JC, Meaney MJ. Maternal licking regulates hippocampal glucocorticoid receptor transcription through a thyroid hormone–serotonin–NGFI-A signalling cascade. Philos Trans R Soc B Biol Sci. 2012;367:2495–510.

    CAS  Google Scholar 

  20. Wu R, Li S, Huang Y, Pang J, Cai Y, Zhang X, et al. Postpartum maternal exposure to predator odor alters offspring antipredator behavior, basal HPA axis activity and immunoglobulin levels in adult Brandt’s voles. Behav Brain Res. 2022;416:113532.

    PubMed  CAS  Google Scholar 

  21. Barha CK, Pawluski JL, Galea LA. Maternal care affects male and female offspring working memory and stress reactivity. Physiol Behav. 2007;92:939–50.

    PubMed  CAS  Google Scholar 

  22. Weaver I, Cervoni N, Champagne FA, D’Alessio AC, Sharma S, Seckl JR, et al. Epigenetic programming by maternal behavior. Nat Neurosci. 2004;7:847–54.

    PubMed  CAS  Google Scholar 

  23. Liu D, Diorio J, Day JC, Francis DD, Meaney MJ. Maternal care, hippocampal synaptogenesis and cognitive development in rats. Nat Neurosci. 2000;3:799–806.

    PubMed  CAS  Google Scholar 

  24. Schmidt MV. Chapter 4 - Stress-hyporesponsive period. In: Fink G, editor. Stress: physiology, biochemistry, and pathology. Academic Press, Cambridge, Massachusetts, USA; 2019. p. 49–56.

  25. Laubach ZM, Greenberg JR, Turner JW, Montgomery TM, Pioon MO, Sawdy MA, et al. Early-life social experience affects offspring DNA methylation and later life stress phenotype. Nat Commun. 2021;12:1–15.

    Google Scholar 

  26. De Kloet ER, Sibug RM, Helmerhorst FM, Schmidt M. Stress, genes and the mechanism of programming the brain for later life. Neurosci Biobehav Rev. 2005;29:271–81.

    PubMed  Google Scholar 

  27. Lehmann J, Russig H, Feldon J, Pryce CR. Effect of a single maternal separation at different pup ages on the corticosterone stress response in adult and aged rats. Pharmacol Biochem Behav. 2002;73:141–5.

    PubMed  CAS  Google Scholar 

  28. Levine S. Developmental determinants of sensitivity and resistance to stress. Psychoneuroendocrinology. 2005;30:939–46.

    PubMed  Google Scholar 

  29. Matsumoto Y, Yoshihara T, Yamasaki Y. Maternal deprivation in the early versus late postnatal period differentially affects growth and stress-induced corticosterone responses in adolescent rats. Brain Res. 2006;1115:155–61.

    PubMed  CAS  Google Scholar 

  30. Joëls M, Baram TZ. The neuro-symphony of stress. Nat Rev Neurosci. 2009;10:459–66.

    PubMed  PubMed Central  Google Scholar 

  31. Lyons DM, Parker KJ, Schatzberg AF. Animal models of early life stress: implications for understanding resilience. Dev Psychobiol. 2010;52:402–10.

    PubMed  PubMed Central  Google Scholar 

  32. Molet J, Maras PM, Avishai‐Eliner S, Baram TZ. Naturalistic rodent models of chronic early‐life stress. Dev Psychobiol. 2014;56:1675–88.

    PubMed  PubMed Central  Google Scholar 

  33. Moriceau S, Shionoya K, Jakubs K, Sullivan RM. Early-life stress disrupts attachment learning: the role of amygdala corticosterone, locus ceruleus corticotropin releasing hormone, and olfactory bulb norepinephrine. J Neurosci. 2009;29:15745–55.

    PubMed  PubMed Central  CAS  Google Scholar 

  34. Alfaradhi MZ, Ozanne SE. Developmental programming in response to maternal overnutrition. Front Genet. 2011;2:27.

    PubMed  PubMed Central  Google Scholar 

  35. Sandovici I, Hoelle K, Angiolini E, Constância M. Placental adaptations to the maternal–fetal environment: implications for fetal growth and developmental programming. Reprod Biomed Online. 2012;25:68–89.

