Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Proteasome-independent K63 polyubiquitination selectively regulates ATP levels and proteasome activity during fear memory formation in the female amygdala

Abstract

Females are more likely than males to develop post-traumatic stress disorder (PTSD). However, the neurobiological mechanisms responsible for these sex differences remain elusive. The ubiquitin proteasome system (UPS) is involved in fear memory formation and implicated in PTSD development. Despite this, proteasome-independent functions of the UPS have rarely been studied in the brain. Here, using a combination of molecular, biochemical, proteomic, behavioral, and novel genetic approaches, we investigated the role of proteasome-independent lysine-63 (K63)-polyubiquitination, the second most abundant ubiquitin modification in cells, in the amygdala during fear memory formation in male and female rats. Only females had increased levels of K63-polyubiquitination targeting in the amygdala following fear conditioning, which targeted proteins involved in ATP synthesis and proteasome function. CRISPR-dCas13b-mediated knockdown of K63-polyubiquitination in the amygdala via editing of the K63 codon in the major ubiquitin gene, Ubc, impaired fear memory in females, but not males, and caused a reduction in learning-related increases in ATP levels and proteasome activity in the female amygdala. These results suggest that proteasome-independent K63-polyubiquitination is selectively involved in fear memory formation in the female amygdala, where it is involved in the regulation of ATP synthesis and proteasome activity following learning. This indicates the first link between proteasome-independent and proteasome-dependent UPS functions in the brain during fear memory formation. Importantly, these data are congruent with reported sex differences in PTSD development and may contribute to our understanding of why females are more likely to develop PTSD than males.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Sex-selective changes in K63-polyubiquitin protein targets in the amygdala of male and female rats during fear memory formation.
Fig. 2: CRISPR-dCas13b-ADAR2DD RNA editing system can specifically and efficiently edit different polyubiquitin linkage sites.
Fig. 3: CRISPR-dCas13b-ADAR2DD mediated knockdown of K63-polyubiquitination in the BLA impairs contextual fear memory in female, but not male, rats.
Fig. 4: CRISPR-dCas13b-ADAR2DD mediated knockdown of K63-polyubiquitination in the BLA does not broadly impact anxiety or auditory fear memory in females.
Fig. 5: CRISPR-dCas13b-ADAR2DD mediated knockdown of K63-polyubiquitination in the BLA alters total ATP levels but not proteasome activity in female rats 1 h after contextual fear conditioning and alters proteasome activity but not ATP levels in female rats 4 h after contextual fear conditioning.

Similar content being viewed by others

References

  1. Christiansen DM, Berke ET. Gender- and sex-based contributors to sex differences in PTSD. Curr Psychiatry Rep. 2020;22:19.

    Article  PubMed  Google Scholar 

  2. Bedford L, Paine S, Sheppard PW, Mayer RJ, Roelofs J. Assembly, structure, and function of the 26S proteasome. Trends Cell Biol. 2010;20:391–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hegde AN. The ubiquitin-proteasome pathway and synaptic plasticity. Learn Mem. 2010;17:314–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Livneh I, Cohen-Kaplan V, Cohen-Rosenzweig C, Avni N, Ciechanover A. The life cycle of the 26S proteasome: from birth, through regulation and function, and onto its death. Cell Res. 2016;26:869–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Akutsu M, Dikic I, Bremm A. Ubiquitin chain diversity at a glance. J Cell Sci. 2016;129:875–80.

    CAS  PubMed  Google Scholar 

  6. Dikic I, Wakatsuki S, Walters KJ. Ubiquitin-binding domains - from structures to functions. Nat Rev Mol Cell Biol. 2009;10:659–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Glickman MH, Ciechanover A. The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev. 2002;82:373–428.

    Article  CAS  PubMed  Google Scholar 

  8. Grice GL, Nathan JA. The recognition of ubiquitinated proteins by the proteasome. Cell Mol Life Sci. 2016;73:3497–506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hershko A, Ciechanover A. The ubiquitin system. Annu Rev Biochem. 1998;67:425–79.

    Article  CAS  PubMed  Google Scholar 

  10. Devulapalli R, Jones N, Farrell K, Musaus M, Kugler H, McFadden T, et al. Males and females differ in the regulation and engagement of, but not requirement for, protein degradation in the amygdala during fear memory formation. Neurobiol Learn Mem. 2021;180:107404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Devulapalli RK, Nelsen JL, Orsi SA, McFadden T, Navabpour S, Jones N, et al. Males and Females Differ in the Subcellular and Brain Region Dependent Regulation of Proteasome Activity by CaMKII and Protein Kinase A. Neuroscience. 2019;418:1–14.

