Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tau suppresses microtubule-regulated pancreatic insulin secretion

Abstract

Tau protein is implicated in the pathogenesis of Alzheimer’s disease (AD) and other tauopathies, but its physiological function is in debate. Mostly explored in the brain, tau is also expressed in the pancreas. We further explored the mechanism of tau’s involvement in the regulation of glucose-stimulated insulin secretion (GSIS) in islet β-cells, and established a potential relationship between type 2 diabetes mellitus (T2DM) and AD. We demonstrate that pancreatic tau is crucial for insulin secretion regulation and glucose homeostasis. Tau levels were found to be elevated in β-islet cells of patients with T2DM, and loss of tau enhanced insulin secretion in cell lines, drosophila, and mice. Pharmacological or genetic suppression of tau in the db/db diabetic mouse model normalized glucose levels by promoting insulin secretion and was recapitulated by pharmacological inhibition of microtubule assembly. Clinical studies further showed that serum tau protein was positively correlated with blood glucose levels in healthy controls, which was lost in AD. These findings present tau as a common therapeutic target between AD and T2DM.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Pancreatic tau protein levels were elevated in Type 2 diabetes.
Fig. 2: Tau suppression enhances insulin release.
Fig. 3: Knockdown of tau in INS-1 cells increases insulin secretion.
Fig. 4: Microtubule disassembly promotes insulin release.
Fig. 5: Tau protein inhibits insulin release in islet cells by promoting microtubule assembly.
Fig. 6: Serum tau level is positively correlated with blood glucose levels physiologically and disrupted by EOAD pathology.

Similar content being viewed by others

References

  1. Biessels GJ, Staekenborg S, Brunner E, Brayne C, Scheltens P. Risk of dementia in diabetes mellitus: a systematic review. Lancet Neurol. 2006;5:64–74.

    PubMed  Google Scholar 

  2. Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol. 2018;14:88–98.

    PubMed  Google Scholar 

  3. Grodstein F, Chen J, Wilson RS, Manson JE. Type 2 diabetes and cognitive function in community-dwelling elderly women. Diabetes care. 2001;24:1060–5.

    PubMed  CAS  Google Scholar 

  4. Luchsinger JA, Tang MX, Shea S, Mayeux R. Hyperinsulinemia and risk of Alzheimer disease. Neurology. 2004;63:1187–92.

    PubMed  Google Scholar 

  5. Peila R, Rodriguez BL, Launer LJ. Type 2 diabetes, APOE gene, and the risk for dementia and related pathologies: The Honolulu-Asia Aging Study. Diabetes. 2002;51:1256–62.

    PubMed  CAS  Google Scholar 

  6. Xu WL, Qiu CX, Wahlin A, Winblad B, Fratiglioni L. Diabetes mellitus and risk of dementia in the Kungsholmen project: a 6-year follow-up study. Neurology. 2004;63:1181–6.

    PubMed  CAS  Google Scholar 

  7. Craft S, Peskind E, Schwartz MW, Schellenberg GD, Raskind M, Porte D Jr. Cerebrospinal fluid and plasma insulin levels in Alzheimer’s disease: relationship to severity of dementia and apolipoprotein E genotype. Neurology. 1998;50:164–8.

    PubMed  CAS  Google Scholar 

  8. Arnold SE, Arvanitakis Z, Macauley-Rambach SL, Koenig AM, Wang HY, Ahima RS, et al. Brain insulin resistance in type 2 diabetes and Alzheimer disease: concepts and conundrums. Nat Rev Neurol. 2018;14:168–81.

    PubMed  PubMed Central  CAS  Google Scholar 

  9. Kshirsagar V, Thingore C, Juvekar A. Insulin resistance: a connecting link between Alzheimer’s disease and metabolic disorder. Metab Brain Dis. 2021;36:67–83.

    PubMed  Google Scholar 

  10. Rad SK, Arya A, Karimian H, Madhavan P, Rizwan F, Koshy S, et al. Mechanism involved in insulin resistance via accumulation of β-amyloid and neurofibrillary tangles: link between type 2 diabetes and Alzheimer’s disease. Drug Des Dev Ther. 2018;12:3999–4021.