    PubMed  Google Scholar 

  36. Warner MJ, Ozanne SE. Mechanisms involved in the developmental programming of adulthood disease. Biochem J. 2010;427:333–47.

    PubMed  CAS  Google Scholar 

  37. Cameron NM. Maternal programming of reproductive function and behavior in the female rat. Front Evolut Neurosci. 2011;3:10.

    Google Scholar 

  38. Meaney MJ. Maternal care, gene expression, and the transmission of individual differences in stress reactivity across generations. Annu Rev Neurosci. 2001;24:1161–92.

    PubMed  CAS  Google Scholar 

  39. Courtiol E, Wilson DA, Shah R, Sullivan RM, Teixeira CM. Maternal regulation of pups’ cortical activity: role of serotonergic signaling. Eneuro. 2018;5:0093–18.

  40. Pena PV, Davrazou F, Shi X, Walter KL, Verkhusha VV, Gozani O, et al. Molecular mechanism of histone H3K4me3 recognition by plant homeodomain of ING2. Nature. 2006;442:100–3.

    PubMed  PubMed Central  CAS  Google Scholar 

  41. Montirosso R, Provenzi L, Mascheroni E. The role of protective caregiving in epigenetic regulation in human infants. In: Developmental human behavioral epigenetics. Elsevier, Amsterdam, The Netherlands; 2021. p. 143–56.

  42. Tian F-Y, Marsit CJ. Environmentally induced epigenetic plasticity in development: epigenetic toxicity and epigenetic adaptation. Curr Epidemiol Rep. 2018;5:450–60.

    PubMed  PubMed Central  Google Scholar 

  43. Unternaehrer E, Meier M, Bouvette-Turcot A-A, Dass SAH. Long-term epigenetic effects of parental caregiving. In: Developmental human behavioral epigenetics. Elsevier, Amsterdam, The Netherlands; 2021. p. 105–17.

  44. Neumann ID, Krömer SA, Bosch OJ. Effects of psycho-social stress during pregnancy on neuroendocrine and behavioural parameters in lactation depend on the genetically determined stress vulnerability. Psychoneuroendocrinology. 2005;30:791–806.

    PubMed  CAS  Google Scholar 

  45. Zannas AS, West AE. Epigenetics and the regulation of stress vulnerability and resilience. Neuroscience. 2014;264:157–70.

    PubMed  CAS  Google Scholar 

  46. Jafari Z, Mehla J, Afrashteh N, Kolb BE, Mohajerani MH. Corticosterone response to gestational stress and postpartum memory function in mice. PLoS ONE. 2017;12:e0180306.

    PubMed  PubMed Central  Google Scholar 

  47. Weinstock M. Prenatal stressors in rodents: effects on behavior. Neurobiol Stress. 2016;6:3–13.

    PubMed  PubMed Central  Google Scholar 

  48. Costa TJ, De Oliveira JC, Giachini FR, Lima VV, Tostes RC, Bomfim GF. Programming of vascular dysfunction by maternal stress: immune system implications. Front Physiol. 2022;13:101.

    Google Scholar 

  49. Feder Y, Nesher E, Ogran A, Kreinin A, Malatynska E, Yadid G, et al. Selective breeding for dominant and submissive behavior in Sabra mice. J Affect Disord. 2010;126:214–22.

    PubMed  Google Scholar 

  50. Nesher E, Gross M, Lisson S, Tikhonov T, Yadid G, Pinhasov A. Differential responses to distinct psychotropic agents of selectively bred dominant and submissive animals. Behav Brain Res. 2013;236:225–35.

    PubMed  CAS  Google Scholar 

  51. Gross M, Pinhasov A. Chronic mild stress in submissive mice: marked polydipsia and social avoidance without hedonic deficit in the sucrose preference test. Behav Brain Res. 2016;298:25–34.

