Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Transmission of Alzheimer’s disease-associated microbiota dysbiosis and its impact on cognitive function: evidence from mice and patients

Abstract

Spouses of Alzheimer’s disease (AD) patients are at a higher risk of developing incidental dementia. However, the causes and underlying mechanism of this clinical observation remain largely unknown. One possible explanation is linked to microbiota dysbiosis, a condition that has been associated with AD. However, it remains unclear whether gut microbiota dysbiosis can be transmitted from AD individuals to non-AD individuals and contribute to the development of AD pathogenesis and cognitive impairment. We, therefore, set out to perform both animal studies and clinical investigation by co-housing wild-type mice and AD transgenic mice, analyzing microbiota via 16S rRNA gene sequencing, measuring short-chain fatty acid amounts, and employing behavioral test, mass spectrometry, site-mutations and other methods. The present study revealed that co-housing between wild-type mice and AD transgenic mice or administrating feces of AD transgenic mice to wild-type mice resulted in AD-associated gut microbiota dysbiosis, Tau phosphorylation, and cognitive impairment in the wild-type mice. Gavage with Lactobacillus and Bifidobacterium restored these changes in the wild-type mice. The oral and gut microbiota of AD patient partners resembled that of AD patients but differed from healthy controls, indicating the transmission of microbiota. The underlying mechanism of these findings includes that the butyric acid-mediated acetylation of GSK3β at lysine 15 regulated its phosphorylation at serine 9, consequently impacting Tau phosphorylation. Pending confirmative studies, these results provide insight into a potential link between the transmission of AD-associated microbiota dysbiosis and development of cognitive impairment, which underscore the need for further research in this area.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: WT mice developed cognitive impairment after co-housing with AD Tg mice.
Fig. 2: WT mice developed cognitive impairment after fecal microbiota transplantation from AD Tg mice.
Fig. 3: ADWT mice acquired AD-associated gut microbiota dysbiosis after co-housing with AD Tg mice.
Fig. 4: Differences in brain levels of SCFAs, PSD-95, phosphorylated Tau, IL-6 and Aβ among AD Tg, ADWT and WT mice.
Fig. 5: Butyric acid increased p-GSK3β-S9 levels through lysine acetylation at position 15 of GSK3β.
Fig. 6: Treatment with bacteria (Lactobacillus and Bifidobacterium) mitigated the behavioral and cellular changes in ADWT mice.
Fig. 7: Microbiota in oral and fecal samples of Alzheimer’s disease (AD) patients, partners of AD patients (PAD), and control (CON) individuals.

Similar content being viewed by others

Data availability

All data are available in the main text or the supplementary materials. The source data can be available from the corresponding authors on reasonable request.

References

  1. Nianogo RA, Rosenwohl-Mack A, Yaffe K, Carrasco A, Hoffmann CM, Barnes DE. Risk factors associated with Alzheimer disease and related dementias by sex and race and ethnicity in the US. JAMA Neurol. 2022;79:584–91.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Selkoe DJ. Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev. 2001;81:741–66.

    Article  CAS  PubMed  Google Scholar 

  3. Grundke-Iqbal I, Iqbal K, Quinlan M, Tung YC, Zaidi MS, Wisniewski HM. Microtubule-associated protein tau. A component of Alzheimer paired helical filaments. J Biol Chem. 1986;261:6084–9.

    Article  CAS  PubMed  Google Scholar 

  4. Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, Binder LI. Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci USA. 1986;83:4913–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Trojanowski JQ, Lee VM. Paired helical filament tau in Alzheimer’s disease. The kinase connection. Am J Pathol. 1994;144:449–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Buee L, Bussiere T, Buee-Scherrer V, Delacourte A, Hof PR. Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain Res Brain Res Rev. 2000;33:95–130.

    Article  CAS  PubMed  Google Scholar 

  7. Holtzman DM, Carrillo MC, Hendrix JA, Bain LJ, Catafau AM, Gault LM, et al. Tau: from research to clinical development. Alzheimers Dement. 2016;12:1033–9.