    CAS  Google Scholar 

  11. Chen W, Huang Q, Lazdon EK, Gomes A, Wong M, Stephens E, et al. Loss of insulin signaling in astrocytes exacerbates Alzheimer-like phenotypes in a 5xFAD mouse model. Proc Natl Acad Sci USA. 2023;120:e2220684120.

    PubMed  PubMed Central  CAS  Google Scholar 

  12. Miklossy J, Qing H, Radenovic A, Kis A, Vileno B, Làszló F, et al. Beta amyloid and hyperphosphorylated tau deposits in the pancreas in type 2 diabetes. Neurobiol Aging. 2010;31:1503–15.

    PubMed  CAS  Google Scholar 

  13. Wijesekara N, Ahrens R, Sabale M, Wu L, Ha K, Verdile G, et al. Amyloid-β and islet amyloid pathologies link Alzheimer’s disease and type 2 diabetes in a transgenic model. FASEB J. 2017;31:5409–18.

    PubMed  CAS  Google Scholar 

  14. Baas PW, Qiang L. Tau: It’s Not What You Think. Trends Cell Biol. 2019;29:452–61.

    PubMed  PubMed Central  CAS  Google Scholar 

  15. Qiang L, Sun X, Austin TO, Muralidharan H, Jean DC, Liu M, et al. Tau Does Not Stabilize Axonal Microtubules but Rather Enables Them to Have Long Labile Domains. Curr Biol. 2018;28:2181–2189.e2184.

    PubMed  CAS  Google Scholar 

  16. Morris M, Maeda S, Vossel K, Mucke L. The many faces of tau. Neuron. 2011;70:410–26.

    PubMed  PubMed Central  CAS  Google Scholar 

  17. Baglietto-Vargas D, Shi J, Yaeger DM, Ager R, LaFerla FM. Diabetes and Alzheimer’s disease crosstalk. Neurosci Biobehav Rev. 2016;64:272–87.

    PubMed  CAS  Google Scholar 

  18. Marciniak E, Leboucher A, Caron E, Ahmed T, Tailleux A, Dumont J, et al. Tau deletion promotes brain insulin resistance. J Exp Med. 2017;214:2257–69.

    PubMed  PubMed Central  CAS  Google Scholar 

  19. McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr, Kawas CH, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7:263–9.

    PubMed  PubMed Central  Google Scholar 

  20. Masellis M, Sherborn K, Neto P, Sadovnick DA, Hsiung GY, Black SE, et al. Early-onset dementias: diagnostic and etiological considerations. Alzheimers Res Ther. 2013;5:S7.

    PubMed  PubMed Central  Google Scholar 

  21. Jiang L, Ding X, Wang W, Yang X, Li T, Lei P. Head-to-Head Comparison of Different Blood Collecting Tubes for Quantification of Alzheimer’s Disease Biomarkers in Plasma. Biomolecules. 2022;12:1194.

    PubMed  PubMed Central  CAS  Google Scholar 

  22. Dawson HN, Ferreira A, Eyster MV, Ghoshal N, Binder LI, Vitek MP. Inhibition of neuronal maturation in primary hippocampal neurons from tau deficient mice. J Cell Sci. 2001;114:1179–87.

    PubMed  CAS  Google Scholar 

  23. Muka T, Nano J, Jaspers L, Meun C, Bramer WM, Hofman A, et al. Associations of Steroid Sex Hormones and Sex Hormone-Binding Globulin With the Risk of Type 2 Diabetes in Women: A Population-Based Cohort Study and Meta-analysis. Diabetes. 2017;66:577–86.

    PubMed  CAS  Google Scholar 

  24. De Paoli M, Zakharia A, Werstuck GH. The Role of Estrogen in Insulin Resistance: A Review of Clinical and Preclinical Data. Am J Pathol. 2021;191:1490–8.

    PubMed  Google Scholar 

  25. Mangiafico SP, Lim SH, Neoh S, Massinet H, Joannides CN, Proietto J, et al. A primary defect in glucose production alone cannot induce glucose intolerance without defects in insulin secretion. J Endocrinol. 2011;210:335–47.

    PubMed  CAS  Google Scholar 

  26. Zhang E, Mohammed Al-Amily I, Mohammed S, Luan C, Asplund O, Ahmed M, et al. Preserving Insulin Secretion in Diabetes by Inhibiting VDAC1 Overexpression and Surface Translocation in β Cells. Cell Metab. 2019;29:64–77.e66.