    PubMed  Google Scholar 

  52. Agranyoni O, Meninger-Mordechay S, Uzan A, Ziv O, Salmon-Divon M, Rodin D, et al. Gut microbiota determines the social behavior of mice and induces metabolic and inflammatory changes in their adipose tissue. NPJ Biofilms Microbiomes. 2021;7:1–14.

    Google Scholar 

  53. Bairachnaya M, Agranyoni O, Antoch M, Michaelevski I, Pinhasov A. Innate sensitivity to stress facilitates inflammation, alters metabolism and shortens lifespan in a mouse model of social hierarchy. Aging. 2019;11:9901.

    PubMed  PubMed Central  CAS  Google Scholar 

  54. Gross M, Sheinin A, Nesher E, Tikhonov T, Baranes D, Pinhasov A, et al. Early onset of cognitive impairment is associated with altered synaptic plasticity and enhanced hippocampal GluA1 expression in a mouse model of depression. Neurobiol Aging. 2015;36:1938–52.

    PubMed  CAS  Google Scholar 

  55. Murlanova K, Michaelevski I, Kreinin A, Terrillion C, Pletnikov M, Pinhasov A. Link between temperament traits, brain neurochemistry and response to SSRI: insights from animal model of social behavior. J Affect Disord. 2021;282:1055–66.

    PubMed  CAS  Google Scholar 

  56. Nesher E, Koman I, Gross M, Tikhonov T, Bairachnaya M, Salmon-Divon M, et al. Synapsin IIb as a functional marker of submissive behavior. Sci Rep. 2015;5:10287.

    PubMed  PubMed Central  Google Scholar 

  57. Gross M, Romi H, Miller A, Pinhasov A. Social dominance predicts hippocampal glucocorticoid receptor recruitment and resilience to prenatal adversity. Sci Rep. 2018;8:9595.

  58. Gross M, Romi H, Gilimovich Y, Drori E, Pinhasov A. Placental glucocorticoid receptor and 11β-hydroxysteroid dehydrogenase-2 recruitment indicates impact of prenatal adversity upon postnatal development in mice. Stress. 2018;21:474–83.

    PubMed  CAS  Google Scholar 

  59. Reemst K, Noctor SC, Lucassen PJ, Hol EM. The indispensable roles of microglia and astrocytes during brain development. Front Hum Neurosci. 2016;10:566.

    PubMed  PubMed Central  Google Scholar 

  60. Bockhorst K, Narayana P, Liu R, Ahobila‐Vijjula P, Ramu J, Kamel M, et al. Early postnatal development of rat brain: in vivo diffusion tensor imaging. J Neurosci Res. 2008;86:1520–8.

    PubMed  CAS  Google Scholar 

  61. Dobbing J, Sands J. Comparative aspects of the brain growth spurt. Early Hum Dev. 1979;3:79–83.

    PubMed  CAS  Google Scholar 

  62. Sakamoto T, Ishio Y, Ishida Y, Mogi K, Kikusui T. Low maternal licking/grooming stimulation increases pain sensitivity in male mouse offspring. Exp Anim. 2021;70:13–21.

    PubMed  CAS  Google Scholar 

  63. Myers MM, Brunelli SA, Squire JM, Shindeldecker RD, Hofer MA. Maternal behavior of SHR rats and its relationship to offspring blood pressures. Dev Psychobiol. 1989;22:29–53.

    PubMed  CAS  Google Scholar 

  64. Schechter M, Weller A, Pittel Z, Zimmer A, Pinhasov A. CB1 receptor deficiency affects maternal behavior and alters the dam’s hippocampal oxytocin receptor and BDNF expression, vol. 51. Totowa, NJ, USA: Humana Press Inc; 2013. p. S106–S106.

  65. Schechter M, Pinhasov A, Weller A, Fride E. Blocking the postpartum mouse dam’s CB1 receptors impairs maternal behavior as well as offspring development and their adult social–emotional behavior. Behav Brain Res. 2012;226:481–92.

