Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cholecystokinin B receptor antagonists for the treatment of depression via blocking long-term potentiation in the basolateral amygdala

Abstract

Depression is a common and severe mental disorder. Evidence suggested a substantial causal relationship between stressful life events and the onset of episodes of major depression. However, the stress-induced pathogenesis of depression and the related neural circuitry is poorly understood. Here, we investigated how cholecystokinin (CCK) and CCKBR in the basolateral amygdala (BLA) are implicated in stress-mediated depressive-like behavior. The BLA mediates emotional memories, and long-term potentiation (LTP) is widely considered a trace of memory. We identified that the cholecystokinin knockout (CCK-KO) mice impaired LTP in the BLA, while the application of CCK4 induced LTP after low-frequency stimulation (LFS). The entorhinal cortex (EC) CCK neurons project to the BLA and optogenetic activation of EC CCK afferents to BLA-promoted stress susceptibility through the release of CCK. We demonstrated that EC CCK neurons innervate CCKBR cells in the BLA and CCK-B receptor knockout (CCKBR-KO) mice impaired LTP in the BLA. Moreover, the CCKBR antagonists also blocked high-frequency stimulation (HFS) induced LTP formation in the BLA. Notably, CCKBR antagonists infusion into the BLA displayed an antidepressant-like effect in the chronic social defeat stress model. Together, these results indicate that CCKBR could be a potential target to treat depression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: CCK signaling is critical for LTP induction in the BLA.
Fig. 2: Optogenetic activation of the ECcck–BLA circuit with SSDS induced depressive-like behaviors.
Fig. 3: ECCCK-BLA circuit-specific knockdown of CCK impaired the optogenetic activation-induced stress susceptibility.
Fig. 4: CSDS activated CCKBR neurons in the BLA.
Fig. 5: LTP deficit in CCKBR-KO mice and YM022 blocked LTP in the BLA.
Fig. 6: Antidepressant effects of YM022 in CSDS model.
Fig. 7: Antagonizing BLA CCKBR mediates antidepressant-like effects.

Similar content being viewed by others

References

  1. Daly M, Robinson E. Depression and anxiety during COVID-19. Lancet. 2022;399:518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ferguson JM. SSRI antidepressant medications: adverse effects and tolerability. Prim Care Companion J Clin psychiatry. 2001;3:22.

    PubMed  PubMed Central  Google Scholar 

  3. Birmes P, Coppin D, Schmitt L, Lauque D. Serotonin syndrome: a brief review. Cmaj. 2003;168:1439–42.

    PubMed  PubMed Central  Google Scholar 

  4. Mitchell AJ. Two-week delay in onset of action of antidepressants: new evidence. Br J Psychiatry. 2006;188:105–6.

    Article  PubMed  Google Scholar 

  5. Hammen C. Stress and depression. Annu Rev Clin Psychol. 2005;1:293–319.

    Article  PubMed  Google Scholar 

  6. Kessler RC. The effects of stressful life events on depression. Annu Rev Psychol. 1997;48:191–214.

    Article  CAS  PubMed  Google Scholar 

  7. Kendler KS, Karkowski LM, Prescott CA. Causal relationship between stressful life events and the onset of major depression. Am J Psychiatry. 1999;156:837–41.

    Article  CAS  PubMed  Google Scholar 

  8. Hu H. Reward and aversion. Annu Rev Neurosci. 2016;39:297–324.

    Article  CAS  PubMed  Google Scholar 

  9. Russo SJ, Nestler EJ. The brain reward circuitry in mood disorders. Nat Rev Neurosci. 2013;14:609–25.

    Article  CAS  PubMed  Google Scholar 

  10. Asim M, Hao B, Waris A, Liang Y-M, Wang X-G. Ketamine attenuates the PTSD-like effect via regulation of glutamatergic signaling in the nucleus accumbens of mice. Mol Cell Neurosci. 2022;120:103723.

    Article  CAS  PubMed  Google Scholar 

  11. Asim M, Hao B, Yang Y-H, Fan B-F, Xue L, Shi Y-W, et al. Ketamine alleviates fear generalization through GluN2B-BDNF signaling in mice. Neurosci Bull. 2020;36:153–64.