    Article  CAS  PubMed  Google Scholar 

  12. Farrell K, Musaus M, Navabpour S, Martin K, Ray WK, Helm RF, et al. Proteomic Analysis Reveals Sex-Specific Protein Degradation Targets in the Amygdala During Fear Memory Formation. Front Mol Neurosci. 2021;14:716284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Martin K, Musaus M, Navabpour S, Gustin A, Ray WK, Helm RF, et al. Females, but not males, require protein degradation in the hippocampus for contextual fear memory formation. Learn Mem. 2021;28:248–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Musaus M, Farrell K, Navabpour S, Ray WK, Helm RF, Jarome TJ. Sex-specific linear polyubiquitination is a critical regulator of contextual fear memory formation. Front Behav Neurosci. 2021;15:709392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dulka BN, Trask S, Helmstetter FJ. Age-related memory impairment and sex-specific alterations in phosphorylation of the Rpt6 Proteasome subunit and Polyubiquitination in the basolateral Amygdala and medial prefrontal cortex. Front Aging Neurosci. 2021;13:656944.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Erpapazoglou Z, Walker O, Haguenauer-Tsapis R. Versatile roles of k63-linked ubiquitin chains in trafficking. Cells. 2014;3:1027–88.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lee BL, Singh A, Mark Glover JN, Hendzel MJ, Spyracopoulos L. Molecular Basis for K63-Linked Ubiquitination Processes in Double-Strand DNA Break Repair: A Focus on Kinetics and Dynamics. J Mol Biol. 2017;429:3409–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nathan JA, Kim HT, Ting L, Gygi SP, Goldberg AL. Why do cellular proteins linked to K63-polyubiquitin chains not associate with proteasomes? EMBO J. 2013;32:552–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cox DBT, Gootenberg JS, Abudayyeh OO, Franklin B, Kellner MJ, Joung J, et al. RNA editing with CRISPR-Cas13. Science. 2017;358:1019–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Melfi R, Cancemi P, Chiavetta R, Barra V, Lentini L, Di Leonardo A. Investigating REPAIRv2 as a Tool to Edit CFTR mRNA with Premature Stop Codons. Int J Mol Sci. 2020;21:4781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jarome TJ, Perez GA, Webb WM, Hatch KM, Navabpour S, Musaus M, et al. Ubiquitination of Histone H2B by Proteasome Subunit RPT6 Controls Histone Methylation Chromatin Dynamics During Memory Formation. Biol Psychiatry. 2021;89:1176–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jarome TJ, Kwapis JL, Ruenzel WL, Helmstetter FJ. CaMKII, but not protein kinase A, regulates Rpt6 phosphorylation and proteasome activity during the formation of long-term memories. Front Behav Neurosci. 2013;7:115.

    PubMed  PubMed Central  Google Scholar 

  23. Jarome TJ, Werner CT, Kwapis JL, Helmstetter FJ. Activity dependent protein degradation is critical for the formation and stability of fear memory in the amygdala. PLoS One. 2011;6:e24349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Orsi SA, Devulapalli RK, Nelsen JL, McFadden T, Surineni R, Jarome TJ. Distinct subcellular changes in proteasome activity and linkage-specific protein polyubiquitination in the amygdala during the consolidation and reconsolidation of a fear memory. Neurobiol Learn Mem. 2019;157:1–11.

    Article  CAS  PubMed  Google Scholar 

  25. Johansen JP, Cain CK, Ostroff LE, LeDoux JE. Molecular mechanisms of fear learning and memory. Cell. 2011;147:509–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zalcman G, Federman N, Romano A. CaMKII isoforms in learning and memory: Localization and function. Front Mol Neurosci. 2018;11:445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ohtake F, Tsuchiya H, Saeki Y, Tanaka K. K63 ubiquitylation triggers proteasomal degradation by seeding branched ubiquitin chains. Proc Natl Acad Sci USA. 2018;115:E1401–e1408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bauer EP, Schafe GE, LeDoux JE. NMDA receptors and L-type voltage-gated calcium channels contribute to long-term potentiation and different components of fear memory formation in the lateral amygdala. J Neurosci. 2002;22:5239–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jarome TJ, Helmstetter FJ. The ubiquitin-proteasome system as a critical regulator of synaptic plasticity and long-term memory formation. Neurobiol Learn Mem. 2013;105:107–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. López AJ, Hecking JK, White AO. The Emerging Role of ATP-dependent chromatin remodeling in memory and substance use disorders. Int J Mol Sci. 2020;21:6816.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Rangaraju V, Calloway N, Ryan TA. Activity-driven local ATP synthesis is required for synaptic function. Cell. 2014;156:825–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rodrigues SM, Schafe GE, LeDoux JE. Intra-amygdala blockade of the NR2B subunit of the NMDA receptor disrupts the acquisition but not the expression of fear conditioning. J Neurosci. 2001;21:6889–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang CM, Yang YJ, Zhang JT, Liu J, Guan XL, Li MX, et al. Regulation of emotional memory by hydrogen sulfide: role of GluN2B-containing NMDA receptor in the amygdala. J Neurochem. 2015;132:124–34.