    Article  PubMed  Google Scholar 

  8. Wang Y, Mandelkow E. Tau in physiology and pathology. Nat Rev Neurosci. 2016;17:5–21.

    Article  PubMed  Google Scholar 

  9. Heneka MT, Carson MJ, El Khoury J, Landreth GE, Brosseron F, Feinstein DL, et al. Neuroinflammation in Alzheimer’s disease. Lancet Neurol. 2015;14:388–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Calsolaro V, Edison P. Neuroinflammation in Alzheimer’s disease: current evidence and future directions. Alzheimers Dement. 2016;12:719–32.

    Article  PubMed  Google Scholar 

  11. Long JM, Holtzman DM. Alzheimer disease: an update on pathobiology and treatment strategies. Cell. 2019;179:312–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Long-Smith C, O’Riordan KJ, Clarke G, Stanton C, Dinan TG, Cryan JF. Microbiota-gut-brain axis: new therapeutic opportunities. Annu Rev Pharm Toxicol. 2020;60:477–502.

    Article  CAS  Google Scholar 

  13. Fulling C, Dinan TG, Cryan JF. Gut microbe to brain signaling: what happens in vagus. Neuron. 2019;101:998–1002.

    Article  CAS  PubMed  Google Scholar 

  14. Liu L, Huh JR, Shah K. Microbiota and the gut-brain-axis: Implications for new therapeutic design in the CNS. EBioMedicine. 2022;77:103908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chen C, Ahn EH, Kang SS, Liu X, Alam A, Ye K. Gut dysbiosis contributes to amyloid pathology, associated with C/EBPbeta/AEP signaling activation in Alzheimer’s disease mouse model. Sci Adv. 2020;6:eaba0466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chen C, Liao J, Xia Y, Liu X, Jones R, Haran J, et al. Gut microbiota regulate Alzheimer’s disease pathologies and cognitive disorders via PUFA-associated neuroinflammation. Gut. 2022;71:2233–52.

  17. Zhuang ZQ, Shen LL, Li WW, Fu X, Zeng F, Gui L, et al. Gut microbiota is altered in patients with Alzheimer’s disease. J Alzheimers Dis. 2018;63:1337–46.

    Article  CAS  PubMed  Google Scholar 

  18. Zhu X, Li B, Lou P, Dai T, Chen Y, Zhuge A, et al. The relationship between the gut microbiome and neurodegenerative diseases. Neurosci Bull. 2021;37:1510–22.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Cattaneo A, Cattane N, Galluzzi S, Provasi S, Lopizzo N, Festari C, et al. Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly. Neurobiol Aging. 2017;49:60–68.

    Article  CAS  PubMed  Google Scholar 

  20. Vogt NM, Kerby RL, Dill-McFarland KA, Harding SJ, Merluzzi AP, Johnson SC, et al. Gut microbiome alterations in Alzheimer’s disease. Sci Rep. 2017;7:13537.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Liu P, Wu L, Peng G, Han Y, Tang R, Ge J, et al. Altered microbiomes distinguish Alzheimer’s disease from amnestic mild cognitive impairment and health in a Chinese cohort. Brain Behav Immun. 2019;80:633–43.

    Article  PubMed  Google Scholar 

  22. Shen L, Liu L, Ji HF. Alzheimer’s disease histological and behavioral manifestations in transgenic mice correlate with specific gut microbiome state. J Alzheimers Dis. 2017;56:385–90.

    Article  CAS  PubMed  Google Scholar 

  23. Chen Y, Fang L, Chen S, Zhou H, Fan Y, Lin L, et al. Gut microbiome alterations precede cerebral amyloidosis and microglial pathology in a mouse model of Alzheimer’s disease. Biomed Res Int. 2020;2020:8456596.

    PubMed  PubMed Central  Google Scholar 

  24. Zhang L, Wang Y, Xiayu X, Shi C, Chen W, Song N, et al. Altered gut microbiota in a mouse model of Alzheimer’s disease. J Alzheimers Dis. 2017;60:1241–57.