    PubMed  PubMed Central  CAS  Google Scholar 

  27. Needham BE, Wlodek ME, Ciccotosto GD, Fam BC, Masters CL, Proietto J, et al. Identification of the Alzheimer’s disease amyloid precursor protein (APP) and its homologue APLP2 as essential modulators of glucose and insulin homeostasis and growth. J Pathol. 2008;215:155–63.

    PubMed  CAS  Google Scholar 

  28. Yang CH, Mangiafico SP, Waibel M, Loudovaris T, Loh K, Thomas HE, et al. E2f8 and Dlg2 genes have independent effects on impaired insulin secretion associated with hyperglycaemia. Diabetologia. 2020;63:1333–48.

    PubMed  CAS  Google Scholar 

  29. Lacy PE, Kostianovsky M. Method for the isolation of intact islets of Langerhans from the rat pancreas. Diabetes. 1967;16:35–39.

    PubMed  CAS  Google Scholar 

  30. Gotoh M, Maki T, Kiyoizumi T, Satomi S, Monaco AP. An improved method for isolation of mouse pancreatic islets. Transplantation. 1985;40:437–8.

    PubMed  CAS  Google Scholar 

  31. Zhu X, Hu R, Brissova M, Stein RW, Powers AC, Gu G, et al. Microtubules Negatively Regulate Insulin Secretion in Pancreatic β Cells. Dev Cell. 2015;34:656–68.

    PubMed  PubMed Central  CAS  Google Scholar 

  32. Bugliani M, Liechti R, Cheon H, Suleiman M, Marselli L, Kirkpatrick C, et al. Microarray analysis of isolated human islet transcriptome in type 2 diabetes and the role of the ubiquitin-proteasome system in pancreatic beta cell dysfunction. Mol Cell Endocrinol. 2013;367:1–10.

    PubMed  CAS  Google Scholar 

  33. Segerstolpe A, Palasantza A, Eliasson P, Andersson EM, Andreasson AC, Sun X, et al. Single-Cell Transcriptome Profiling of Human Pancreatic Islets in Health and Type 2 Diabetes. Cell Metab. 2016;24:593–607.

    PubMed  PubMed Central  CAS  Google Scholar 

  34. Burnouf S, Gronke S, Augustin H, Dols J, Gorsky MK, Werner J, et al. Deletion of endogenous Tau proteins is not detrimental in Drosophila. Sci Rep. 2016;6:23102.

    PubMed  PubMed Central  CAS  Google Scholar 

  35. Cleveland DW, Hwo SY, Kirschner MW. Purification of tau, a microtubule-associated protein that induces assembly of microtubules from purified tubulin. J Mol Biol. 1977;116:207–25.

    PubMed  CAS  Google Scholar 

  36. Cleveland DW, Hwo SY, Kirschner MW. Physical and chemical properties of purified tau factor and the role of tau in microtubule assembly. J Mol Biol. 1977;116:227–47.

    PubMed  CAS  Google Scholar 

  37. Zhu X, Hu R, Brissova M, Stein RW, Powers AC, Gu G, et al. Microtubules Negatively Regulate Insulin Secretion in Pancreatic beta Cells. Dev Cell. 2015;34:656–68.

    PubMed  PubMed Central  CAS  Google Scholar 

  38. Min SW, Chen X, Tracy TE, Li Y, Zhou Y, Wang C, et al. Critical role of acetylation in tau-mediated neurodegeneration and cognitive deficits. Nat Med. 2015;21:1154–62.

    PubMed  PubMed Central  CAS  Google Scholar 

  39. VandeVrede L, Dale ML, Fields S, Frank M, Hare E, Heuer HW, et al. Open-Label Phase 1 Futility Studies of Salsalate and Young Plasma in Progressive Supranuclear Palsy. Mov Disord Clin Pract. 2020;7:440–7.

    PubMed  PubMed Central  Google Scholar 

  40. Goldfine AB, Fonseca V, Jablonski KA, Chen YD, Tipton L, Staten MA, et al. Salicylate (salsalate) in patients with type 2 diabetes: a randomized trial. Ann Intern Med. 2013;159:1–12.

