Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Effects of acute stress and depression on functional connectivity between prefrontal cortex and the amygdala

Abstract

Stress is known to be a significant risk factor for the development of Major Depressive Disorder (MDD), yet the neural mechanisms that underlie this risk are poorly understood. Prior work has heavily implicated the corticolimbic system in the pathophysiology of MDD. In particular, the prefrontal cortex (PFC) and amygdala play a central role in regulating the response to stress, with dorsal PFC and ventral PFC exhibiting reciprocal excitatory and inhibitory influences on amygdala subregions. However, it remains unclear how best to disentangle the impact of stress from the impact of current MDD symptoms on this system. Here, we examined stress-induced changes in resting state functional connectivity (rsFC) within an a priori corticolimbic network in MDD patients and healthy controls (total n = 80) before and after an acute stressor or a “no stress” control condition. Using graph theoretic analysis, we found that connectivity between basolateral amygdala and dorsal prefrontal nodes of the corticolimbic network had a negative association with individual differences in chronic perceived stress at baseline. Following the acute stressor, healthy individuals showed a reduction of the amygdala node strength, while MDD patients exhibited little change. Finally, dorsal PFC–particularly dorsomedial PFC– connectivity to the basolateral amygdala was associated with the strength of the basolateral amygdala responses to loss feedback during a reinforcement learning task. These findings highlight attenuated connectivity between basolateral amygdala and prefrontal cortex in patients with MDD. In healthy individuals, acute stress exposure was found to push the corticolimbic network to a “stress-phenotype” that may be chronically present in patients with current depression and high levels of perceived stress. In sum, these results help to identify circuit mechanisms underlying the effects of acute stress and their role in mood disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Study design, effects of stress on mood and salivary cortisol and associations with the Perceived Stress Scale (PSS).
Fig. 2: Regions of interest and changes in network connectivity following acute stress or the NSC condition.
Fig. 3: Amygdala node strength changes following acute stress or the NSC condition.
Fig. 4: Associations between amygdala connectivity and amygdala activity during a reinforcement learning task.

Similar content being viewed by others

References

  1. Hammen C. Stress and depression. Annu Rev Clin Psychol. 2005;1:293–319.

    PubMed  Google Scholar 

  2. Kessler RC. The effects of stressful life events on depression. Annu Rev Psychol. 1997;48:191–214.

    CAS  PubMed  Google Scholar 

  3. Pizzagalli DA. Depression, stress, and anhedonia: toward a synthesis and integrated model. Annu Rev Clin Psychol. 2014;10:393–423.

    PubMed Central  PubMed  Google Scholar 

  4. Monroe SM, Harkness KL. Life stress, the “kindling” hypothesis, and the recurrence of depression: considerations from a life stress perspective. Psychol Rev. 2005;112:417–45.

    PubMed  Google Scholar 

  5. Kendler KS, Karkowski LM, Prescott CA. Causal relationship between stressful life events and the onset of major depression. Am J Psychiatry. 1999;156:837–41.

    CAS  PubMed  Google Scholar 

  6. Belleau EL, Treadway MT, Pizzagalli DA. The impact of stress and major depressive disorder on hippocampal and medial prefrontal cortex morphology. Biol Psychiatry. 2019;85:443–53.

    PubMed  Google Scholar 

  7. Bogdan R, Pagliaccio D, Baranger DA, Hariri AR. Genetic moderation of stress effects on corticolimbic circuitry. Neuropsychopharmacology 2016;41:275–96.

    PubMed  Google Scholar 

  8. Yuen EY, Wei J, Liu W, Zhong P, Li X, Yan Z. Repeated stress causes cognitive impairment by suppressing glutamate receptor expression and function in prefrontal cortex. Neuron 2012;73:962–77.

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Kovner R, Oler JA, Kalin NH. Cortico-limbic interactions mediate adaptive and maladaptive responses relevant to psychopathology. Am J Psychiatry. 2019;176:987–99.

    PubMed Central  PubMed  Google Scholar 

  10. Ulrich-Lai YM, Herman JP. Neural regulation of endocrine and autonomic stress responses. Nat Rev Neurosci. 2009;10:397–409.