    Article  CAS  PubMed  Google Scholar 

  12. Asim M, Wang B, Hao B, Wang X. Ketamine for post-traumatic stress disorders and it’s possible therapeutic mechanism. Neurochem Int. 2021;146:105044.

    Article  CAS  PubMed  Google Scholar 

  13. Baxter MG, Murray EA. The amygdala and reward. Nat Rev Neurosci. 2002;3:563–73.

    Article  CAS  PubMed  Google Scholar 

  14. Hamilton JP, Gotlib IH. Neural substrates of increased memory sensitivity for negative stimuli in major depression. Biol Psychiatry. 2008;63:1155–62.

    Article  PubMed  PubMed Central  Google Scholar 

  15. O’Neill P-K, Gore F, Salzman CD. Basolateral amygdala circuitry in positive and negative valence. Curr Opin Neurobiol. 2018;49:175–83.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Asim M, Wang H, Waris A. Altered neurotransmission in stress-induced depressive disorders: The underlying role of the amygdala in depression. Neuropeptides. 2023;98:102322.

    Article  CAS  PubMed  Google Scholar 

  17. Siegle GJ, Thompson W, Carter CS, Steinhauer SR, Thase ME. Increased amygdala and decreased dorsolateral prefrontal BOLD responses in unipolar depression: related and independent features. Biol Psychiatry. 2007;61:198–209.

    Article  PubMed  Google Scholar 

  18. Peluso MA, Glahn DC, Matsuo K, Monkul ES, Najt P, Zamarripa F, et al. Amygdala hyperactivation in untreated depressed individuals. Psychiatry Res. 2009;173:158–61.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Yang TT, Simmons AN, Matthews SC, Tapert SF, Frank GK, Max JE, et al. Adolescents with major depression demonstrate increased amygdala activation. J Am Acad Child Adolesc Psychiatry. 2010;49:42–51.

    PubMed  PubMed Central  Google Scholar 

  20. Feng H, Su J, Fang W, Chen X, He J. The entorhinal cortex modulates trace fear memory formation and neuroplasticity in the mouse lateral amygdala via cholecystokinin. Elife. 2021;10:e69333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fu J-Y, Yu X-D, Zhu Y, Xie S-Z, Tang M-Y, Yu B, et al. Whole-brain map of long-range monosynaptic inputs to different cell types in the amygdala of the mouse. Neurosci Bull. 2020;36:1381–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hafting T, Fyhn M, Molden S, Moser M-B, Moser EI. Microstructure of a spatial map in the entorhinal cortex. Nature. 2005;436:801–6.

    Article  CAS  PubMed  Google Scholar 

  23. Fyhn M, Molden S, Witter MP, Moser EI, Moser M-B. Spatial representation in the entorhinal cortex. Science. 2004;305:1258–64.

    Article  CAS  PubMed  Google Scholar 

  24. Maren S, Fanselow MS. Electrolytic lesions of the fimbria/fornix, dorsal hippocampus, or entorhinal cortex produce anterograde deficits in contextual fear conditioning in rats. Neurobiol Learn Mem. 1997;67:142–9.

    Article  CAS  PubMed  Google Scholar 

  25. Lu J, Zhang Z, Yin X, Tang Y, Ji R, Chen H, et al. An entorhinal-visual cortical circuit regulates depression-like behaviors. Mol Psychiatry. 2022;27:1–14.

    Google Scholar 

  26. Yun S, Reynolds RP, Petrof I, White A, Rivera PD, Segev A, et al. Stimulation of entorhinal cortex–dentate gyrus circuitry is antidepressive. Nat Med. 2018;24:658–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sun W, Wu H, Peng Y, Tang P, Zhao M, Zheng CX, et al. Heterosynaptic Plasticity of the Visuo-auditory Projection Requires Cholecystokinin released from Entorhinal Cortex Afferents. bioRxiv. https://doi.org/10.1101/2022.10.04.510820.

  28. Hernando F, Fuentes J, Roques BP, Ruiz-Gayo M. The CCKB receptor antagonist, L-365,260, elicits antidepressant-type effects in the forced-swim test in mice. Eur J Pharmacol. 1994;261:257–63.