    PubMed  PubMed Central  Google Scholar 

  41. Goldfine AB, Silver R, Aldhahi W, Cai D, Tatro E, Lee J, et al. Use of salsalate to target inflammation in the treatment of insulin resistance and type 2 diabetes. Clin Transl Sci. 2008;1:36–43.

    PubMed  PubMed Central  CAS  Google Scholar 

  42. Kadohara K, Sato I, Kawakami K. Diabetes mellitus and risk of early-onset Alzheimer’s disease: a population-based case-control study. Eur J Neurol. 2017;24:944–9.

    PubMed  CAS  Google Scholar 

  43. Nam E, Lee YB, Moon C, Chang KA. Serum Tau Proteins as Potential Biomarkers for the Assessment of Alzheimer’s Disease Progression. Int J Mol Sci. 2020;21:5007.

    PubMed  PubMed Central  CAS  Google Scholar 

  44. Ashcroft FM, Rorsman P. Diabetes mellitus and the β cell: the last ten years. Cell. 2012;148:1160–71.

    PubMed  PubMed Central  CAS  Google Scholar 

  45. Jung HJ, Kim YJ, Eggert S, Chung KC, Choi KS, Park SA. Age-dependent increases in tau phosphorylation in the brains of type 2 diabetic rats correlate with a reduced expression of p62. Exp Neurol. 2013;248C:441–50.

    Google Scholar 

  46. Kim B, Backus C, Oh S, Hayes JM, Feldman EL. Increased tau phosphorylation and cleavage in mouse models of type 1 and type 2 diabetes. Endocrinology. 2009;150:5294–301.

    PubMed  PubMed Central  CAS  Google Scholar 

  47. Liu F, Shi J, Tanimukai H, Gu J, Gu J, Grundke-Iqbal I, et al. Reduced O-GlcNAcylation links lower brain glucose metabolism and tau pathology in Alzheimer’s disease. Brain. 2009;132:1820–32.

    PubMed  PubMed Central  Google Scholar 

  48. Maj M, Gartner W, Ilhan A, Neziri D, Attems J, Wagner L. Expression of TAU in insulin-secreting cells and its interaction with the calcium-binding protein secretagogin. J Endocrinol. 2010;205:25–36.

    PubMed  CAS  Google Scholar 

  49. Zhou R, Hu W, Dai CL, Gong CX, Iqbal K, Zhu D, et al. Expression of Microtubule Associated Protein Tau in Mouse Pancreatic Islets Is Restricted to Autonomic Nerve Fibers. J Alzheimer’s Dis. 2020;75:1339–49.

    CAS  Google Scholar 

  50. Betrie AH, Ayton S, Bush AI, Angus JA, Lei P, Wright CE. Evidence of a Cardiovascular Function for Microtubule-Associated Protein Tau. J Alzheimers Dis. 2017;56:849–60.

    PubMed  CAS  Google Scholar 

  51. Maj M, Hoermann G, Rasul S, Base W, Wagner L, Attems J. The Microtubule-Associated Protein Tau and Its Relevance for Pancreatic Beta Cells. J Diabetes Res. 2016;2016:1964634.

    PubMed  Google Scholar 

  52. Das UN. Colchicine in diabetes mellitus. J Assoc Physicians India. 1993;41:213.

    PubMed  CAS  Google Scholar 

  53. Qiang L, Yu W, Andreadis A, Luo M, Baas PW. Tau protects microtubules in the axon from severing by katanin. J Neurosci. 2006;26:3120–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  54. Kellogg EH, Hejab NMA, Poepsel S, Downing KH, DiMaio F, Nogales E. Near-atomic model of microtubule-tau interactions. Science. 2018;360:1242–6.

    PubMed  PubMed Central  CAS  Google Scholar 

  55. Tapia-Rojas C, Cabezas-Opazo F, Deaton CA, Vergara EH, Johnson GVW, Quintanilla RA. It’s all about tau. Prog Neurobiol. 2019;175:54–76.

    PubMed  CAS  Google Scholar 

  56. Gotz J, Halliday G, Nisbet RM. Molecular Pathogenesis of the Tauopathies. Annu Rev Pathol. 2019;14:239–61.

    PubMed  CAS  Google Scholar 

  57. Harada A, Oguchi K, Okabe S, Kuno J, Terada S, Ohshima T, et al. Altered microtubule organization in small-calibre axons of mice lacking tau protein. Nature. 1994;369:488–91.