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Vachon-Presseau E. Effects of stress on the corticolimbic system: implications for chronic pain. Prog Neuropsychopharmacol Biol Psychiatry. 2018;87:216–23.

    CAS  PubMed  Google Scholar 

  12. Pessoa L. Understanding brain networks and brain organization. Phys Life Rev. 2014;11:400–35.

    PubMed Central  PubMed  Google Scholar 

  13. Young MP, Scannell JW, Burns GA, Blakemore C. Analysis of connectivity: neural systems in the cerebral cortex. Rev Neurosci. 1994;5:227–50.

    CAS  PubMed  Google Scholar 

  14. Bittar TP, Labonté B. Functional Contribution of the Medial Prefrontal Circuitry in Major Depressive Disorder and Stress-Induced Depressive-Like Behaviors. Front Behav Neurosci. 2021. Accessed 5 Mar 2022. https://www.frontiersin.org/article/10.3389/fnbeh.2021.699592

  15. Gu S, Pasqualetti F, Cieslak M, Telesford QK, Yu AB, Kahn AE, et al. Controllability of structural brain networks. Nat Commun. 2015;6:8414.

    CAS  PubMed  Google Scholar 

  16. Bickart KC, Dickerson BC, Feldman Barrett L. The amygdala as a hub in brain networks that support social life. Neuropsychologia 2014;63:235–48.

    PubMed Central  PubMed  Google Scholar 

  17. Zhang WH, Zhang JY, Holmes A, Pan BX. Amygdala circuit substrates for stress adaptation and adversity. Biol Psychiatry. 2021;89:847–56.

    PubMed  Google Scholar 

  18. Herman JP, McKlveen JM, Ghosal S, Kopp B, Wulsin A, Makinson R, et al. Regulation of the hypothalamic-pituitary-adrenocortical stress response. Compr Physiol. 2016;6:603–21.

    PubMed Central  PubMed  Google Scholar 

  19. Belleau EL, Ehret LE, Hanson JL, Brasel KJ, Larson CL, deRoon-Cassini TA. Amygdala functional connectivity in the acute aftermath of trauma prospectively predicts severity of posttraumatic stress symptoms. Neurobiol Stress. 2020;12:100217.

    PubMed Central  PubMed  Google Scholar 

  20. Groenewold NA, Opmeer EM, de Jonge P, Aleman A, Costafreda SG. Emotional valence modulates brain functional abnormalities in depression: evidence from a meta-analysis of fMRI studies. Neurosci Biobehav Rev. 2013;37:152–63.

    PubMed  Google Scholar 

  21. Hamilton JP, Etkin A, Furman DJ, Lemus MG, Johnson RF, Gotlib IH. Functional neuroimaging of major depressive disorder: a meta-analysis and new integration of baseline activation and neural response data. Am J Psychiatry. 2012;169:693–703.

    PubMed  Google Scholar 

  22. Rabinak C, Angstadt M, Welsh R, Kennedy A, Lyubkin M, Martis B, et al. Altered amygdala resting-state functional connectivity in post-traumatic stress disorder. Front Psychiatry. 2011;2:62.

    PubMed Central  PubMed  Google Scholar 

  23. van Marle HJF, Hermans EJ, Qin S, Fernández G. Enhanced resting-state connectivity of amygdala in the immediate aftermath of acute psychological stress. NeuroImage 2010;53:348–54.

    PubMed  Google Scholar 

  24. Banks SJ, Eddy KT, Angstadt M, Nathan PJ, Phan KL. Amygdala-frontal connectivity during emotion regulation. Soc Cogn Affect Neurosci. 2007;2:303–12.

    PubMed Central  PubMed  Google Scholar 

  25. Buhle JT, Silvers JA, Wager TD, Lopez R, Onyemekwu C, Kober H, et al. Cognitive reappraisal of emotion: a meta-analysis of human neuroimaging studies. Cereb Cortex. 2014;24:2981–90.

    PubMed  Google Scholar 

  26. Kim MJ, Gee DG, Loucks RA, Davis FC, Whalen PJ. Anxiety dissociates dorsal and ventral medial prefrontal cortex functional connectivity with the amygdala at rest. Cereb Cortex. 2011;21:1667–73.

