Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Immediate Communication
  • Published:

Chemogenetic manipulation of CX3CR1+ cells transiently induces hypolocomotion independent of microglia

Abstract

Chemogenetic approaches using Designer Receptors Exclusively Activated by Designer Drugs (DREADD, a family of engineered GPCRs) were recently employed in microglia. Here, we used Cx3cr1CreER/+:R26hM4Di/+ mice to express Gi-DREADD (hM4Di) on CX3CR1+ cells, comprising microglia and some peripheral immune cells, and found that activation of hM4Di on long-lived CX3CR1+ cells induced hypolocomotion. Unexpectedly, Gi-DREADD-induced hypolocomotion was preserved when microglia were depleted. Consistently, specific activation of microglial hM4Di cannot induce hypolocomotion in Tmem119CreER/+:R26hM4Di/+ mice. Flow cytometric and histological analysis showed hM4Di expression in peripheral immune cells, which may be responsible for the hypolocomotion. Nevertheless, depletion of splenic macrophages, hepatic macrophages, or CD4+ T cells did not affect Gi-DREADD-induced hypolocomotion. Our study demonstrates that rigorous data analysis and interpretation are needed when using Cx3cr1CreER/+ mouse line to manipulate microglia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Activation of Gi-DREADD in CX3CR1+ cells induces hypolocomotion in mice.
Fig. 2: Gi-DREADD-induced hypolocomotion is independent of microglia.
Fig. 3: CX3CR1 is expressed in peripheral cells and Cx3cr1-controlled tdTomato (tdT) reporter labels circulating leukocytes.
Fig. 4: Cx3cr1-controlled tdTomato (tdT) reporter is expressed in peripheral organs.
Fig. 5: Gi-DREADD is expressed in peripheral immune cells.
Fig. 6: Resident macrophages or CD4+ T cells are not required for Gi-DREADD-induced hypolocomotion.

Similar content being viewed by others

References

  1. Cserep C, Posfai B, Denes A. Shaping neuronal fate: functional heterogeneity of direct microglia-neuron interactions. Neuron. 2021;109:222–40.

    Article  CAS  PubMed  Google Scholar 

  2. Wolf SA, Boddeke HW, Kettenmann H. Microglia in physiology and disease. Annu Rev Physiol. 2017;79:619–43.

    Article  CAS  PubMed  Google Scholar 

  3. Eyo UB, Wu LJ. Bidirectional microglia-neuron communication in the healthy brain. Neural Plast. 2013;2013:456857.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Umpierre AD, Wu LJ. How microglia sense and regulate neuronal activity. Glia. 2021;69:1637–53.

    Article  CAS  PubMed  Google Scholar 

  5. Haque ME, Kim IS, Jakaria M, Akther M, Choi DK. Importance of GPCR-mediated microglial activation in Alzheimer’s disease. Front Cell Neurosci. 2018;12:258.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hsiao CC, Sankowski R, Prinz M, Smolders J, Huitinga I, Hamann J. GPCRomics of homeostatic and disease-associated human microglia. Front Immunol. 2021;12:674189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Eyo UB, Wu LJ. Microglia: lifelong patrolling immune cells of the brain. Prog Neurobiol. 2019;179:101614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Merlini M, Rafalski VA, Ma K, Kim KY, Bushong EA, Rios Coronado PE, et al. Microglial Gi-dependent dynamics regulate brain network hyperexcitability. Nat Neurosci. 2021;24:19–23.

    Article  CAS  PubMed  Google Scholar 

  9. Armbruster BN, Li X, Pausch MH, Herlitze S, Roth BL. Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc Natl Acad Sci USA. 2007;104:5163–8.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Roth BL. DREADDs for neuroscientists. Neuron. 2016;89:683–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Grace PM, Strand KA, Galer EL, Urban DJ, Wang X, Baratta MV, et al. Morphine paradoxically prolongs neuropathic pain in rats by amplifying spinal NLRP3 inflammasome activation. Proc Natl Acad Sci USA. 2016;113:E3441–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Klawonn AM, Fritz M, Castany S, Pignatelli M, Canal C, Simila F, et al. Microglial activation elicits a negative affective state through prostaglandin-mediated modulation of striatal neurons. Immunity. 2021;54:225–34.

