Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Effects of family income on brain functional connectivity in US children: associations with cognition

Abstract

Higher family income (FI) is associated with larger cortical gray matter volume and improved cognitive performance in children. However, little is known about the effects of FI on brain functional and structural connectivity. This cross-sectional study investigates the effects of FI on brain connectivity and cognitive performance in 9- to 11-years old children (n = 8739) from the Adolescent Brain Cognitive Development (ABCD) study. Lower FI was associated with decreased global functional connectivity density (gFCD) in the default-mode network (DMN), inferior and superior parietal cortices and in posterior cerebellum, and increased gFCD in motor, auditory, and extrastriate visual areas, and in subcortical regions both for girls and boys. Findings demonstrated high reproducibility in Discovery and Reproducibility samples. Cognitive performance partially mediated the association between FI and DMN connectivity, whereas DMN connectivity did not mediate the association between FI and cognitive performance. In contrast, there was no significant association between FI and structural connectivity. Findings suggest that poor cognitive performance, which likely reflects multiple factors (genetic, nutritional, the level and quality of parental interactions, and educational exposure [1]), contributes to reduced DMN functional connectivity in children from low-income families. Follow-up studies are needed to help clarify if this leads to reductions in structural connectivity as these children age.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Family income (FI), cognition, and gray matter.
Fig. 2: Reproducibility of the associations between Family income (FI) and functional connectivity.
Fig. 3: Region-of-interests (ROI) analyses.
Fig. 4: Causal mediation analysis (CMA).

Similar content being viewed by others

Data availability

ABCD data are publicly available through the National Institute of Mental Health Data Archive (https://data-archive.nimh.nih.gov/abcd).

References

  1. Davis-Kean P. The influence of parent education and family income on child achievement: the indirect role of parental expectations and the home environment. J Fam Psychol. 2005;19:294–304.

    Article  PubMed  Google Scholar 

  2. Semega J, Kollar M, Creamer J, Mohanty A. Income and poverty in the United States: 2018. In: U.S. Census Bureau CPR, P60-266(RV). Washington, DC: U.S. Government Printing Office; 2020, pp 1–77.

  3. Hair N, Hanson J, Wolfe B, Pollak S. Association of child poverty, brain development, and academic achievement. JAMA Pediatrics. 2015;169:822–9.

  4. Peverill M, Dirks M, Narvaja T, Herts K, Comer J, McLaughlin K. Socioeconomic status and child psychopathology in the United States: a meta-analysis of population-based studies. Clin Psychol Rev. 2021;83:101933.

    Article  PubMed  Google Scholar 

  5. Bradley R, Corwyn R. Socioeconomic status and child development. Annu Rev Psychol. 2002;53:371–99.

    Article  PubMed  Google Scholar 

  6. Grantham-McGregor S, Cheung Y, Cueto S, Glewwe P, Richter L, Strupp B. Developmental potential in the first 5 years for children in developing countries. Lancet. 2007;369:60–70.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Gur R, Moore T, Rosen A, Barzilay R, Roalf D, Calkins M, et al. Burden of environmental adversity associated with psychopathology, maturation, and brain behavior parameters in youths. JAMA Psychiatry. 2019;76:966–75.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Shonkoff J, Boyce W, McEwen B. Neuroscience, molecular biology, and the childhood roots of health disparities. JAMA. 2009;301:2252–9.

    Article  CAS  PubMed  Google Scholar 

  9. Hertzman C. The biological embedding of early experience and its effects on health in adulthood. Ann N Y Acad Sci. 1999;896:85–95.

    Article  CAS  PubMed  Google Scholar 

  10. Tomasi D, Volkow N. Associations of family income with cognition and brain structure in USA children: prevention implications. Mol Psychiatry. 2021;26:6619–29.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Lawson G, Duda J, Avants B, Wu J, Farah M. Associations between children’s socioeconomic status and prefrontal cortical thickness. Dev Sci. 2013;16:641–52.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Noble K, Houston S, Brito N, Bartsch H, Kan E, Kuperman J, et al. Family income, parental education and brain structure in children and adolescents. Nat Neurosci. 2015;18:773–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sanders A, Baum G, Harms M, Kandala S, Bookheimer S, Dapretto M, et al. Developmental trajectories of cortical thickness by functional brain network: the roles of pubertal timing and socioeconomic status. Dev Cogn Neurosci. 2022;57:101145.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Baum G, Cui Z, Roalf D, Ciric R, Betzel R, Larsen B, et al. Development of structure–function coupling in human brain networks during youth. Proc Natl Acad Sci USA. 2020;117:771–8.