    PubMed  CAS  Google Scholar 

  58. Takei Y, Teng J, Harada A, Hirokawa N. Defects in axonal elongation and neuronal migration in mice with disrupted tau and map1b genes. J Cell Biol. 2000;150:989–1000.

    PubMed  PubMed Central  CAS  Google Scholar 

  59. Yuan A, Kumar A, Peterhoff CM, Duff KE, Nixon RA. Axonal transport rates in vivo are unaffected by tau deletion or overexpression in mice. J Neurosci. 2008;28:1682–7.

    PubMed  PubMed Central  CAS  Google Scholar 

  60. Vossel KA, Zhang K, Brodbeck J, Daub AC, Sharma P, Finkbeiner S, et al. Tau Reduction Prevents A{beta}-Induced Defects in Axonal Transport. Science. 2010;330:198.

    PubMed  PubMed Central  CAS  Google Scholar 

  61. Lei P, Ayton S, Finkelstein DI, Spoerri L, Ciccotosto GD, Wright DK, et al. Tau deficiency induces parkinsonism with dementia by impairing APP-mediated iron export. Nat Med. 2012;18:291–5.

    PubMed  CAS  Google Scholar 

  62. Lei P, Ayton S, Moon S, Zhang Q, Volitakis I, Finkelstein DI, et al. Motor and cognitive deficits in aged tau knockout mice in two background strains. Mol Neurodegener. 2014;9:29.

    PubMed  PubMed Central  Google Scholar 

  63. Ma QL, Zuo X, Yang F, Ubeda OJ, Gant DJ, Alaverdyan M, et al. Loss of MAP function leads to hippocampal synapse loss and deficits in the Morris Water Maze with aging. J Neurosci. 2014;34:7124–36.

    PubMed  PubMed Central  CAS  Google Scholar 

  64. Lei P, Ayton S, Appukuttan AT, Moon S, Duce JA, Volitakis I, et al. Lithium suppression of tau induces brain iron accumulation and neurodegeneration. Mol Psychiatry. 2017;22:396–406.

    PubMed  CAS  Google Scholar 

  65. Ashraf GM, DasGupta D, Alam MZ, Baeesa SS, Alghamdi BS, Anwar F, et al. Inhibition of Microtubule Affinity Regulating Kinase 4 by Metformin: Exploring the Neuroprotective Potential of Antidiabetic Drug through Spectroscopic and Computational Approaches. Molecules. 2022;27:4652.

  66. Bucht G, Adolfsson R, Lithner F, Winblad B. Changes in blood glucose and insulin secretion in patients with senile dementia of Alzheimer type. Acta Med Scand. 1983;213:387–92.

    PubMed  CAS  Google Scholar 

  67. Freude S, Plum L, Schnitker J, Leeser U, Udelhoven M, Krone W, et al. Peripheral hyperinsulinemia promotes tau phosphorylation in vivo. Diabetes. 2005;54:3343–8.

    PubMed  CAS  Google Scholar 

  68. Clodfelder-Miller BJ, Zmijewska AA, Johnson GV, Jope RS. Tau is hyperphosphorylated at multiple sites in mouse brain in vivo after streptozotocin-induced insulin deficiency. Diabetes. 2006;55:3320–5.

    PubMed  CAS  Google Scholar 

  69. Planel E, Tatebayashi Y, Miyasaka T, Liu L, Wang L, Herman M, et al. Insulin dysfunction induces in vivo tau hyperphosphorylation through distinct mechanisms. J Neurosci. 2007;27:13635–48.

    PubMed  PubMed Central  CAS  Google Scholar 

  70. Sima AA, Zhang W, Xu G, Sugimoto K, Guberski D, Yorek MA. A comparison of diabetic polyneuropathy in type II diabetic BBZDR/Wor rats and in type I diabetic BB/Wor rats. Diabetologia. 2000;43:786–93.

    PubMed  CAS  Google Scholar 

  71. Yang Y, Ma D, Wang Y, Jiang T, Hu S, Zhang M, et al. Intranasal insulin ameliorates tau hyperphosphorylation in a rat model of type 2 diabetes. J Alzheimer’s Dis. 2013;33:329–38.