    Article  CAS  PubMed  Google Scholar 

  29. Löfberg C, Ågren H, Harro J, Oreland L. Cholecystokinin in CSF from depressed patients: possible relations to severity of depression and suicidal behaviour. Eur Neuropsychopharmacol. 1998;8:153–7.

    Article  PubMed  Google Scholar 

  30. Becker C, Zeau B, Rivat C, Blugeot A, Hamon M, Benoliel J. Repeated social defeat-induced depression-like behavioral and biological alterations in rats: involvement of cholecystokinin. Mol Psychiatry. 2008;13:1079–92.

    Article  CAS  PubMed  Google Scholar 

  31. Del Boca C, Lutz P, Le Merrer J, Koebel P, Kieffer B. Cholecystokinin knock-down in the basolateral amygdala has anxiolytic and antidepressant-like effects in mice. Neuroscience. 2012;218:185–95.

    Article  PubMed  Google Scholar 

  32. Karthik L, Kumar G, Keswani T, Bhattacharyya A, Chandar SS, Rao KB. Protease inhibitors from marine actinobacteria as a potential source for antimalarial compound. PloS One. 2014;9:e90972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wank SA. Cholecystokinin receptors. Am J Physiol-Gastrointest Liver Physiol. 1995;269:G628–G646.

    Article  CAS  Google Scholar 

  34. Honda T, Wada E, Battey JF, Wank SA. Differential gene expression of CCKA and CCKB receptors in the rat brain. Mol Cell Neurosci. 1993;4:143–54.

    Article  CAS  PubMed  Google Scholar 

  35. Chen X, Li X, Wong YT, Zheng X, Wang H, Peng Y, et al. Cholecystokinin release triggered by NMDA receptors produces LTP and sound–sound associative memory. Proc Natl Acad Sci. 2019;116:6397–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Li X, Yu K, Zhang Z, Sun W, Yang Z, Feng J, et al. Cholecystokinin from the entorhinal cortex enables neural plasticity in the auditory cortex. Cell Res. 2014;24:307–30.

    Article  CAS  PubMed  Google Scholar 

  37. Zhang Z, Zheng X, Sun W, Peng Y, Guo Y, Lu D, et al. Visuoauditory associative memory established with cholecystokinin under anesthesia is retrieved in behavioral contexts. J Neurosci. 2020;40:2025–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jing M, Zhang Y, Wang H, Li Y. G‐protein‐coupled receptor‐based sensors for imaging neurochemicals with high sensitivity and specificity. J Neurochem. 2019;151:279–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bruno CA, O’Brien C, Bryant S, Mejaes JI, Estrin DJ, Pizzano C, et al. pMAT: An open-source software suite for the analysis of fiber photometry data. Pharmacol Biochem Behav. 2021;201:173093.

    Article  CAS  PubMed  Google Scholar 

  40. Golden SA, Covington HE, Berton O, Russo SJ. A standardized protocol for repeated social defeat stress in mice. Nat Protoc. 2011;6:1183–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Shen C-J, Zheng D, Li K-X, Yang J-M, Pan H-Q, Yu X-D, et al. Cannabinoid CB1 receptors in the amygdalar cholecystokinin glutamatergic afferents to nucleus accumbens modulate depressive-like behavior. Nat Med. 2019;25:337–49.

    Article  CAS  PubMed  Google Scholar 

  42. Chaudhury D, Walsh JJ, Friedman AK, Juarez B, Ku SM, Koo JW, et al. Rapid regulation of depression-related behaviours by control of midbrain dopamine neurons. Nature. 2013;493:532–6.

    Article  CAS  PubMed  Google Scholar 

  43. Pittenger C, Duman RS. Stress, depression, and neuroplasticity: a convergence of mechanisms. Neuropsychopharmacology. 2008;33:88–109.

    Article  CAS  PubMed  Google Scholar 

  44. Appelbaum LG, Shenasa MA, Stolz L, Daskalakis Z. Synaptic plasticity and mental health: methods, challenges and opportunities. Neuropsychopharmacology. 2023;48:113–20.