    Article  CAS  PubMed  Google Scholar 

  15. Rakesh D, Zalesky A, Whittle S. Similar but distinct – effects of different socioeconomic indicators on resting state functional connectivity: findings from the Adolescent Brain Cognitive Development (ABCD) Study. Dev Cogn Neurosci. 2021;51:101005.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Sripada C, Angstadt M, Taxali A, Clark D, Greathouse T, Rutherford S, et al. Brain-wide functional connectivity patterns support general cognitive ability and mediate effects of socioeconomic status in youth. Transl Psychiatry. 2021;11:571.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hanson J, Albert W, Skinner A, Shen S, Dodge K, Lansford J. Resting state coupling between the amygdala and ventromedial prefrontal cortex is related to household income in childhood and indexes future psychological vulnerability to stress. Dev Psychopathol. 2019;31:1053–66.

    Article  PubMed  Google Scholar 

  18. Ramphal B, DeSerisy M, Pagliaccio D, Raffanello E, Rauh V, Tau G, et al. Associations between amygdala-prefrontal functional connectivity and age depend on neighborhood socioeconomic status. Cereb Cortex Commun. 2020;1:tgaa033.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ip K, Sisk L, Horien C, Conley M, Rapuano K, Rosenberg M, et al. Associations among household and neighborhood socioeconomic disadvantages, resting-state frontoamygdala connectivity, and internalizing symptoms in youth. J Cogn Neurosci. 2022;28:1–32.

    Google Scholar 

  20. Tomasi D, Volkow N. Functional connectivity density mapping. Proc Natl Acad Sci USA. 2010;107:9885–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shen X, Cox S, Adams M, Howard D, Lawrie S, Ritchie S, et al. Resting-state connectivity and its association with cognitive performance, educational attainment, and household income in the UK Biobank. Biol Psychiatry Cogn Neurosci Neuroimaging. 2018;3:878–86.

    PubMed  PubMed Central  Google Scholar 

  22. Thompson W, Barch D, Bjork J, Gonzalez R, Nagel B, Nixon S, et al. The structure of cognition in 9 and 10 year-old children and associations with problem behaviors: Findings from the ABCD study’s baseline neurocognitive battery. Dev Cogn Neurosci. 2019;36:100606.

    Article  PubMed  Google Scholar 

  23. Garavan H, Bartsch H, Conway K, Decastro A, Goldstein R, Heeringa S, et al. Recruiting the ABCD sample: design considerations and procedures. Dev Cogn Neurosci. 2018;32:16–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jernigan T, Brown S, Dowling G. The adolescent brain cognitive development study. J Res Adolesc. 2018;28:154–6.

    Article  PubMed  PubMed Central  Google Scholar 

  25. The_ABCD_Consortium. Dataset: Release 2.0 and Fix Release 2.0.1. 2019. https://doi.org/10.15154/1503209.

  26. Hagler DJ, Hatton S, Cornejo M, Makowski C, Fair D, Dick A, et al. Image processing and analysis methods for the Adolescent Brain Cognitive Development Study. Neuroimage. 2019;202:116091.

    Article  CAS  PubMed  Google Scholar 

  27. Luciana M, Bjork J, Nagel B, Barch D, Gonzalez R, Nixon S, et al. Adolescent neurocognitive development and impacts of substance use: Overview of the adolescent brain cognitive development (ABCD) baseline neurocognition battery. Dev Cogn Neurosci. 2018;32:67–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Feczko E, Conan G, Marek S, Tervo-Clemmens B, Cordova M, Doyle O et al. Adolescent Brain Cognitive Development (ABCD) community MRI collection and utilities. bioRxiv. 2021. https://doi.org/10.1101/2021.07.09.451638.

  29. Tomasi D, Wang G, Volkow N. Energetic cost of brain functional connectivity. Proc Natl Acad Sci USA. 2013;110:13642–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tomasi D, Volkow N. Functional connectivity hubs in the human brain. Neuroimage. 2011;57:908–17.

    Article  PubMed  Google Scholar 

  31. Tomasi D, Volkow N. Measures of brain connectivity and cognition by sex in US children. JAMA Netw Open. 2023;6:e230157.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Glasser M, Sotiropoulos S, Wilson J, Coalson T, Fischl B, Andersson J, et al. The minimal preprocessing pipelines for the Human Connectome Project. Neuroimage. 2013;80:105–24.

    Article  PubMed  Google Scholar 

  33. Shapiro S, Wilk M. An analysis of variance test for normality (complete samples). Biometrika. 1965;52:591–611.

    Article  Google Scholar 

  34. Hagler DJ, Ahmadi M, Kuperman J, Holland D, McDonald C, Halgren E, et al. Automated white-matter tractography using a probabilistic diffusion tensor atlas: Application to temporal lobe epilepsy. Hum Brain Mapp. 2009;30:1535–47.