    PubMed  CAS  Google Scholar 

  66. Scattoni ML, Crawley J, Ricceri L. Ultrasonic vocalizations: a tool for behavioural phenotyping of mouse models of neurodevelopmental disorders. Neurosci Biobehav Rev. 2009;33:508–15.

    PubMed  Google Scholar 

  67. Wojtowicz JM, Kee N. BrdU assay for neurogenesis in rodents. Nat Protoc. 2006;1:1399–405.

    PubMed  CAS  Google Scholar 

  68. Bagot RC, Zhang T-Y, Wen X, Nguyen TTT, Nguyen H-B, Diorio J, et al. Variations in postnatal maternal care and the epigenetic regulation of metabotropic glutamate receptor 1 expression and hippocampal function in the rat. Proc Natl Acad Sci USA. 2012;109:17200–7.

    PubMed  PubMed Central  CAS  Google Scholar 

  69. Champagne FA. Epigenetic mechanisms and the transgenerational effects of maternal care. Front Neuroendocrinol. 2008;29:386–97.

    PubMed  PubMed Central  CAS  Google Scholar 

  70. Lavery LA, Ure K, Wan Y-W, Luo C, Trostle AJ, Wang W, et al. Losing Dnmt3a dependent methylation in inhibitory neurons impairs neural function by a mechanism impacting Rett syndrome. Elife. 2020;9:e52981.

    PubMed  PubMed Central  CAS  Google Scholar 

  71. D’Agostino G, Cristiano C, Lyons DJ, Citraro R, Russo E, Avagliano C, et al. Peroxisome proliferator-activated receptor alpha plays a crucial role in behavioral repetition and cognitive flexibility in mice. Mol Metab. 2015;4:528–36.

    PubMed  PubMed Central  Google Scholar 

  72. Matrisciano F, Pinna G. PPAR-α hypermethylation in the hippocampus of mice exposed to social isolation stress is associated with enhanced neuroinflammation and aggressive behavior. Int J Mol Sci. 2021;22:10678.

    PubMed  PubMed Central  CAS  Google Scholar 

  73. Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun. 2019;10:1523.

    PubMed  PubMed Central  Google Scholar 

  74. Franklin TB, Silva BA, Perova Z, Marrone L, Masferrer ME, Zhan Y, et al. Prefrontal cortical control of a brainstem social behavior circuit. Nat Neurosci. 2017;20:260–70.

    PubMed  PubMed Central  CAS  Google Scholar 

  75. Sokolov AA. The cerebellum in social cognition. Front Cell Neurosci. 2018;12:145.

    Google Scholar 

  76. Watanabe N, Yamamoto M. Neural mechanisms of social dominance. Front Neurosci. 2015;9:154.

    PubMed  PubMed Central  Google Scholar 

  77. Öztürk KH, Ünal GÖ, Doğuç DK, Toğay VA, Koşar PA, Sezik M. Hypothalamic NR3C1 DNA methylation in rats exposed to prenatal stress. Mol Biol Rep. 2022;49:7921–8.

  78. Barzegar M, Sajjadi FS, Talaei SA, Hamidi G, Salami M. Prenatal exposure to noise stress: anxiety, impaired spatial memory, and deteriorated hippocampal plasticity in postnatal life. Hippocampus. 2015;25:187–96.

    PubMed  Google Scholar 

  79. Monk C, Foss S, Desai P, Glover V. Fetal exposure to mother’s distress: new frontiers in research and useful knowledge for daily clinical practice. Handbook of perinatal clinical psychology. Routledge, Milton Park, Abingdon-on-Thames, Oxfordshire, England, UK; 2020. p. 26–42.

  80. Baines KJ, Hillier DM, Haddad FL, Rajakumar N, Schmid S, Renaud SJ. Maternal immune activation alters fetal brain development and enhances proliferation of neural precursor cells in rats. Front Immunol. 2020;11:1145.

    PubMed  PubMed Central  CAS  Google Scholar 

  81. Fong-McMaster C, Konji S, Nitschke A, Konkle AT. Canadian Arctic contaminants and their effects on the maternal brain and behaviour: a scoping review of the animal literature. Int J Environ Res Public Health. 2020;17:926.

