Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Neurometabolite levels in the brains of patients with autism spectrum disorders: A meta-analysis of proton magnetic resonance spectroscopy studies (N = 1501)

Abstract

Evidence suggests that neurometabolite alterations may be involved in the pathophysiology of autism spectrum disorders (ASDs). We performed a meta-analysis of proton magnetic resonance spectroscopy (1H-MRS) studies to examine the neurometabolite levels in the brains of patients with ASD. A systematic search of PubMed and Web of Science identified 54 studies for the meta-analysis. A random-effects meta-analysis demonstrated that compared with the healthy controls, patients with ASD had lower N-acetyl-aspartate-containing compound (NAA) and choline-containing compound (Cho) levels and NAA/(creatine-containing compound) Cr ratios in the gray matter and lower NAA and glutamate + glutamine (Glx) levels in the white matter. Furthermore, NAA and gamma-aminobutyric acid (GABA) levels, NAA/Cr ratios, and GABA/Cr ratios were significantly decreased in the frontal cortex of patients with ASD, whereas glutamate (Glu) levels were increased in the prefrontal cortex. Additionally, low NAA levels and GABA/Cr ratios in the temporal cortex, low NAA levels and NAA/Cr ratios in the parietal and dorsolateral prefrontal cortices, and low NAA levels in the cerebellum and occipital cortex were observed in patients with ASD. Meta-regression analysis revealed that age was positively associated with effect size in studies analyzing the levels of gray matter NAA and white matter Glx. Taken together, these results provide strong clinical evidence that neurometabolite alterations in specific brain regions are associated with ASD and age is a confounding factor for certain neurometabolite levels in patients with ASD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: PRISMA flowchart of the literature search.
Fig. 2: Forest plot for random-effects meta-analysis for NAA/Cr, Glx and Cho in gray matter and white matter.
Fig. 3: Forest plot for random-effects meta-analysis for NAA in frontal cortex and parietal cortex.
Fig. 4: Forest plot for random-effects meta-analysis for Glu, Glx and GABA in various brain regions.

Similar content being viewed by others

References

  1. Baxter AJ, Brugha TS, Erskine HE, Scheurer RW, Vos T, Scott JG. The epidemiology and global burden of autism spectrum disorders. Psychol Med. 2015;45:601–13.

    Article  CAS  PubMed  Google Scholar 

  2. Lyall K, Croen L, Daniels J, Fallin MD, Ladd-Acosta C, Lee BK, et al. The changing epidemiology of autism spectrum disorders. Annu Rev Public Health. 2017;38:81–102.

    Article  PubMed  Google Scholar 

  3. Shen L, Zhao Y, Zhang H, Feng C, Gao Y, Zhao D, et al. Advances in biomarker studies in autism spectrum disorders. Adv Exp Med Biol. 2019;1118:207–33.

    Article  CAS  PubMed  Google Scholar 

  4. Rae CD. A guide to the metabolic pathways and function of metabolites observed in human brain 1H magnetic resonance spectra. Neurochem Res. 2014;39:1–36.

    Article  CAS  PubMed  Google Scholar 

  5. Paslakis G, Traber F, Roberz J, Block W, Jessen F. N-acetyl-aspartate (NAA) as a correlate of pharmacological treatment in psychiatric disorders: A systematic review. Eur Neuropsychopharmacol.2014;24:1659–75.

    Article  CAS  PubMed  Google Scholar 

  6. Benarroch EE. N-acetylaspartate and N-acetylaspartylglutamate: neurobiology and clinical significance. Neurology. 2008;70:1353–7.

    Article  PubMed  Google Scholar 

  7. Maddock RJ, Buonocore MH. MR spectroscopic studies of the brain in psychiatric disorders. Curr Top Behav Neurosci. 2012;11:199–251.

    Article  PubMed  Google Scholar 

  8. Boulanger Y, Labelle M, Khiat A. Role of phospholipase A(2) on the variations of the choline signal intensity observed by 1H magnetic resonance spectroscopy in brain diseases. Brain Res Brain Res Rev. 2000;33:380–9.

    Article  CAS  PubMed  Google Scholar 

  9. Fisher SK, Novak JE, Agranoff BW. Inositol and higher inositol phosphates in neural tissues: Homeostasis, metabolism and functional significance. J Neurochem. 2002;82:736–54.