    Article  CAS  PubMed  Google Scholar 

  34. Nakazawa T, Komai S, Watabe AM, Kiyama Y, Fukaya M, Arima-Yoshida F, et al. NR2B tyrosine phosphorylation modulates fear learning as well as amygdaloid synaptic plasticity. EMBO J. 2006;25:2867–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Delawary M, Tezuka T, Kiyama Y, Yokoyama K, Inoue T, Hattori S, et al. NMDAR2B tyrosine phosphorylation regulates anxiety-like behavior and CRF expression in the amygdala. Mol Brain. 2010;3:37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sun YY, Cai W, Yu J, Liu SS, Zhuo M, Li BM, et al. Surface expression of hippocampal NMDA GluN2B receptors regulated by fear conditioning determines its contribution to memory consolidation in adult rats. Sci Rep. 2016;6:30743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cullen PK, Ferrara NC, Pullins SE, Helmstetter FJ. Context memory formation requires activity-dependent protein degradation in the hippocampus. Learn Mem. 2017;24:589–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dulka BN, Pullins SE, Cullen PK, Moyer JR Jr., Helmstetter FJ. Age-related memory deficits are associated with changes in protein degradation in brain regions critical for trace fear conditioning. Neurobiol Aging. 2020;91:160–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lopez-Salon M, Alonso M, Vianna MR, Viola H, Mello e Souza T, Izquierdo I, et al. The ubiquitin-proteasome cascade is required for mammalian long-term memory formation. Eur J Neurosci. 2001;14:1820–6.

    Article  CAS  PubMed  Google Scholar 

  40. Rosenberg T, Elkobi A, Rosenblum K. mAChR-dependent decrease in proteasome activity in the gustatory cortex is necessary for novel taste learning. Neurobiol Learn Mem. 2016;135:115–24.

    Article  CAS  PubMed  Google Scholar 

  41. Keiser AA, Turnbull LM, Darian MA, Feldman DE, Song I, Tronson NC. Sex differences in context fear generalization and recruitment of hippocampus and Amygdala during retrieval. Neuropsychopharmacology. 2017;42:397–407.

    Article  PubMed  Google Scholar 

  42. Dachtler J, Fox KD, Good MA. Gender specific requirement of GluR1 receptors in contextual conditioning but not spatial learning. Neurobiol Learn Mem. 2011;96:461–7.

    Article  CAS  PubMed  Google Scholar 

  43. Huo Y, Khatri N, Hou Q, Gilbert J, Wang G, Man HY. The deubiquitinating enzyme USP46 regulates AMPA receptor ubiquitination and trafficking. J Neurochem. 2015;134:1067–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Beamish SB, Frick KM. A putative role for Ubiquitin-Proteasome signaling in estrogenic memory regulation. Front Behav Neurosci. 2021;15:807215.

    Article  CAS  PubMed  Google Scholar 

  45. Holehonnur R, Phensy AJ, Kim LJ, Milivojevic M, Vuong D, Daison DK, et al. Increasing the GluN2A/GluN2B Ratio in Neurons of the Mouse Basal and Lateral Amygdala Inhibits the Modification of an Existing Fear Memory Trace. J Neurosci. 2016;36:9490–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wu QW, Kapfhammer JP. The Bacterial Enzyme Cas13 interferes with neurite outgrowth from cultured cortical neurons. Toxins (Basel). 2021;13:262.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institutes of Health grants MH122414, MH123742, MH120498, MH120569, MH131587, AG071523 and AG079292 to T.J.J.

Author information

Authors and Affiliations

Authors

Contributions

KF, MM, and TJJ designed the experiments. KF, MM, and AA performed the experiments. KF and TJJ analyzed data. WKR and RH performed mass spectrometry experiments. KF and SN analyzed proteomic data. KF and TJJ wrote the manuscript.

Corresponding author

Correspondence to Timothy J. Jarome.

Ethics declarations

Competing interests

The authors report no biomedical financial interests or potential conflicts of interest

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farrell, K., Musaus, M., Auerbach, A. et al. Proteasome-independent K63 polyubiquitination selectively regulates ATP levels and proteasome activity during fear memory formation in the female amygdala. Mol Psychiatry 28, 2594–2605 (2023). https://doi.org/10.1038/s41380-023-02112-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-023-02112-0

This article is cited by

Search

Quick links