    Article  CAS  PubMed  Google Scholar 

  25. Cuervo-Zanatta D, Garcia-Mena J, Perez-Cruz C. Gut microbiota alterations and cognitive impairment are sexually dissociated in a transgenic mice model of Alzheimer’s disease. J Alzheimers Dis. 2021;82:S195–S214.

    Article  CAS  PubMed  Google Scholar 

  26. Harach T, Marungruang N, Duthilleul N, Cheatham V, Mc Coy KD, Frisoni G, et al. Reduction of Abeta amyloid pathology in APPPS1 transgenic mice in the absence of gut microbiota. Sci Rep. 2017;7:41802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Brandscheid C, Schuck F, Reinhardt S, Schafer KH, Pietrzik CU, Grimm M, et al. Altered gut microbiome composition and tryptic activity of the 5xFAD Alzheimer’s mouse model. J Alzheimers Dis. 2017;56:775–88.

    Article  CAS  PubMed  Google Scholar 

  28. Williams C. Marriage and mental health: when a spouse has Alzheimer’s disease. Arch Psychiatr Nurs. 2011;25:220-2

    Article  PubMed  Google Scholar 

  29. Lee S, Kawachi I, Grodstein F. Does caregiving stress affect cognitive function in older women? J Nerv Ment Dis. 2004;192:51–7.

    Article  PubMed  Google Scholar 

  30. Vitaliano PP, Echeverria D, Yi J, Phillips PE, Young H, Siegler IC. Psychophysiological mediators of caregiver stress and differential cognitive decline. Psychol Aging. 2005;20:402–11.

    Article  PubMed  Google Scholar 

  31. de Vugt ME, Jolles J, van Osch L, Stevens F, Aalten P, Lousberg R, et al. Cognitive functioning in spousal caregivers of dementia patients: findings from the prospective MAASBED study. Age Ageing. 2006;35:160–6.

    Article  PubMed  Google Scholar 

  32. Mackenzie CS, Smith MC, Hasher L, Leach L, Behl P. Cognitive functioning under stress: evidence from informal caregivers of palliative patients. J Palliat Med. 2007;10:749–58.

    Article  PubMed  Google Scholar 

  33. Norton MC, Smith KR, Ostbye T, Tschanz JT, Corcoran C, Schwartz S, et al. Greater risk of dementia when spouse has dementia? The Cache County study. J Am Geriatr Soc. 2010;58:895–900.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Cryan JF, Dinan TG. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci. 2012;13:701–12.

    Article  CAS  PubMed  Google Scholar 

  35. Ma Y, Ajnakina O, Steptoe A, Cadar D. Higher risk of dementia in English older individuals who are overweight or obese. Int J Epidemiol. 2020;49:1353–65.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wieckowska-Gacek A, Mietelska-Porowska A, Wydrych M, Wojda U. Western diet as a trigger of Alzheimer’s disease: from metabolic syndrome and systemic inflammation to neuroinflammation and neurodegeneration. Ageing Res Rev. 2021;70:101397.

    Article  CAS  PubMed  Google Scholar 

  37. Grant WB. Using multicountry ecological and observational studies to determine dietary risk factors for Alzheimer’s disease. J Am Coll Nutr. 2016;35:476–89.

    Article  CAS  PubMed  Google Scholar 

  38. Yusufov M, Weyandt LL, Piryatinsky I. Alzheimer’s disease and diet: a systematic review. Int J Neurosci. 2017;127:161–75.

    Article  PubMed  Google Scholar 

  39. Musiek ES, Holtzman DM. Three dimensions of the amyloid hypothesis: time, space and ‘wingmen’. Nat Neurosci. 2015;18:800–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hatfield CF, Herbert J, van Someren EJ, Hodges JR, Hastings MH. Disrupted daily activity/rest cycles in relation to daily cortisol rhythms of home-dwelling patients with early Alzheimer’s dementia. Brain. 2004;127:1061–74.