    Article  PubMed  Google Scholar 

  45. Roozendaal B, McEwen BS, Chattarji S. Stress, memory and the amygdala. Nat Rev Neurosci. 2009;10:423–33.

    Article  CAS  PubMed  Google Scholar 

  46. Cahill L, Babinsky R, Markowitsch HJ, McGaugh JL. The amygdala and emotional memory. Nature. 1995;377:295–6.

    Article  CAS  PubMed  Google Scholar 

  47. Nabavi S, Fox R, Proulx CD, Lin JY, Tsien RY, Malinow R. Engineering a memory with LTD and LTP. Nature. 2014;511:348–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Collingridge GL, Peineau S, Howland JG, Wang YT. Long-term depression in the CNS. Nat Rev Neurosci. 2010;11:459–73.

    Article  CAS  PubMed  Google Scholar 

  49. Wang H, Qian T, Zhao Y, Zhuo Y, Wu C, Osakada T, et al. A toolkit of highly selective and sensitive genetically encoded neuropeptide sensors. bioRxiv. https://doi.org/10.1101/2022.03.26.4859.

  50. Li H, Namburi P, Olson JM, Borio M, Lemieux ME, Beyeler A, et al. Neurotensin orchestrates valence assignment in the amygdala. Nature. 2022;608:586–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Schneider F, Grodd W, Weiss U, Klose U, Mayer KR, Nägele T, et al. Functional MRI reveals left amygdala activation during emotion. Psychiatry Res. 1997;76:75–82.

    Article  CAS  PubMed  Google Scholar 

  52. Rodgers R, Cao B-J, Dalvi A, Holmes A. Animal models of anxiety: an ethological perspective. Braz J Med Biol Res. 1997;30:289–304.

    Article  CAS  PubMed  Google Scholar 

  53. Gray JA. Précis of The neuropsychology of anxiety: An enquiry into the functions of the septo-hippocampal system. Behav Brain Sci. 1982;5:469–84.

    Article  Google Scholar 

  54. Lister RG. The use of a plus-maze to measure anxiety in the mouse. Psychopharmacology. 1987;92:180–5.

    Article  CAS  PubMed  Google Scholar 

  55. Kalueff AV, Jensen CL, Murphy DL. Locomotory patterns, spatiotemporal organization of exploration and spatial memory in serotonin transporter knockout mice. Brain Res. 2007;1169:87–97.

    Article  CAS  PubMed  Google Scholar 

  56. Denenberg VH. Open‐field behavior in the rat: What does it mean? Ann N. Y Acad Sci. 1969;159:852–9.

    Article  CAS  PubMed  Google Scholar 

  57. Stanford SC. The open field test: reinventing the wheel. J Psychopharmacol. 2007;21:134–6.

    Article  PubMed  Google Scholar 

  58. Nishida A, Miyata K, Tsutsumi R, Yuki H, Akuzawa S, Kobayashi A, et al. Pharmacological profile of (R)-1-[2, 3-dihydro-1-(2’-methylphenacyl)-2-oxo-5-phenyl-1H-1, 4-benzodiazepin-3-yl]-3-(3-methylphenyl) urea (YM022), a new potent and selective gastrin/cholecystokinin-B receptor antagonist, in vitro and in vivo. J Pharmacol Exp Therap. 1994;269:725–31.

  59. Semple G, Ryder H, Rooker DP, Batt AR, Kendrick DA, Szelke M, et al. (3 R)-N-(1-(tert-Butylcarbonylmethyl)-2, 3-dihydro-2-oxo-5-(2-pyridyl)-1 H-1, 4-benzodiazepin-3-yl)-N ‘-(3-(methylamino) phenyl) urea (YF476): A Potent and Orally Active Gastrin/CCK-B Antagonist. J Med Chem. 1997;40:331–41.

    Article  CAS  PubMed  Google Scholar 

  60. Pardridge WM. The blood-brain barrier: bottleneck in brain drug development. NeuroRx. 2005;2:3–14.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Cryan JF, Mombereau C, Vassout A. The tail suspension test as a model for assessing antidepressant activity: review of pharmacological and genetic studies in mice. Neurosci Biobehav Rev. 2005;29:571–625.