    CAS  Google Scholar 

  72. Gasparini L, Netzer WJ, Greengard P, Xu H. Does insulin dysfunction play a role in Alzheimer’s disease? Trends Pharmacol Sci. 2002;23:288–93.

    PubMed  CAS  Google Scholar 

  73. Zhu X, Perry G, Smith MA. Insulin signaling, diabetes mellitus and risk of Alzheimer disease. J Alzheimer’s Dis. 2005;7:81–84.

    Google Scholar 

  74. Anderson NJ, King MR, Delbruck L, Jolivalt CG. Role of insulin signaling impairment, adiponectin and dyslipidemia in peripheral and central neuropathy in mice. Disease Model Mech. 2014;7:625–33.

    Google Scholar 

  75. Revill P, Moral MA, Prous JR. Impaired insulin signaling and the pathogenesis of Alzheimer’s disease. Drugs Today. 2006;42:785–90.

    CAS  Google Scholar 

  76. Delikkaya B, Moriel N, Tong M, Gallucci G, de la Monte SM. Altered expression of insulin-degrading enzyme and regulator of calcineurin in the rat intracerebral streptozotocin model and human apolipoprotein E-ε4-associated Alzheimer’s disease. Alzheimer’s Dement. 2019;11:392–404.

    Google Scholar 

  77. Nguyen TT, Ta QTH, Nguyen TKO, Nguyen TTD, Giau VV. Type 3 Diabetes and Its Role Implications in Alzheimer’s Disease. Int J Mol Sci. 2020;21:3165.

    PubMed  PubMed Central  CAS  Google Scholar 

  78. Chatterjee S, Ambegaokar SS, Jackson GR, Mudher A. Insulin-Mediated Changes in Tau Hyperphosphorylation and Autophagy in a Drosophila Model of Tauopathy and Neuroblastoma Cells. Front Neurosci. 2019;13:801.

    PubMed  PubMed Central  Google Scholar 

  79. Gonçalves RA, Wijesekara N, Fraser PE, De Felice FG. The Link Between Tau and Insulin Signaling: Implications for Alzheimer’s Disease and Other Tauopathies. Front Cell Neurosci. 2019;13:17.

    PubMed  PubMed Central  Google Scholar 

  80. Hong M, Lee VM. Insulin and insulin-like growth factor-1 regulate tau phosphorylation in cultured human neurons. J Biol Chem. 1997;272:19547–53.

    PubMed  CAS  Google Scholar 

  81. Lesort M, Jope RS, Johnson GV. Insulin transiently increases tau phosphorylation: involvement of glycogen synthase kinase-3beta and Fyn tyrosine kinase. J Neurochem. 1999;72:576–84.

    PubMed  CAS  Google Scholar 

  82. Ho KH, Yang X, Osipovich AB, Cabrera O, Hayashi ML, Magnuson MA, et al. Glucose Regulates Microtubule Disassembly and the Dose of Insulin Secretion via Tau Phosphorylation. Diabetes. 2020;69:1936–47.

    PubMed  PubMed Central  CAS  Google Scholar 

  83. Barini E, Antico O, Zhao Y, Asta F, Tucci V, Catelani T, et al. Metformin promotes tau aggregation and exacerbates abnormal behavior in a mouse model of tauopathy. Mol Neurodegener. 2016;11:16.

    PubMed  PubMed Central  Google Scholar 

  84. Hull C, Dekeryte R, Koss DJ, Crouch B, Buchanan H, Delibegovic M, et al. Knock-in of Mutated hTAU Causes Insulin Resistance, Inflammation and Proteostasis Disturbance in a Mouse Model of Frontotemporal Dementia. Mol Neurobiol. 2020;57:539–50.

    PubMed  CAS  Google Scholar 

  85. Benderradji H, Kraiem S, Courty E, Eddarkaoui S, Bourouh C, Faivre E, et al. Impaired Glucose Homeostasis in a Tau Knock-In Mouse Model. Front Mol Neurosci. 2022;15:841892.

    PubMed  PubMed Central  CAS  Google Scholar 

  86. Abbondante S, Baglietto-Vargas D, Rodriguez-Ortiz CJ, Estrada-Hernandez T, Medeiros R, Laferla FM. Genetic ablation of tau mitigates cognitive impairment induced by type 1 diabetes. Am J Pathol. 2014;184:819–26.