    Article  CAS  PubMed  Google Scholar 

  41. Kumar D, Koyanagi I, Carrier-Ruiz A, Vergara P, Srinivasan S, Sugaya Y, et al. Sparse activity of hippocampal adult-born neurons during REM sleep is necessary for memory consolidation. Neuron. 2020;107:552–65.e510

    Article  CAS  PubMed  Google Scholar 

  42. Meng Q, Lin MS, Tzeng IS. Relationship between exercise and alzheimer’s disease: a narrative literature review. Front Neurosci. 2020;14:131.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Maass A, Duzel S, Goerke M, Becke A, Sobieray U, Neumann K, et al. Vascular hippocampal plasticity after aerobic exercise in older adults. Mol Psychiatry. 2015;20:585–93.

    Article  CAS  PubMed  Google Scholar 

  44. Chandra S, Sisodia SS, Vassar RJ. The gut microbiome in Alzheimer’s disease: what we know and what remains to be explored. Mol Neurodegener. 2023;18:9.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Minter MR, Zhang C, Leone V, Ringus DL, Zhang X, Oyler-Castrillo P, et al. Antibiotic-induced perturbations in gut microbial diversity influences neuro-inflammation and amyloidosis in a murine model of Alzheimer’s disease. Sci Rep. 2016;6:30028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Dodiya HB, Kuntz T, Shaik SM, Baufeld C, Leibowitz J, Zhang X, et al. Sex-specific effects of microbiome perturbations on cerebral Abeta amyloidosis and microglia phenotypes. J Exp Med. 2019;216:1542–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Dodiya HB, Lutz HL, Weigle IQ, Patel P, Michalkiewicz J, Roman-Santiago CJ, et al. Gut microbiota-driven brain Abeta amyloidosis in mice requires microglia. J Exp Med. 2022;219:e20200895.

  48. Mezo C, Dokalis N, Mossad O, Staszewski O, Neuber J, Yilmaz B, et al. Different effects of constitutive and induced microbiota modulation on microglia in a mouse model of Alzheimer’s disease. Acta Neuropathol Commun. 2020;8:119.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Colombo AV, Sadler RK, Llovera G, Singh V, Roth S, Heindl S, et al. Microbiota-derived short chain fatty acids modulate microglia and promote Abeta plaque deposition. Elife. 2021;10:e59826.

  50. Dodiya HB, Frith M, Sidebottom A, Cao Y, Koval J, Chang E, et al. Synergistic depletion of gut microbial consortia, but not individual antibiotics, reduces amyloidosis in APPPS1-21 Alzheimer’s transgenic mice. Sci Rep. 2020;10:8183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Amaral AC, Perez-Nievas BG, Siao Tick Chong M, Gonzalez-Martinez A, Argente-Escrig H, Rubio-Guerra S, et al. Isoform-selective decrease of glycogen synthase kinase-3-beta (GSK-3beta) reduces synaptic tau phosphorylation, transcellular spreading, and aggregation. iScience. 2021;24:102058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sarikhani M, Mishra S, Maity S, Kotyada C, Wolfgeher D, Gupta MP, et al. SIRT2 deacetylase regulates the activity of GSK3 isoforms independent of inhibitory phosphorylation. Elife. 2018;7:e32952.

  53. Mallick H, Rahnavard A, McIver LJ, Ma S, Zhang Y, Nguyen LH, et al. Multivariable association discovery in population-scale meta-omics studies. PLoS Comput Biol. 2021;17:e1009442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Westfall S, Caracci F, Estill M, Frolinger T, Shen L, Pasinetti GM. Chronic stress-induced depression and anxiety priming modulated by gut-brain-axis immunity. Front Immunol. 2021;12:670500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gungor B, Adiguzel E, Gursel I, Yilmaz B, Gursel M. Intestinal microbiota in patients with spinal cord injury. PLoS ONE. 2016;11:e0145878.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Qu D, Sun F, Feng S, Yu L, Tian F, Zhang H, et al. Protective effects of Bacteroides fragilis against lipopolysaccharide-induced systemic inflammation and their potential functional genes. Food Funct. 2022;13:1015–25.