    Article  CAS  PubMed  Google Scholar 

  10. Brand A, Richter-Landsberg C, Leibfritz D. Multinuclear NMR studies on the energy metabolism of glial and neuronal cells. Dev Neurosci. 1993;15:289–98.

    Article  CAS  PubMed  Google Scholar 

  11. Yuksel C, Ongur D. Magnetic resonance spectroscopy studies of glutamate-related abnormalities in mood disorders. Biol Psychiatry. 2010;68:785–94.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hancu I. Optimized glutamate detection at 3T. J Magn Reson Imaging. 2009;30:1155–62.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Di J, Li J, O’Hara B, Alberts I, Xiong L, Li J, et al. The role of GABAergic neural circuits in the pathogenesis of autism spectrum disorder. Int J Dev Neurosci. 2020;80:73–85.

    Article  CAS  PubMed  Google Scholar 

  14. Carvalho Pereira A, Violante IR, Mouga S, Oliveira G, Castelo-Branco M. Medial frontal lobe neurochemistry in autism spectrum disorder is marked by reduced N-Acetylaspartate and unchanged Gamma-Aminobutyric Acid and Glutamate + Glutamine Levels. J Autism Dev Disord. 2018;48:1467–82.

    Article  PubMed  Google Scholar 

  15. Mori K, Toda Y, Ito H, Mori T, Goji A, Fujii E, et al. A proton magnetic resonance spectroscopic study in autism spectrum disorders: amygdala and orbito-frontal cortex. Brain Dev. 2013;35:139–45.

    Article  PubMed  Google Scholar 

  16. Tebartz van Elst L, Maier S, Fangmeier T, Endres D, Mueller GT, Nickel K, et al. Disturbed cingulate glutamate metabolism in adults with high-functioning autism spectrum disorder: evidence in support of the excitatory/inhibitory imbalance hypothesis. Mol Psychiatry. 2014;19:1314–25.

    Article  CAS  PubMed  Google Scholar 

  17. Murphy DG, Critchley HD, Schmitz N, McAlonan G, Van Amelsvoort T, Robertson D, et al. Asperger syndrome: A proton magnetic resonance spectroscopy study of brain. Arch Gen Psychiatry. 2002;59:885–91.

    Article  CAS  PubMed  Google Scholar 

  18. Horder J, Petrinovic MM, Mendez MA, Bruns A, Takumi T, Spooren W, et al. Glutamate and GABA in autism spectrum disorder-a translational magnetic resonance spectroscopy study in man and rodent models. Transl Psychiatry. 2018;8:106.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JP, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. J Clin Epidemiol. 2009;62:e1–34.

    Article  PubMed  Google Scholar 

  20. Qin XY, Feng JC, Cao C, Wu HT, Loh YP, Cheng Y. Association of Peripheral blood levels of brain-derived neurotrophic factor with autism spectrum disorder in children: A systematic review and meta-analysis. JAMA Pediatr. 2016;170:1079–86.

    Article  PubMed  Google Scholar 

  21. Goji A, Ito H, Mori K, Harada M, Hisaoka S, Toda Y, et al. Assessment of Anterior Cingulate Cortex (ACC) and Left Cerebellar Metabolism in Asperger’s Syndrome with Proton Magnetic Resonance Spectroscopy (MRS). PLoS One. 2017;12:e0169288.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ito H, Mori K, Harada M, Hisaoka S, Toda Y, Mori T, et al. A Proton Magnetic Resonance Spectroscopic Study in Autism Spectrum Disorder Using a 3-Tesla Clinical Magnetic Resonance Imaging (MRI) System: The Anterior Cingulate Cortex and the Left Cerebellum. J Child Neurol. 2017;32:731–9.

    Article  PubMed  Google Scholar 

  23. Robertson CE, Ratai EM, Kanwisher N. Reduced GABAergic action in the Autistic brain. Curr Biol. 2016;26:80–85.

    Article  CAS  PubMed  Google Scholar 

  24. Rojas DC, Singel D, Steinmetz S, Hepburn S, Brown MS. Decreased left perisylvian GABA concentration in children with autism and unaffected siblings. Neuroimage. 2014;86:28–34.

    Article  CAS  PubMed  Google Scholar 

  25. Brix MK, Ersland L, Hugdahl K, Gruner R, Posserud MB, Hammar A, et al. “Brain MR spectroscopy in autism spectrum disorder-the GABA excitatory/inhibitory imbalance theory revisited”. Front Hum Neurosci. 2015;9:365.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Libero LE, Reid MA, White DM, Salibi N, Lahti AC, Kana RK. Biochemistry of the cingulate cortex in autism: An MR spectroscopy study. Autism Res. 2016;9:643–57.