    Article  CAS  PubMed  Google Scholar 

  62. Castagné V, Moser P, Roux S, Porsolt RD. Rodent models of depression: forced swim and tail suspension behavioral despair tests in rats and mice. Curr Protoc Pharmacol. 2010;49:5.8. 1-5.8. 14.

  63. Jahangard L, Solgy R, Salehi I, Taheri SK, Holsboer-Trachsler E, Haghighi M, et al. Cholecystokinin (CCK) level is higher among first time suicide attempters than healthy controls, but is not associated with higher depression scores. Psychiatry Res. 2018;266:40–46.

    Article  CAS  PubMed  Google Scholar 

  64. Czéh B, Vardya I, Varga Z, Febbraro F, Csabai D, Martis L-S, et al. Long-term stress disrupts the structural and functional integrity of GABAergic neuronal networks in the medial prefrontal cortex of rats. Front Cell Neurosci. 2018;12:148.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Humeau Y, Choquet D. The next generation of approaches to investigate the link between synaptic plasticity and learning. Nat Neurosci. 2019;22:1536–43.

    Article  CAS  PubMed  Google Scholar 

  66. Josselyn SA, Tonegawa S. Memory engrams: Recalling the past and imagining the future. Science. 2020;367:eaaw4325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wu C-H, Ramos R, Katz DB, Turrigiano GG. Homeostatic synaptic scaling establishes the specificity of an associative memory. Curr Biol. 2021;31:2274–85.e2275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zheng Z, Guo C, Li M, Yang L, Liu P, Zhang X, et al. Hypothalamus-habenula potentiation encodes chronic stress experience and drives depression onset. Neuron. 2022;110:1400–15. e1406

    Article  CAS  PubMed  Google Scholar 

  69. Duman RS, Aghajanian GK, Sanacora G, Krystal JH. Synaptic plasticity and depression: new insights from stress and rapid-acting antidepressants. Nat Med. 2016;22:238–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hamilton JP, Siemer M, Gotlib IH. Amygdala volume in major depressive disorder: a meta-analysis of magnetic resonance imaging studies. Mol Psychiatry. 2008;13:993–1000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Drevets WC, Bogers W, Raichle ME. Functional anatomical correlates of antidepressant drug treatment assessed using PET measures of regional glucose metabolism. Eur Neuropsychopharmacol. 2002;12:527–44.

    Article  CAS  PubMed  Google Scholar 

  72. Beinfeld MC, Meyer DK, Eskay RL, Jensen RT, Brownstein MJ. The distribution of cholecystokinin immunoreactivity in the central nervous system of the rat as determined by radioimmunoassay. Brain Res. 1981;212:51–57.

    Article  CAS  PubMed  Google Scholar 

  73. Rehfeld JF. Immunochemical studies on cholecystokinin. II. Distribution and molecular heterogeneity in the central nervous system and small intestine of man and hog. J Biol Chem. 1978;253:4022–30.

    Article  CAS  PubMed  Google Scholar 

  74. Bullitt E. Expression of c‐fos‐like protein as a marker for neuronal activity following noxious stimulation in the rat. J Comp Neurol. 1990;296:517–30.

    Article  CAS  PubMed  Google Scholar 

  75. Kovács K. Measurement of immediate‐early gene activation‐c‐fos and beyond. J Neuroendocrinol. 2008;20:665–72.

    Article  PubMed  Google Scholar 

  76. Groenewold NA, Opmeer EM, de Jonge P, Aleman A, Costafreda SG. Emotional valence modulates brain functional abnormalities in depression: evidence from a meta-analysis of fMRI studies. Neurosci Biobehav Rev. 2013;37:152–63.

    Article  PubMed  Google Scholar 

  77. Hamilton JP, Etkin A, Furman DJ, Lemus MG, Johnson RF, Gotlib IH. Functional neuroimaging of major depressive disorder: a meta-analysis and new integration of baseline activation and neural response data. Am J Psychiatry. 2012;169:693–703.

    Article  PubMed  Google Scholar 

  78. Bradwejn J, Koszycki D, Paradis M, Reece P, Hinton J, Sedman A. Effect of CI-988 on cholecystokinin tetrapeptide-induced panic symptoms in healthy volunteers. Biol Psychiatry. 1995;38:742–6.