    Article  CAS  PubMed  Google Scholar 

  57. D’Amato A, Di Cesare Mannelli L, Lucarini E, Man AL, Le Gall G, Branca JJV, et al. Faecal microbiota transplant from aged donor mice affects spatial learning and memory via modulating hippocampal synaptic plasticity- and neurotransmission-related proteins in young recipients. Microbiome. 2020;8:140.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Xu SS, Wang N, Huang L, Zhang XL, Feng ST, Liu SS, et al. Changes in the mucosa-associated microbiome and transcriptome across gut segments are associated with obesity in a metabolic syndrome porcine model. Microbiol Spectr. 2022;10:e0071722.

    Article  PubMed  Google Scholar 

  59. Liang JQ, Li T, Nakatsu G, Chen YX, Yau TO, Chu E, et al. A novel faecal Lachnoclostridium marker for the non-invasive diagnosis of colorectal adenoma and cancer. Gut. 2020;69:1248–57.

    Article  CAS  PubMed  Google Scholar 

  60. Chen X, Levy JM, Hou A, Winters C, Azzam R, Sousa AA, et al. PSD-95 family MAGUKs are essential for anchoring AMPA and NMDA receptor complexes at the postsynaptic density. Proc Natl Acad Sci USA. 2015;112:E6983–6992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ossenkoppele R, van der Kant R, Hansson O. Tau biomarkers in Alzheimer’s disease: towards implementation in clinical practice and trials. Lancet Neurol. 2022;21:726–34.

    Article  CAS  PubMed  Google Scholar 

  62. Scheltens P, De Strooper B, Kivipelto M, Holstege H, Chetelat G, Teunissen CE, et al. Alzheimer’s disease. Lancet. 2021;397:1577–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lopez-Almela I, Romani-Perez M, Bullich-Vilarrubias C, Benitez-Paez A, Gomez Del Pulgar EM, Frances R, et al. Bacteroides uniformis combined with fiber amplifies metabolic and immune benefits in obese mice. Gut Microbes. 2021;13:1–20.

    Article  PubMed  Google Scholar 

  64. Lee HB, Do MH, Jhun H, Ha SK, Song HS, Roh SW, et al. Amelioration of hepatic steatosis in mice through Bacteroides uniformis CBA7346-mediated regulation of high-fat diet-induced insulin resistance and lipogenesis. Nutrients. 2021;13:2989.

  65. Burrichter AG, Dorr S, Bergmann P, Haiss S, Keller A, Fournier C, et al. Bacterial microcompartments for isethionate desulfonation in the taurine-degrading human-gut bacterium Bilophila wadsworthia. BMC Microbiol. 2021;21:340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Gunalan A, Biswas R, Sridharan B, Elamurugan TP. Pathogenic potential of Parabacteroides distasonis revealed in a splenic abscess case: a truth unfolded. BMJ Case Rep. 2020;13:e236701.

  67. De Vadder F, Kovatcheva-Datchary P, Goncalves D, Vinera J, Zitoun C, Duchampt A, et al. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell. 2014;156:84–96.

    Article  PubMed  Google Scholar 

  68. Abdel-Haq R, Schlachetzki JCM, Glass CK, Mazmanian SK. Microbiome-microglia connections via the gut-brain axis. J Exp Med. 2019;216:41–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Braniste V, Al-Asmakh M, Kowal C, Anuar F, Abbaspour A, Toth M, et al. The gut microbiota influences blood-brain barrier permeability in mice. Sci Transl Med. 2014;6:263ra158.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Wachsmuth HR, Weninger SN, Duca FA. Role of the gut-brain axis in energy and glucose metabolism. Exp Mol Med. 2022;54:377–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Seo DO, O’Donnell D, Jain N, Ulrich JD, Herz J, Li Y, et al. ApoE isoform- and microbiota-dependent progression of neurodegeneration in a mouse model of tauopathy. Science. 2023;379:eadd1236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Segain JP, Raingeard de la Bletiere D, Bourreille A, Leray V, Gervois N, Rosales C, et al. Butyrate inhibits inflammatory responses through NFkappaB inhibition: implications for Crohn’s disease. Gut. 2000;47:397–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Sun J, Wang F, Li H, Zhang H, Jin J, Chen W, et al. Neuroprotective effect of sodium butyrate against cerebral ischemia/reperfusion injury in mice. Biomed Res Int. 2015;2015:395895.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Luczynski P, McVey Neufeld KA, Oriach CS, Clarke G, Dinan TG, Cryan JF. Growing up in a bubble: using germ-free animals to assess the influence of the gut microbiota on brain and behavior. Int J Neuropsychopharmacol. 2016;19:pyw020.