    Article  PubMed  Google Scholar 

  27. Cochran DM, Sikoglu EM, Hodge SM, Edden RA, Foley A, Kennedy DN, et al. Relationship among Glutamine, gamma-Aminobutyric Acid, and Social Cognition in Autism Spectrum Disorders. J Child Adolesc Psychopharmacol. 2015;25:314–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Brown MS, Singel D, Hepburn S, Rojas DC. Increased glutamate concentration in the auditory cortex of persons with autism and first-degree relatives: a (1)H-MRS study. Autism Res. 2013;6:1–10.

    Article  PubMed  Google Scholar 

  29. Port RG, Gaetz W, Bloy L, Wang DJ, Blaskey L, Kuschner ES, et al. Exploring the relationship between cortical GABA concentrations, auditory gamma-band responses and development in ASD: Evidence for an altered maturational trajectory in ASD. Autism Res. 2017;10:593–607.

    Article  PubMed  Google Scholar 

  30. Endres D, Tebartz van Elst L, Meyer SA, Feige B, Nickel K, Bubl A, et al. Glutathione metabolism in the prefrontal brain of adults with high-functioning autism spectrum disorder: an MRS study. Mol Autism. 2017;8:10.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Drenthen GS, Barendse EM, Aldenkamp AP, van Veenendaal TM, Puts NA, Edden RA, et al. Altered neurotransmitter metabolism in adolescents with high-functioning autism. Psychiatry Res Neuroimaging. 2016;256:44–49.

    Article  PubMed  Google Scholar 

  32. Puts NAJ, Wodka EL, Harris AD, Crocetti D, Tommerdahl M, Mostofsky SH, et al. Reduced GABA and altered somatosensory function in children with autism spectrum disorder. Autism Res. 2017;10:608–19.

    Article  PubMed  Google Scholar 

  33. Horder J, Lavender T, Mendez MA, O’Gorman R, Daly E, Craig MC, et al. Reduced subcortical glutamate/glutamine in adults with autism spectrum disorders: a [(1)H]MRS study. Transl Psychiatry. 2013;3:e279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Joshi G, Biederman J, Wozniak J, Goldin RL, Crowley D, Furtak S, et al. Magnetic resonance spectroscopy study of the glutamatergic system in adolescent males with high-functioning autistic disorder: a pilot study at 4T. Eur Arch Psychiatry Clin Neurosci. 2013;263:379–84.

    Article  PubMed  Google Scholar 

  35. Libero LE, DeRamus TP, Lahti AC, Deshpande G, Kana RK. Multimodal neuroimaging based classification of autism spectrum disorder using anatomical, neurochemical, and white matter correlates. Cortex. 2015;66:46–59.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Corrigan NM, Shaw DW, Estes AM, Richards TL, Munson J, Friedman SD, et al. Atypical developmental patterns of brain chemistry in children with autism spectrum disorder. JAMA Psychiatry. 2013;70:964–74.

    Article  PubMed  Google Scholar 

  37. Gaetz W, Bloy L, Wang DJ, Port RG, Blaskey L, Levy SE, et al. GABA estimation in the brains of children on the autism spectrum: measurement precision and regional cortical variation. Neuroimage. 2014;86:1–9.

    Article  CAS  PubMed  Google Scholar 

  38. Aoki Y, Abe O, Yahata N, Kuwabara H, Natsubori T, Iwashiro N, et al. Absence of age-related prefrontal NAA change in adults with autism spectrum disorders. Transl Psychiatry. 2012;2:e178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hardan AY, Fung LK, Frazier T, Berquist SW, Minshew NJ, Keshavan MS, et al. A proton spectroscopy study of white matter in children with autism. Prog Neuropsychopharmacol Biol Psychiatry. 2016;66:48–53.

    Article  PubMed  Google Scholar 

  40. Bejjani A, O’Neill J, Kim JA, Frew AJ, Yee VW, Ly R, et al. Elevated glutamatergic compounds in pregenual anterior cingulate in pediatric autism spectrum disorder demonstrated by 1H MRS and 1H MRSI. PLoS One. 2012;7:e38786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kubas B, Kulak W, Sobaniec W, Tarasow E, Lebkowska U, Walecki J. Metabolite alterations in autistic children: A 1H MR spectroscopy study. Adv Med Sci. 2012;57:152–6.