    PubMed  PubMed Central  CAS  Google Scholar 

  87. Takalo M, Haapasalo A, Martiskainen H, Kurkinen KM, Koivisto H, Miettinen P, et al. High-fat diet increases tau expression in the brain of T2DM and AD mice independently of peripheral metabolic status. J Nutr Biochem. 2014;25:634–41.

    PubMed  CAS  Google Scholar 

  88. van der Harg JM, Eggels L, Bangel FN, Ruigrok SR, Zwart R, Hoozemans JJM, et al. Insulin deficiency results in reversible protein kinase A activation and tau phosphorylation. Neurobiol Dis. 2017;103:163–73.

    PubMed  Google Scholar 

  89. Rodriguez-Rodriguez P, Sandebring-Matton A, Merino-Serrais P, Parrado-Fernandez C, Rabano A, Winblad B, et al. Tau hyperphosphorylation induces oligomeric insulin accumulation and insulin resistance in neurons. Brain. 2017;140:3269–85.

    PubMed  Google Scholar 

  90. Wesseling H, Mair W, Kumar M, Schlaffner CN, Tang S, Beerepoot P, et al. Tau PTM Profiles Identify Patient Heterogeneity and Stages of Alzheimer’s Disease. Cell. 2020;183:1699–1713 e1613.

    PubMed  PubMed Central  CAS  Google Scholar 

  91. Zhukareva V, Sundarraj S, Mann D, Sjogren M, Blenow K, Clark CM, et al. Selective reduction of soluble tau proteins in sporadic and familial frontotemporal dementias: an international follow-up study. Acta Neuropathologica. 2003;105:469–76.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work is dedicated to the memory of Dr. Huaxi Xu, who passed away while this paper was being prepared. Huaxi critically reviewed the manuscript. We thank Dr. Linda Partridge (Max Planck Institute for Biology of Ageing) for the kind gift of the dTauKO line, and thank all organ donors and their families for their generosity and for enabling this work. Thanks to the staff of St Vincent’s Institute involved in the islet isolation program and Donatelife for obtaining research consent and providing the Human Pancreata. We also thank Dr. Shuting Zhang for helping with the EOAD sample collection. This work was supported by the National Key Research and Development Project of China (2021YFC2500100), the National Natural Science Foundation of China (81722016, 82071191), the program of the National Clinical Research Center for Geriatrics of West China Hospital (Z2021LC001), the Australian National Health & Medical Research Council (NHMRC), and the Alzheimer’s Australia Dementia Research Foundation. The Florey Institute of Neuroscience and Mental Health and the St. Vincent’s Institute acknowledge support from the Victorian Government, in particular, funding from the Operational Infrastructure Support Grant.

Author information

Authors and Affiliations

Authors

Contributions

PL and SPM conceived the project; PL, AIB, and SA raised funds and supervised the overall project; XLL and QW collected clinical samples and performed the biomarker tests. SPM, QZT, XLL, SA, CNJ, BJL, QW, and DRL performed in vivo studies with supervision from PL, AIB, and SA; HET, CK, and TL provided human T2D samples and performed the staining; XLL, CH, JYC, and CHY performed in vitro studies with supervision from PL and SA; XZ performed in Drosophila studies with supervision from HHH; YL and XLD performed and analyzed protein mass spectrometry studies with supervision from LZD; XLL prepared CRISPR-related experiments with supervision from BD and PL; SPM, QZT, SA, AIB, and PL integrated the data and wrote the drafts of the manuscript; all authors edited the manuscript.

Corresponding authors

Correspondence to Sofianos Andrikopoulos, Ashley I. Bush or Peng Lei.

Ethics declarations

Competing interests

AIB is a shareholder in Alterity Ltd, Cogstate Ltd, Eucalyptus Pty Ltd, and Mesoblast Ltd. He is a paid consultant for and has a profit share interest in, Collaborative Medicinal Development Pty Ltd. All other authors declare that they have no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mangiafico, S.P., Tuo, QZ., Li, XL. et al. Tau suppresses microtubule-regulated pancreatic insulin secretion. Mol Psychiatry 28, 3982–3993 (2023). https://doi.org/10.1038/s41380-023-02267-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-023-02267-w

This article is cited by

Search

Quick links