  75. Sarubbo F, Cavallucci V, Pani G. The Influence of Gut Microbiota on Neurogenesis: evidence and Hopes. Cells. 2022;11:382.

  76. Miko E, Csaszar A, Bodis J, Kovacs K. The maternal-fetal gut microbiota axis: physiological changes, dietary influence, and modulation possibilities. Life. 2022;12:424.

  77. Blanton LV, Charbonneau MR, Salih T, Barratt MJ, Venkatesh S, Ilkaveya O, et al. Gut bacteria that prevent growth impairments transmitted by microbiota from malnourished children. Science. 2016;351 https://doi.org/10.1126/science.aad3311.

  78. Maqsood R, Rodgers R, Rodriguez C, Handley SA, Ndao IM, Tarr PI, et al. Discordant transmission of bacteria and viruses from mothers to babies at birth. Microbiome. 2019;7:156.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Ferretti P, Pasolli E, Tett A, Asnicar F, Gorfer V, Fedi S, et al. Mother-to-infant microbial transmission from different body sites shapes the developing infant gut microbiome. Cell Host Microbe. 2018;24:133–45.e135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Inczefi O, Bacquie V, Olier-Pierre M, Rincel M, Ringot-Destrez B, Ellero-Simatos S, et al. Targeted intestinal tight junction hyperpermeability alters the microbiome, behavior, and visceromotor responses. Cell Mol Gastroenterol Hepatol. 2020;10:206–8.e203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Abraham C, Abreu MT, Turner JR. Pattern recognition receptor signaling and cytokine networks in microbial defenses and regulation of intestinal barriers: implications for inflammatory bowel disease. Gastroenterology. 2022;162:1602–16.e1606

    Article  CAS  PubMed  Google Scholar 

  82. Browne HP, Neville BA, Forster SC, Lawley TD. Transmission of the gut microbiota: spreading of health. Nat Rev Microbiol. 2017;15:531–43.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Brito IL, Gurry T, Zhao S, Huang K, Young SK, Shea TP, et al. Transmission of human-associated microbiota along family and social networks. Nat Microbiol. 2019;4:964–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Fonareva I, Oken BS. Physiological and functional consequences of caregiving for relatives with dementia. Int Psychogeriatr. 2014;26:725–47.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Valles-Colomer M, Blanco-Miguez A, Manghi P, Asnicar F, Dubois L, Golzato D, et al. The person-to-person transmission landscape of the gut and oral microbiomes. Nature. 2023;614:125–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Thursby E, Juge N. Introduction to the human gut microbiota. Biochem J. 2017;474:1823–36.

    Article  CAS  PubMed  Google Scholar 

  87. Eimer WA, Vassar R. Neuron loss in the 5XFAD mouse model of Alzheimer’s disease correlates with intraneuronal Abeta42 accumulation and Caspase-3 activation. Mol Neurodegener. 2013;8:2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Dawson HN, Cantillana V, Jansen M, Wang H, Vitek MP, Wilcock DM, et al. Loss of tau elicits axonal degeneration in a mouse model of Alzheimer’s disease. Neuroscience. 2010;169:516–31.