    Article  CAS  PubMed  Google Scholar 

  42. Say GN, Sahin B, Aslan K, Akbas S, Lncesu L, Ceyhan M. Increased Laterality of the Thalamus in Children and Adolescents with Asperger’s Disorder: An MRI and Proton Spectroscopy Study. Psychiatry Investig. 2014;11:237–42.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Hegarty JP 2nd, Gu M, Spielman DM, Cleveland SC, Hallmayer JF, Lazzeroni LC, et al. A proton MR spectroscopy study of the thalamus in twins with autism spectrum disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2018;81:153–60.

    Article  PubMed  Google Scholar 

  44. Bernardi S, Anagnostou E, Shen J, Kolevzon A, Buxbaum JD, Hollander E, et al. In vivo 1H-magnetic resonance spectroscopy study of the attentional networks in autism. Brain Res. 2011;1380:198–205.

    Article  CAS  PubMed  Google Scholar 

  45. Suzuki K, Nishimura K, Sugihara G, Nakamura K, Tsuchiya KJ, Matsumoto K, et al. Metabolite alterations in the hippocampus of high-functioning adult subjects with autism. Int J Neuropsychopharmacol. 2010;13:529–34.

    Article  CAS  PubMed  Google Scholar 

  46. Fujii E, Mori K, Miyazaki M, Hashimoto T, Harada M, Kagami S. Function of the frontal lobe in autistic individuals: a proton magnetic resonance spectroscopic study. J Med Invest. 2010;57:35–44.

    Article  PubMed  Google Scholar 

  47. Harada M, Taki MM, Nose A, Kubo H, Mori K, Nishitani H, et al. Non-invasive evaluation of the GABAergic/glutamatergic system in autistic patients observed by MEGA-editing proton MR spectroscopy using a clinical 3 tesla instrument. J Autism Dev Disord. 2011;41:447–54.

    Article  PubMed  Google Scholar 

  48. Kleinhans NM, Richards T, Weaver KE, Liang O, Dawson G, Aylward E. Brief report: biochemical correlates of clinical impairment in high functioning autism and Asperger’s disorder. J Autism Dev Disord. 2009;39:1079–86.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Hardan AY, Minshew NJ, Melhem NM, Srihari S, Jo B, Bansal R, et al. An MRI and proton spectroscopy study of the thalamus in children with autism. Psychiatry Res. 2008;163:97–105.

    Article  PubMed  PubMed Central  Google Scholar 

  50. DeVito TJ, Drost DJ, Neufeld RW, Rajakumar N, Pavlosky W, Williamson P, et al. Evidence for cortical dysfunction in autism: a proton magnetic resonance spectroscopic imaging study. Biol Psychiatry. 2007;61:465–73.

    Article  PubMed  Google Scholar 

  51. Vasconcelos MM, Brito AR, Domingues RC, da Cruz LC,Jr., Gasparetto EL, Werner J,Jr. et al. Proton magnetic resonance spectroscopy in school-aged autistic children. J Neuroimaging. 2008;18:288–95.

    Article  PubMed  Google Scholar 

  52. Kleinhans NM, Schweinsburg BC, Cohen DN, Muller RA, Courchesne E. N-acetyl aspartate in autism spectrum disorders: regional effects and relationship to fMRI activation. Brain Res. 2007;1162:85–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Endo T, Shioiri T, Kitamura H, Kimura T, Endo S, Masuzawa N, et al. Altered chemical metabolites in the amygdala-hippocampus region contribute to autistic symptoms of autism spectrum disorders. Biol Psychiatry. 2007;62:1030–7.

    Article  CAS  PubMed  Google Scholar 

  54. Page LA, Daly E, Schmitz N, Simmons A, Toal F, Deeley Q, et al. In vivo 1H-magnetic resonance spectroscopy study of amygdala-hippocampal and parietal regions in autism. Am J Psychiatry. 2006;163:2189–92.

    Article  PubMed  Google Scholar 

  55. Friedman SD, Shaw DW, Artru AA, Dawson G, Petropoulos H, Dager SR. Gray and white matter brain chemistry in young children with autism. Arch Gen Psychiatry. 2006;63:786–94.