    Article  PubMed  Google Scholar 

  35. Tingley D, Yamamoto T, Hirose K, Keele L, Imai K. Mediation: R package for causal mediation analysis. J Stat Softw. 2014;59:1–38.

    Article  Google Scholar 

  36. Imai K, Keele L, Tingley D. A general approach to causal mediation analysis. Psychol Methods. 2010;15:309–34.

    Article  PubMed  Google Scholar 

  37. Karcher N, Barch D. The ABCD study: understanding the development of risk for mental and physical health outcomes. Neuropsychopharmacology. 2021;46:131–42.

    Article  PubMed  Google Scholar 

  38. Tomasi D, Volkow N. Association between functional connectivity hubs and brain networks. Cereb Cortex. 2011;21:2003–13.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Schwab J, Lew-Williams C. Language learning, socioeconomic status, and child-directed speech. Wiley Interdiscip Rev Cogn Sci. 2016;7:264–75.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Giddens N, Juneau P, Manza P, Wiers C, Volkow N. Disparities in sleep duration among American children: effects of race and ethnicity, income, age, and sex. Proc Natl Acad Sci USA. 2022;119:e2120009119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Weissman D, Hatzenbuehler M, Cikara M, Barch D, McLaughlin K. State-level macro-economic factors moderate the association of low income with brain structure 7 and mental health in U.S. children. Nat Commun. 2023;14:2085.

  42. Tooley U, Bassett D, Mackey A. Environmental influences on the pace of brain development. Nat Rev Neurosci. 2021;22:372–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Oberman L, Pascual-Leone A. Changes in plasticity across the lifespan: cause of disease and target for intervention. Prog Brain Res. 2013;207:91–120.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Greenfield E, Moorman S. Childhood socioeconomic status and later life cognition: evidence from the Wisconsin Longitudinal Study. J Aging Health. 2019;31:1589–615.

    Article  PubMed  Google Scholar 

  45. Tomasi D, Volkow N. Resting functional connectivity of language networks: characterization and reproducibility. Mol Psychiatry. 2012;17:841–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Duncan G, Magnuson K. Socioeconomic status and cognitive functioning: moving from correlation to causation. Wiley Interdiscip Rev Cogn Sci. 2012;3:377–86.

    Article  PubMed  Google Scholar 

  47. Rosen M, Hagen M, Lurie L, Miles Z, heridan M, Meltzoff A, et al. Cognitive stimulation as a mechanism linking socioeconomic status with executive function: a longitudinal investigation. Child Dev. 2020;91:e762–e779.

    Article  PubMed  Google Scholar 

  48. Hill K, Bailey J, Steeger C, Hawkins J, Catalano R, Kosterman R, et al. Outcomes of childhood preventive intervention across 2 generations: a nonrandomized controlled trial. JAMA Pediatrics. 2020;174:764–71.

    Article  PubMed  Google Scholar 

  49. Grady D, Thanos P, Corrada M, Barnett J, Ciobanu V, Shustarovich D, et al. DRD4 genotype predicts longevity in mouse and human. J Neurosci. 2013;33:286–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are thankful to Adam Thomas, PhD, Dustin Moraczewski, PhD, and Eric Earl, BS (National Institute of Mental Health Data Science and Sharing Team) for providing access to the ABCD Community MRI Collection (NDA collection 3165) data on our servers. This study utilized the computational resources of the NIH HPC Biowulf cluster. (http://hpc.nih.gov). This work was done with support from the National Institute on Alcohol Abuse and Alcoholism (Y1AA-3009; ZIAAA000550). Data used in the preparation of this article were obtained from the ABCD Study (https://abcdstudy.org/) and are held in the NIMH Data Archive. The ABCD Study is supported by the National Institutes of Health (NIH). ABCD consortium investigators did not participate in the analysis or writing of this report. This manuscript reflects the views of the authors and may not reflect the opinions or views of the NIH or ABCD consortium investigators.

Author information

Authors and Affiliations

Authors

Contributions

DT had full access to the data in the study and takes responsibility for the integrity and accuracy of the statistical analyses. DT and NDV designed the study and drafted the manuscript.

Corresponding author

Correspondence to Dardo Tomasi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomasi, D., Volkow, N.D. Effects of family income on brain functional connectivity in US children: associations with cognition. Mol Psychiatry 28, 4195–4202 (2023). https://doi.org/10.1038/s41380-023-02222-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-023-02222-9

Search

Quick links