    Article  CAS  PubMed  Google Scholar 

  79. Derkach VA, Oh MC, Guire ES, Soderling TR. Regulatory mechanisms of AMPA receptors in synaptic plasticity. Nat Rev Neurosci. 2007;8:101–13.

    Article  CAS  PubMed  Google Scholar 

  80. Diering GH, Huganir RL. The AMPA receptor code of synaptic plasticity. Neuron. 2018;100:314–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Yi E-S, Oh S, Lee J-K, Leem Y-H. Chronic stress-induced dendritic reorganization and abundance of synaptosomal PKA-dependent CP-AMPA receptor in the basolateral amygdala in a mouse model of depression. Biochem Biophys Res Commun. 2017;486:671–8.

    Article  CAS  PubMed  Google Scholar 

  82. Zhou H-Y, He J-G, Hu Z-L, Xue S-G, Xu J-F, Cui Q-Q, et al. A-kinase anchoring protein 150 and protein kinase A complex in the basolateral amygdala contributes to depressive-like behaviors induced by chronic restraint stress. Biol Psychiatry. 2019;86:131–42.

    Article  CAS  PubMed  Google Scholar 

  83. Gibbons AS, Brooks L, Scarr E, Dean B. AMPA receptor expression is increased post-mortem samples of the anterior cingulate from subjects with major depressive disorder. J Affect Disord. 2012;136:1232–7.

    Article  CAS  PubMed  Google Scholar 

  84. Zanos P, Gould T. Mechanisms of ketamine action as an antidepressant. Mol Psychiatry. 2018;23:801–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Liu R-J, Lee FS, Li X-Y, Bambico F, Duman RS, Aghajanian GK. Brain-derived neurotrophic factor Val66Met allele impairs basal and ketamine-stimulated synaptogenesis in prefrontal cortex. Biol Psychiatry. 2012;71:996–1005.

    Article  CAS  PubMed  Google Scholar 

  86. Holz A, Mülsch F, Schwarz MK, Hollmann M, Döbrössy MD, Coenen VA, et al. Enhanced mGlu5 signaling in excitatory neurons promotes rapid antidepressant effects via AMPA receptor activation. Neuron. 2019;104:338–52.e337.

    Article  CAS  PubMed  Google Scholar 

  87. Carmona MA, Martínez A, Soler A, Blasi J, Soriano E, Aguado F. Ca2+-evoked synaptic transmission and neurotransmitter receptor levels are impaired in the forebrain of trkb (−/−) mice. Mol Cell Neurosci. 2003;22:210–26.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by: Hong Kong Research Grants Council, General Research Fund: 11103220, 11101521, 11102422; (GRF, JFH) Hong Kong Research Grants Council, Collaborative Research Fund: C1043-21GF; (CRF, JFH) Innovation and Technology Fund: MRP/053/18X, GHP_075_19GD; (ITF, JFH) Health and Medical Research Fund: 06172456, 09203656; (HMRF, XC, JFH) and the following charitable foundations for their generous support to JFH: Wong Chun Hong Endowed Chair Professorship, Charlie Lee Charitable Foundation, and Fong Shu Fook Tong Foundation.

Author information

Authors and Affiliations

Authors

Contributions

JH, XZ, and MA designed the experiments; XZ, QG, and SW carried out the LTP study. XZ and MA performed the behavior experiments. MA and WF did the viral injections and cannula implantation surgeries. MA conducted optogenetic and fiber photometry recording experiments. WF, YL, KK, and HF performed histology experiments. MA and HW collected and analyzed the data for the western blotting. HM carried out the BBB penetration experiment. XZ and MA wrote the manuscript. JH assisted in editing and writing the manuscript. JH supervised the project.

Corresponding author

Correspondence to Jufang He.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Asim, M., Fang, W. et al. Cholecystokinin B receptor antagonists for the treatment of depression via blocking long-term potentiation in the basolateral amygdala. Mol Psychiatry 28, 3459–3474 (2023). https://doi.org/10.1038/s41380-023-02127-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-023-02127-7

This article is cited by

Search

Quick links