    Article  CAS  PubMed  Google Scholar 

  56. Fayed N, Modrego PJ. Comparative study of cerebral white matter in autism and attention-deficit/hyperactivity disorder by means of magnetic resonance spectroscopy. Acad Radio. 2005;12:566–9.

    Article  Google Scholar 

  57. Hisaoka S, Harada M, Nishitani H, Mori K. Regional magnetic resonance spectroscopy of the brain in autistic individuals. Neuroradiology. 2001;43:496–8.

    Article  CAS  PubMed  Google Scholar 

  58. Otsuka H, Harada M, Mori K, Hisaoka S, Nishitani H. Brain metabolites in the hippocampus-amygdala region and cerebellum in autism: an 1H-MR spectroscopy study. Neuroradiology. 1999;41:517–9.

    Article  CAS  PubMed  Google Scholar 

  59. Hashimoto T, Tayama M, Miyazaki M, Yoneda Y, Yoshimoto T, Harada M, et al. Differences in brain metabolites between patients with autism and mental retardation as detected by in vivo localized proton magnetic resonance spectroscopy. J Child Neurol. 1997;12:91–96.

    Article  CAS  PubMed  Google Scholar 

  60. Naaijen J, Zwiers MP, Amiri H, Williams SC, Durston S, Oranje B, et al. Fronto-striatal glutamate in autism spectrum disorder and obsessive compulsive disorder. Neuropsychopharmacology. 2017;42:2466–7.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Hashimoto T, Kawano N, Fukuda K, Endo S, Mori K, Yoneda Y, et al. Proton magnetic resonance spectroscopy of the brain in three cases of Rett syndrome: Comparison with autism and normal controls. Acta Neurol Scand. 1998;98:8–14.

    Article  CAS  PubMed  Google Scholar 

  62. Levitt JG, O’Neill J, Blanton RE, Smalley S, Fadale D, McCracken JT, et al. Proton magnetic resonance spectroscopic imaging of the brain in childhood autism. Biol Psychiatry. 2003;54:1355–66.

    Article  CAS  PubMed  Google Scholar 

  63. O’Brien FM, Page L, O’Gorman RL, Bolton P, Sharma A, Baird G, et al. Maturation of limbic regions in Asperger syndrome: A preliminary study using proton magnetic resonance spectroscopy and structural magnetic resonance imaging. Psychiatry Res. 2010;184:77–85.

    Article  PubMed  Google Scholar 

  64. Oner O, Devrimci-Ozguven H, Oktem F, Yagmurlu B, Baskak B, Munir KM. Proton MR spectroscopy: Higher right anterior cingulate N-acetylaspartate/choline ratio in Asperger syndrome compared with healthy controls. AJNR Am J Neuroradiol. 2007;28:1494–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Gabis L, Wei H, Azizian A, DeVincent C, Tudorica A, Kesner-Baruch Y, et al. 1H-magnetic resonance spectroscopy markers of cognitive and language ability in clinical subtypes of autism spectrum disorders. J Child Neurol. 2008;23:766–74.

    Article  PubMed  Google Scholar 

  66. Margari L, De Giacomo A, Craig F, Palumbi R, Peschechera A, Margari M, et al. Frontal lobe metabolic alterations in autism spectrum disorder: a (1)H-magnetic resonance spectroscopy study. Neuropsychiatr Dis Treat. 2018;14:1871–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kolodny T, Schallmo MP, Gerdts J, Edden RAE, Bernier RA, Murray SO. Concentrations of Cortical GABA and Glutamate in young adults with autism spectrum disorder. Autism Res. 2020;13:1111–29.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Jimenez-Espinoza C, Marcano Serrano F, Gonzalez-Mora JL. N-Acetylaspartyl-Glutamate metabolism in the cingulated cortices as a biomarker of the etiology in ASD: A (1)H-MRS Model. Molecules. 2021;26:675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wood ET, Cummings KK, Jung J, Patterson G, Okada N, Guo J, et al. Sensory over-responsivity is related to GABAergic inhibition in thalamocortical circuits. Transl Psychiatry. 2021;11:39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Moriguchi S, Takamiya A, Noda Y, Horita N, Wada M, Tsugawa S, et al. Glutamatergic neurometabolite levels in major depressive disorder: a systematic review and meta-analysis of proton magnetic resonance spectroscopy studies. Mol Psychiatry. 2019;24:952–64.