    PubMed  PubMed Central  CAS  Google Scholar 

  82. Nagasawa M, Okabe S, Mogi K, Kikusui T. Oxytocin and mutual communication in mother-infant bonding. Front Hum Neurosci. 2012;6:31.

    PubMed  PubMed Central  Google Scholar 

  83. Karmon G, Sragovich S, Hacohen-Kleiman G, Ben-Horin-Hazak I, Kasparek P, Schuster B, et al. Novel ADNP syndrome mice reveal dramatic sex-specific peripheral gene expression with brain synaptic and tau pathologies. Biol Psychiatry. 2022;92:81–95.

    PubMed  CAS  Google Scholar 

  84. Kikusui T, Winslow JT, Mori Y. Social buffering: relief from stress and anxiety. Philos Trans R Soc B Biol Sci. 2006;361:2215–28.

    CAS  Google Scholar 

  85. Bedrosian TA, Quayle C, Novaresi N, Gage FH. Early life experience drives structural variation of neural genomes in mice. Science. 2018;359:1395–9.

    PubMed  CAS  Google Scholar 

  86. Peña CJ, Neugut YD, Champagne FA. Developmental timing of the effects of maternal care on gene expression and epigenetic regulation of hormone receptor levels in female rats. Endocrinology. 2013;154:4340–51.

    PubMed  PubMed Central  Google Scholar 

  87. Simmons RK, Stringfellow SA, Glover ME, Wagle AA, Clinton SM. DNA methylation markers in the postnatal developing rat brain. Brain Res. 2013;1533:26–36.

    PubMed  CAS  Google Scholar 

  88. McCoy CR, Glover ME, Flynn LT, Simmons RK, Cohen JL, Ptacek T, et al. Altered DNA methylation in the developing brains of rats genetically prone to high versus low anxiety. J Neurosci. 2019;39:3144–58.

    PubMed  PubMed Central  Google Scholar 

  89. Zhang T-Y, Hellstrom IC, Bagot RC, Wen X, Diorio J, Meaney MJ. Maternal care and DNA methylation of a glutamic acid decarboxylase 1 promoter in rat hippocampus. J Neurosci. 2010;30:13130–7.

    PubMed  PubMed Central  CAS  Google Scholar 

  90. Blaze J, Roth TL. Exposure to caregiver maltreatment alters expression levels of epigenetic regulators in the medial prefrontal cortex. Int J Dev Neurosci. 2013;31:804–10.

    PubMed  CAS  Google Scholar 

  91. Wang X, Jiang L, Ma W, Zheng X, He E, Zhang B, et al. Maternal separation affects anxiety-like behavior beginning in adolescence and continuing through adulthood and related to Dnmt3a expression. J Neurophysiol. 2022;128:611–8.

    PubMed  CAS  Google Scholar 

  92. Guo M, Li C, Lei Y, Xu S, Zhao D, Lu X-Y. Role of the adipose PPARγ-adiponectin axis in susceptibility to stress and depression/anxiety-related behaviors. Mol Psychiatry. 2017;22:1056–68.

    PubMed  CAS  Google Scholar 

  93. Erdman SE. Oxytocin and the microbiome. Curr Opin Endocr Metab Res. 2021;19:8–14.

    CAS  Google Scholar 

  94. Varian BJ, Poutahidis T, DiBenedictis BT, Levkovich T, Ibrahim Y, Didyk E, et al. Microbial lysate upregulates host oxytocin. Brain Behav Immun. 2017;61:36–49.

    PubMed  CAS  Google Scholar 

  95. Sherwin E, Bordenstein SR, Quinn JL, Dinan TG, Cryan JF. Microbiota and the social brain. Science. 2019;366:eaar2016.

    PubMed  CAS  Google Scholar 

  96. Liu Y, Fatheree NY, Mangalat N, Rhoads JM. Human-derived probiotic Lactobacillus reuteri strains differentially reduce intestinal inflammation. Am J Physiol Gastrointest Liver Physiol. 2010;299:G1087–96.