    Article  CAS  PubMed  Google Scholar 

  13. Saika F, Matsuzaki S, Kishioka S, Kiguchi N. Chemogenetic activation of CX3CR1-expressing spinal microglia using Gq-DREADD elicits mechanical allodynia in male mice. Cells. 2021;10:874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Parusel S, Yi MH, Hunt CL, Wu LJ. Chemogenetic and optogenetic manipulations of microglia in chronic pain. Neurosci Bull. 2023;39:368–78

  15. Yi MH, Liu YU, Liu K, Chen T, Bosco DB, Zheng J, et al. Chemogenetic manipulation of microglia inhibits neuroinflammation and neuropathic pain in mice. Brain Behav Immun. 2021;92:78–89.

    Article  CAS  PubMed  Google Scholar 

  16. Chen T, Lennon VA, Liu YU, Bosco DB, Li Y, Yi MH, et al. Astrocyte-microglia interaction drives evolving neuromyelitis optica lesion. J Clin Invest. 2020;130:4025–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Haynes SE, Hollopeter G, Yang G, Kurpius D, Dailey ME, Gan WB, et al. The P2Y12 receptor regulates microglial activation by extracellular nucleotides. Nat Neurosci. 2006;9:1512–9.

    Article  CAS  PubMed  Google Scholar 

  18. Peng J, Liu Y, Umpierre AD, Xie M, Tian DS, Richardson JR, et al. Microglial P2Y12 receptor regulates ventral hippocampal CA1 neuronal excitability and innate fear in mice. Mol Brain. 2019;12:71.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lowery RL, Mendes MS, Sanders BT, Murphy AJ, Whitelaw BS, Lamantia CE, et al. Loss of P2Y12 has behavioral effects in the adult mouse. Int J Mol Sci. 2021;22:1868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Schubert I, Ahlbrand R, Winter A, Vollmer L, Lewkowich I, Sah R. Enhanced fear and altered neuronal activation in forebrain limbic regions of CX3CR1-deficient mice. Brain Behav Immun. 2018;68:34–43.

    Article  CAS  PubMed  Google Scholar 

  21. Pozo-Rodrigalvarez A, Ollaranta R, Skoog J, Pekny M, Pekna M. Hyperactive behavior and altered brain morphology in adult complement C3a receptor deficient mice. Front Immunol. 2021;12:604812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Parkhurst CN, Yang G, Ninan I, Savas JN, Yates JR 3rd, Lafaille JJ, et al. Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell. 2013;155:1596–609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Goldmann T, Wieghofer P, Muller PF, Wolf Y, Varol D, Yona S, et al. A new type of microglia gene targeting shows TAK1 to be pivotal in CNS autoimmune inflammation. Nat Neurosci. 2013;16:1618–26.

    Article  CAS  PubMed  Google Scholar 

  24. Yona S, Kim KW, Wolf Y, Mildner A, Varol D, Breker M, et al. Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity. 2013;38:79–91.

    Article  CAS  PubMed  Google Scholar 

  25. Elmore MR, Najafi AR, Koike MA, Dagher NN, Spangenberg EE, Rice RA, et al. Colony-stimulating factor 1 receptor signaling is necessary for microglia viability, unmasking a microglia progenitor cell in the adult brain. Neuron. 2014;82:380–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lei F, Cui N, Zhou C, Chodosh J, Vavvas DG, Paschalis EI. CSF1R inhibition by a small-molecule inhibitor is not microglia specific; affecting hematopoiesis and the function of macrophages. Proc Natl Acad Sci USA. 2020;117:23336–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kaiser T, Feng G. Tmem119-EGFP and Tmem119-CreERT2 transgenic mice for labeling and manipulating microglia. eNeuro. 2019;6:ENEURO.0448-18.