    Article  CAS  PubMed  Google Scholar 

  71. Iwata Y, Nakajima S, Plitman E, Mihashi Y, Caravaggio F, Chung JK, et al. Neurometabolite levels in antipsychotic-naive/free patients with schizophrenia: A systematic review and meta-analysis of (1)H-MRS studies. Prog Neuropsychopharmacol Biol Psychiatry. 2018;86:340–52.

    Article  CAS  PubMed  Google Scholar 

  72. Zheng Z, Zheng P, Zou X. Association between schizophrenia and autism spectrum disorder: A systematic review and meta-analysis. Autism Res. 2018;11:1110–9.

    Article  PubMed  Google Scholar 

  73. Psomiades M, Mondino M, Fonteneau C, Bation R, Haesebaert F, Suaud-Chagny MF, et al. N-Acetyl-Aspartate in the dorsolateral prefrontal cortex in men with schizophrenia and auditory verbal hallucinations: A 1.5 T Magnetic Resonance Spectroscopy Study. Sci Rep. 2018;8:4133.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Vargas DL, Nascimbene C, Krishnan C, Zimmerman AW, Pardo CA. Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann Neurol. 2005;57:67–81.

    Article  CAS  PubMed  Google Scholar 

  75. Menassa DA, Sloan C, Chance SA. Primary olfactory cortex in autism and epilepsy: Increased glial cells in autism. Brain Pathol. 2017;27:437–48.

    Article  PubMed  Google Scholar 

  76. Carper RA, Moses P, Tigue ZD, Courchesne E. Cerebral lobes in autism: early hyperplasia and abnormal age effects. Neuroimage. 2002;16:1038–51.

    Article  PubMed  Google Scholar 

  77. Tsuchiya KJ, Hashimoto K, Iwata Y, Tsujii M, Sekine Y, Sugihara G, et al. Decreased serum levels of platelet-endothelial adhesion molecule (PECAM-1) in subjects with high-functioning autism: a negative correlation with head circumference at birth. Biol Psychiatry. 2007;62:1056–8.

    Article  CAS  PubMed  Google Scholar 

  78. Courchesne E, Pierce K. Why the frontal cortex in autism might be talking only to itself: local over-connectivity but long-distance disconnection. Curr Opin Neurobiol. 2005;15:225–30.

    Article  CAS  PubMed  Google Scholar 

  79. Ivashko-Pachima Y, Hadar A, Grigg I, Korenkova V, Kapitansky O, Karmon G, et al. Discovery of autism/intellectual disability somatic mutations in Alzheimer’s brains: mutated ADNP cytoskeletal impairments and repair as a case study. Mol Psychiatry. 2021;26:1619–33.

    Article  CAS  PubMed  Google Scholar 

  80. Grigg I, Ivashko-Pachima Y, Hait TA, Korenkova V, Touloumi O, Lagoudaki R, et al. Tauopathy in the young autistic brain: novel biomarker and therapeutic target. Transl Psychiatry. 2020;10:228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Hong T, Falcone C, Dufour B, Amina S, Castro RP, Regalado J, et al. GABAARalpha2 is decreased in the Axon initial segment of pyramidal cells in specific areas of the prefrontal cortex in autism. Neuroscience. 2020;437:76–86.

    Article  CAS  PubMed  Google Scholar 

  82. Schur RR, Draisma LW, Wijnen JP, Boks MP, Koevoets MG, Joels M, et al. Brain GABA levels across psychiatric disorders: A systematic literature review and meta-analysis of (1) H-MRS studies. Hum Brain Mapp. 2016;37:3337–52.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Collins AL, Ma D, Whitehead PL, Martin ER, Wright HH, Abramson RK, et al. Investigation of autism and GABA receptor subunit genes in multiple ethnic groups. Neurogenetics. 2006;7:167–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Fatemi SH, Halt AR, Stary JM, Kanodia R, Schulz SC, Realmuto GR. Glutamic acid decarboxylase 65 and 67 kDa proteins are reduced in autistic parietal and cerebellar cortices. Biol Psychiatry. 2002;52:805–10.

    Article  CAS  PubMed  Google Scholar 

  85. Fatemi SH, Reutiman TJ, Folsom TD, Rustan OG, Rooney RJ, Thuras PD. Downregulation of GABAA receptor protein subunits alpha6, beta2, delta, epsilon, gamma2, theta, and rho2 in superior frontal cortex of subjects with autism. J Autism Dev Disord. 2014;44:1833–45.