    Article  CAS  PubMed  Google Scholar 

  89. Shen S, Lim G, You Z, Ding W, Huang P, Ran C, et al. Gut microbiota is critical for the induction of chemotherapy-induced pain. Nat Neurosci. 2017;20:1213–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kaliannan K, Wang B, Li XY, Kim KJ, Kang JX. A host-microbiome interaction mediates the opposing effects of omega-6 and omega-3 fatty acids on metabolic endotoxemia. Sci Rep. 2015;5:11276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Prizont R, Konigsberg N. Identification of bacterial glycosidases in rat cecal contents. Dig Dis Sci. 1981;26:773–7.

    Article  CAS  PubMed  Google Scholar 

  92. Yang S, Gu, C, Mandeville, Dong, Y, Esposito, E, Zhang, Y, et al. Aneshethesia and surgery impair blood-brain barrier and cogntive function in mice. Front Immunol. 2017;8:902.

  93. Liufu N, Liu L, Shen S, Jiang Z, Dong Y, Wang Y, et al. Anesthesia and surgery induce age-dependent changes in behaviors and microbiota. Aging. 2020;12:1965–86.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Zhao G, Nyman M, Jonsson JA. Rapid determination of short-chain fatty acids in colonic contents and faeces of humans and rats by acidified water-extraction and direct-injection gas chromatography. Biomed Chromatogr. 2006;20:674–82.

    Article  CAS  PubMed  Google Scholar 

  95. Lai Z, Shan W, Li J, Min J, Zeng X, Zuo Z. Appropriate exercise level attenuates gut dysbiosis and valeric acid increase to improve neuroplasticity and cognitive function after surgery in mice. Mol Psychiatry. 2021;26:7167–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zhang Y, Xu Z, Wang H, Dong Y, Shi HN, Culley DJ, et al. Anesthetics isoflurane and desflurane differently affect mitochondrial function, learning, and memory. Ann Neurol. 2012;71:687–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Aebersold R, Goodlett DR. Mass spectrometry in proteomics. Chem Rev. 2001;101:269–95.

    Article  CAS  PubMed  Google Scholar 

  98. Li H, Jia J, Yang Z. Mini-Mental state examination in elderly chinese: a population-based normative study. J Alzheimers Dis. 2016;53:487–96.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the funding support for this study provided by the National Institutes of Health through R01AG041274, R01AG062509, and RF1070761, and Henry L. Beecher Professorship from Harvard University (awarded to Zhongcong Xie), and R21AG065606 (awarded to Yiying Zhang). The GMB analyses presented in this paper were partially conducted at the Harvard Chan Microbiome Analysis Core, located at the Harvard Public Health School, Boston, MA. We also acknowledge Dr. Jackie Washington and Dr. Zhiyi Zuo from University of Virginia for conducting the Brain SCFAs analysis. We would like to thank Dr. Yang Shi of Ludwig Cancer Research at the University of Oxford for his valuable comments and insightful discussions.

Author information

Authors and Affiliations

Authors

Contributions

Study concept and design: YZ and ZX. Acquisition of data: YZ, YS, NL, LL, WL, ZS, HZ, XM, CYC, SA, and ZJ. Analysis and interpretation of data: YZ, YS, NL, LL, WL, ZS, HZ, XM, CYC, ZJ, SA, and ZJ. Drafting of the manuscript: YZ and ZX. Critical revision of the manuscript for important intellectual content: YZ, YJS, LC, JXK, GY, JK, JW and ZX. Obtained funding: YZ and ZX. Administrative, technical, and material support: YZ, YS, YD, FL and ZX. Study supervision: YZ, YS and ZX.

Corresponding authors

Correspondence to Yiying Zhang or Zhongcong Xie.

Ethics declarations

Competing interests

The authors declare that they have no competing interests. ZX provided consulting services to Shanghai’s 9th and 10th hospitals, Baxter (invited speaker), NanoMosaic, and Journal of Anesthesiology and Perioperative Science in the last 36 months.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Shen, Y., Liufu, N. et al. Transmission of Alzheimer’s disease-associated microbiota dysbiosis and its impact on cognitive function: evidence from mice and patients. Mol Psychiatry 28, 4421–4437 (2023). https://doi.org/10.1038/s41380-023-02216-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-023-02216-7

This article is cited by

Search

Quick links