  28. Bennett ML, Bennett FC, Liddelow SA, Ajami B, Zamanian JL, Fernhoff NB, et al. New tools for studying microglia in the mouse and human CNS. Proc Natl Acad Sci USA. 2016;113:E1738–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhan L, Fan L, Kodama L, Sohn PD, Wong MY, Mousa GA, et al. A MAC2-positive progenitor-like microglial population is resistant to CSF1R inhibition in adult mouse brain. Elife. 2020;9:e51796.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tabula Muris C, Overall C, Logistical C, Organ C, processing, Library p. et al. Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris. Nature. 2018;562:367–72.

    Article  Google Scholar 

  31. Bosco DB, Tian DS, Wu LJ. Neuroimmune interaction in seizures and epilepsy: focusing on monocyte infiltration. FEBS J. 2020;287:4822–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shichita T, Ooboshi H, Yoshimura A. Neuroimmune mechanisms and therapies mediating post-ischaemic brain injury and repair. Nat Rev Neurosci. 2023;24:299–312.

    Article  CAS  PubMed  Google Scholar 

  33. Shi Z, Yu P, Lin WJ, Chen S, Hu X, Chen S, et al. Microglia drive transient insult-induced brain injury by chemotactic recruitment of CD8(+) T lymphocytes. Neuron. 2023;111:696–710.

    Article  CAS  PubMed  Google Scholar 

  34. Saika F, Matsuzaki S, Kobayashi D, Ideguchi Y, Nakamura TY, Kishioka S, et al. Chemogenetic regulation of CX3CR1-expressing microglia using Gi-DREADD exerts sex-dependent anti-allodynic effects in mouse models of neuropathic pain. Front Pharmacol. 2020;11:925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Biewenga J, van der Ende MB, Krist LF, Borst A, Ghufron M, van Rooijen N. Macrophage depletion in the rat after intraperitoneal administration of liposome-encapsulated clodronate: depletion kinetics and accelerated repopulation of peritoneal and omental macrophages by administration of Freund’s adjuvant. Cell Tissue Res. 1995;280:189–96.

    CAS  PubMed  Google Scholar 

  36. Arnold L, Perrin H, de Chanville CB, Saclier M, Hermand P, Poupel L, et al. CX3CR1 deficiency promotes muscle repair and regeneration by enhancing macrophage ApoE production. Nat Commun. 2015;6:8972.

    Article  CAS  PubMed  Google Scholar 

  37. Zhao W, Lu H, Wang X, Ransohoff RM, Zhou L. CX3CR1 deficiency delays acute skeletal muscle injury repair by impairing macrophage functions. FASEB J. 2016;30:380–93.

    Article  CAS  PubMed  Google Scholar 

  38. Ilanges A, Shiao R, Shaked J, Luo JD, Yu X, Friedman JM. Brainstem ADCYAP1(+) neurons control multiple aspects of sickness behaviour. Nature. 2022;609:761–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sun L, Ye RD. Role of G protein-coupled receptors in inflammation. Acta Pharmacol Sin. 2012;33:342–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Elmquist JK, Scammell TE, Saper CB. Mechanisms of CNS response to systemic immune challenge: the febrile response. Trends Neurosci. 1997;20:565–70.

    Article  CAS  PubMed  Google Scholar 

  41. Wettschureck N, Offermanns S. Mammalian G proteins and their cell type specific functions. Physiol Rev. 2005;85:1159–204.

    Article  CAS  PubMed  Google Scholar 

  42. Grace PM, Wang X, Strand KA, Baratta MV, Zhang Y, Galer EL, et al. DREADDed microglia in pain: implications for spinal inflammatory signaling in male rats. Exp Neurol. 2018;304:125–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bernier LP, Bohlen CJ, York EM, Choi HB, Kamyabi A, Dissing-Olesen L, et al. Nanoscale surveillance of the brain by microglia via cAMP-regulated filopodia. Cell Rep. 2019;27:2895–908.

    Article  CAS  PubMed  Google Scholar 

  44. Binning W, Hogan-Cann AE, Yae Sakae D, Maksoud M, Ostapchenko V, Al-Onaizi M, et al. Chronic hM3Dq signaling in microglia ameliorates neuroinflammation in male mice. Brain Behav Immun. 2020;88:791–801.