    Article  PubMed  Google Scholar 

  86. Oblak AL, Gibbs TT, Blatt GJ. Decreased GABA(B) receptors in the cingulate cortex and fusiform gyrus in autism. J Neurochem. 2010;114:1414–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Blatt GJ, Fatemi SH. Alterations in GABAergic biomarkers in the autism brain: research findings and clinical implications. Anat Rec (Hoboken). 2011;294:1646–52.

    Article  CAS  PubMed  Google Scholar 

  88. Sears SM, Hewett SJ. Influence of glutamate and GABA transport on brain excitatory/inhibitory balance. Exp Biol Med (Maywood). 2021;246:1069–83.

    Article  CAS  PubMed  Google Scholar 

  89. Heinze K, Barron HC, Howes EK, Ramaswami M, Broome MR. Impaired inhibitory processing: a new therapeutic target for autism and psychosis? Br J Psychiatry. 2020;218:1–4.

    Google Scholar 

  90. Uzunova G, Hollander E, Shepherd J. The role of ionotropic glutamate receptors in childhood neurodevelopmental disorders: autism spectrum disorders and fragile x syndrome. Curr Neuropharmacol. 2014;12:71–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Zheng Z, Zhu T, Qu Y, Mu D. Blood glutamate levels in autism spectrum disorder: A systematic review and meta-analysis. PLoS One. 2016;11:e0158688.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Yip J, Soghomonian JJ, Blatt GJ. Decreased GAD65 mRNA levels in select subpopulations of neurons in the cerebellar dentate nuclei in autism: an in situ hybridization study. Autism Res. 2009;2:50–59.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Fatemi SH. The hyperglutamatergic hypothesis of autism. Prog Neuropsychopharmacol Biol Psychiatry. 2008;32:912–3.

    Article  Google Scholar 

  94. Myers SJ, Yuan H, Kang JQ, Tan FCK, Traynelis SF, Low CM. Distinct roles of GRIN2A and GRIN2B variants in neurological conditions. F1000 Res. 2019;8:F1000.

    Article  Google Scholar 

  95. Tang W, Liu D, Traynelis SF, Yuan H. Positive allosteric modulators that target NMDA receptors rectify loss-of-function GRIN variants associated with neurological and neuropsychiatric disorders. Neuropharmacology. 2020;177:108247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Aoki Y, Kasai K, Yamasue H. Age-related change in brain metabolite abnormalities in autism: a meta-analysis of proton magnetic resonance spectroscopy studies. Transl Psychiatry. 2012;2:e69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Snyder J, Wilman A. Field strength dependence of PRESS timings for simultaneous detection of glutamate and glutamine from 1.5 to 7T. J Magn Reson. 2010;203:66–72.

    Article  CAS  PubMed  Google Scholar 

  98. Edden RA, Pomper MG, Barker PB. In vivo differentiation of N-acetyl aspartyl glutamate from N-acetyl aspartate at 3 Tesla. Magn Reson Med. 2007;57:977–82.

    Article  CAS  PubMed  Google Scholar 

  99. Ding XQ, Maudsley AA, Schweiger U, Schmitz B, Lichtinghagen R, Bleich S, et al. Effects of a 72 h fasting on brain metabolism in healthy women studied in vivo with magnetic resonance spectroscopic imaging. J Cereb Blood Flow Metab. 2018;38:469–78.

    Article  CAS  PubMed  Google Scholar 

  100. Mennecke A, Gossler A, Hammen T, Dorfler A, Stadlbauer A, Rosch J, et al. Physiological effects of cigarette smoking in the limbic system revealed by 3 tesla magnetic resonance spectroscopy. J Neural Transm (Vienna). 2014;121:1211–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (82071676) and the High-Level Hospital Development Program for Foshan “Climbing” Project.

Author information

Authors and Affiliations

Authors

Contributions

YC conceived and designed this study; YD and MCY extracted the data; all authors analyzed and interpreted the data; and YD drafted the manuscript with critical revisions from YC, LC, and MCY.

Corresponding author

Correspondence to Yong Cheng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, Y., Chen, L., Yan, MC. et al. Neurometabolite levels in the brains of patients with autism spectrum disorders: A meta-analysis of proton magnetic resonance spectroscopy studies (N = 1501). Mol Psychiatry 28, 3092–3103 (2023). https://doi.org/10.1038/s41380-023-02079-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-023-02079-y

This article is cited by

Search

Quick links