  97. Sgritta M, Dooling SW, Buffington SA, Momin EN, Francis MB, Britton RA, et al. Mechanisms underlying microbial-mediated changes in social behavior in mouse models of autism spectrum disorder. Neuron. 2019;101:246–59.

    PubMed  CAS  Google Scholar 

  98. Nagpal J, Cryan JF. Host genetics, the microbiome & behaviour—a ‘Holobiont’perspective. Cell Res. 2021;31:832–3.

    PubMed  PubMed Central  Google Scholar 

  99. Dooling SW, Sgritta M, Wang I-C, Duque ALRF, Costa-Mattioli M. The effect of Limosilactobacillus reuteri on social behavior is independent of the adaptive immune system. Msystems. 2022;7:e00358–22.

    PubMed  PubMed Central  Google Scholar 

  100. Benes FM, Berretta S. GABAergic interneurons: implications for understanding schizophrenia and bipolar disorder. Neuropsychopharmacology. 2001;25:1–27.

    PubMed  CAS  Google Scholar 

  101. Kolata SM, Nakao K, Jeevakumar V, Farmer-Alroth EL, Fujita Y, Bartley AF, et al. Neuropsychiatric phenotypes produced by GABA reduction in mouse cortex and hippocampus. Neuropsychopharmacology. 2018;43:1445–56.

    PubMed  PubMed Central  CAS  Google Scholar 

  102. Cohen JL, Glover ME, Pugh PC, Fant AD, Simmons RK, Akil H, et al. Maternal style selectively shapes amygdalar development and social behavior in rats genetically prone to high anxiety. Dev Neurosci. 2015;37:203–14.

    PubMed  CAS  Google Scholar 

  103. Nguyen H-B, Bagot RC, Diorio J, Wong TP, Meaney MJ. Maternal care differentially affects neuronal excitability and synaptic plasticity in the dorsal and ventral hippocampus. Neuropsychopharmacology. 2015;40:1590–9.

    PubMed  PubMed Central  Google Scholar 

  104. Na ES, Nelson ED, Adachi M, Autry AE, Mahgoub MA, Kavalali ET, et al. A mouse model for MeCP2 duplication syndrome: MeCP2 overexpression impairs learning and memory and synaptic transmission. J Neurosci. 2012;32:3109–17.

    PubMed  PubMed Central  CAS  Google Scholar 

  105. Collins AL, Levenson JM, Vilaythong AP, Richman R, Armstrong DL, Noebels JL, et al. Mild overexpression of MeCP2 causes a progressive neurological disorder in mice. Hum Mol Genet. 2004;13:2679–89.

    PubMed  CAS  Google Scholar 

  106. Glinert A, Turjeman S, Elliott E, Koren O. Microbes, metabolites and (synaptic) malleability, oh my! T he effect of the microbiome on synaptic plasticity. Biol Rev. 2022;97:582–99.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Israel Science Foundation (Grant no 2069/17) supporting AP. AP and EL were supported by a grant from the Israel Ministry of Health. DS was supported by PBC post-doctoral fellowship grant.

Author information

Authors and Affiliations

Authors

Contributions

DS performed all the experiments and wrote the manuscript. AP conceived the idea. MK helped with study design, data analysis, statistics, and manuscript writing. OA, NC, AB, and BKS assisted in animal studies, histology, and behavioral experiments. ES assisted with HPLC. KK and RA conducted the bioinformatics analysis under the supervision of EL and MSD. DG performed in electrophysiology experiments and IM helped in interpretation and analysis of electrophysiological experiments.

Corresponding author

Correspondence to Albert Pinhasov.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sur, D., Agranyoni, O., Kirby, M. et al. Nurture outpaces nature: fostering with an attentive mother alters social dominance in a mouse model of stress sensitivity. Mol Psychiatry 28, 3816–3828 (2023). https://doi.org/10.1038/s41380-023-02273-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-023-02273-y

Search

Quick links