    Article  CAS  PubMed  Google Scholar 

  45. Wendeln AC, Degenhardt K, Kaurani L, Gertig M, Ulas T, Jain G, et al. Innate immune memory in the brain shapes neurological disease hallmarks. Nature. 2018;556:332–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Van Hove H, Antunes ARP, De Vlaminck K, Scheyltjens I, Van Ginderachter JA, Movahedi K. Identifying the variables that drive tamoxifen-independent CreERT2 recombination: implications for microglial fate mapping and gene deletions. Eur J Immunol. 2020;50:459–63.

    Article  PubMed  Google Scholar 

  47. Chappell-Maor L, Kolesnikov M, Kim JS, Shemer A, Haimon Z, Grozovski J, et al. Comparative analysis of CreER transgenic mice for the study of brain macrophages: a case study. Eur J Immunol. 2020;50:353–62.

    Article  CAS  PubMed  Google Scholar 

  48. Van Hove H, Martens L, Scheyltjens I, De Vlaminck K, Pombo Antunes AR, De Prijck S, et al. A single-cell atlas of mouse brain macrophages reveals unique transcriptional identities shaped by ontogeny and tissue environment. Nat Neurosci. 2019;22:1021–35.

    Article  PubMed  Google Scholar 

  49. Kim JS, Kolesnikov M, Peled-Hajaj S, Scheyltjens I, Xia Y, Trzebanski S, et al. A binary cre transgenic approach dissects microglia and CNS border-associated macrophages. Immunity. 2021;54:176–90.

    Article  CAS  PubMed  Google Scholar 

  50. Masuda T, Amann L, Sankowski R, Staszewski O, Lenz M, DE P, et al. Novel Hexb-based tools for studying microglia in the CNS. Nat Immunol. 2020;21:802–15.

    Article  CAS  PubMed  Google Scholar 

  51. McKinsey GL, Lizama CO, Keown-Lang AE, Niu A, Santander N, Larpthaveesarp A, et al. A new genetic strategy for targeting microglia in development and disease. Elife. 2020;9:e54590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Davalos D, Grutzendler J, Yang G, Kim JV, Zuo Y, Jung S, et al. ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci. 2005;8:752–8.

    Article  CAS  PubMed  Google Scholar 

  53. Van Rooijen N, Sanders A. Liposome mediated depletion of macrophages: mechanism of action, preparation of liposomes and applications. J Immunol Methods. 1994;174:83–93.

    Article  PubMed  Google Scholar 

  54. Hao Y, Hao S, Andersen-Nissen E, Mauck WM 3rd, Zheng S, Butler A, et al. Integrated analysis of multimodal single-cell data. Cell. 2021;184:3573–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Korsunsky I, Millard N, Fan J, Slowikowski K, Zhang F, Wei K, et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat Methods. 2019;16:1289–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr. Vanda A. Lennon (Mayo Clinic), Dr. Doo-Sup Choi (Mayo Clinic) and Dr. Bryan Roth (University of North Carolina) for thoughtful comments. We also thank members of the Wu lab for insightful discussions.

Funding

This work was supported by the following grants from the National Institutes of Health: R35NS132326 (L-JW), R01ES033892 (JRR, L-JW), and K99NS126417 (ADU).

Author information

Authors and Affiliations

Authors

Contributions

SZ, JZ, and L-JW designed experiments and wrote the manuscript. SZ and JZ performed most of the experiments. LW performed data mining and analyzed RNA sequencing data. ADU, SP, and MX performed some experiments. SZ and AD analyzed data. KA, AJJ, and JRR provided resources for specific experiments.

Corresponding author

Correspondence to Long-Jun Wu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, S., Zheng, J., Wang, L. et al. Chemogenetic manipulation of CX3CR1+ cells transiently induces hypolocomotion independent of microglia. Mol Psychiatry 28, 2857–2871 (2023). https://doi.org/10.1038/s41380-023-02128-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-023-02128-6

Search

Quick links