    PubMed  Google Scholar 

  27. Motzkin JC, Philippi CL, Wolf RC, Baskaya MK, Koenigs M. Ventromedial prefrontal cortex is critical for the regulation of amygdala activity in humans. Biol Psychiatry. 2015;77:276–84.

    PubMed  Google Scholar 

  28. Oathes DJ, Patenaude B, Schatzberg AF, Etkin A. Neurobiological signatures of anxiety and depression in resting-state functional magnetic resonance imaging. Biol Psychiatry. 2015;77:385–93.

    PubMed  Google Scholar 

  29. Tottenham N, Gabard-Durnam LJ. The developing amygdala: a student of the world and a teacher of the cortex. Curr Opin Psychol. 2017;17:55–60.

    PubMed Central  PubMed  Google Scholar 

  30. Alexandra Kredlow M, Fenster RJ, Laurent ES, Ressler KJ, Phelps EA. Prefrontal cortex, amygdala, and threat processing: implications for PTSD. Neuropsychopharmacology. 2022;47:247–59.

    CAS  PubMed  Google Scholar 

  31. Fox AS, Oler JA, Birn RM, Shackman AJ, Alexander AL, Kalin NH. Functional connectivity within the primate extended amygdala is heritable and associated with early-life anxious temperament. J Neurosci J Soc Neurosci. 2018;38:7611–21.

    CAS  Google Scholar 

  32. Geerligs L, Rubinov M, Cam-CAN, Henson RN. State and trait components of functional connectivity: individual differences vary with mental state. J Neurosci. 2015;35:13949–61.

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Badre D, D’Esposito M. Functional magnetic resonance imaging evidence for a hierarchical organization of the prefrontal cortex. J Cogn Neurosci. 2007;19:2082–99.

    PubMed  Google Scholar 

  34. Harrison OK, Guell X, Klein-Flügge MC, Barry RL. Structural and resting state functional connectivity beyond the cortex. NeuroImage 2021;240:118379.

    PubMed  Google Scholar 

  35. Hur J, Stockbridge MD, Fox AS, Shackman AJ. Dispositional negativity, cognition, and anxiety disorders: An integrative translational neuroscience framework. Prog Brain Res. 2019;247:375–436.

    PubMed Central  PubMed  Google Scholar 

  36. Johnson MK, Raye CL, Mitchell KJ, Greene EJ, Anderson AW. fMRI evidence for an organization of prefrontal cortex by both type of process and type of information. Cereb Cortex. 2003;13:265–73.

    PubMed  Google Scholar 

  37. Shackman AJ, Fox AS. Contributions of the central extended amygdala to fear and anxiety. J Neurosci. 2016;36:8050–63.

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Sylvester CM, Yu Q, Srivastava AB, Marek S, Zheng A, Alexopoulos D, et al. Individual-specific functional connectivity of the amygdala: a substrate for precision psychiatry. Proc Natl Acad Sci. 2020;117:3808–18.

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Szczepanski SM, Knight RT. Insights into human behavior from lesions to the prefrontal cortex. Neuron 2014;83:1002–18.

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Wilson CRE, Gaffan D, Browning PGF, Baxter MG. Functional localization within the prefrontal cortex: missing the forest for the trees? Trends Neurosci. 2010;33:533–40.

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Wood JN, Grafman J. Human prefrontal cortex: processing and representational perspectives. Nat Rev Neurosci. 2003;4:139–47.

    CAS  PubMed  Google Scholar 

  42. Pessiglione M, Seymour B, Flandin G, Dolan RJ, Frith CD. Dopamine-dependent prediction errors underpin reward-seeking behaviour in humans. Nature 2006;442:1042–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Dannlowski U, Ohrmann P, Bauer J, Kugel H, Arolt V, Heindel W, et al. Amygdala reactivity to masked negative faces is associated with automatic judgmental bias in major depression: a 3 T fMRI study. J Psychiatry Neurosci JPN. 2007;32:423–9.

    PubMed  Google Scholar 

  44. Godlewska BR, Norbury R, Selvaraj S, Cowen PJ, Harmer CJ. Short-term SSRI treatment normalises amygdala hyperactivity in depressed patients. Psychol Med. 2012;42:2609–17.

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Suslow T, Konrad C, Kugel H, Rumstadt D, Zwitserlood P, Schöning S, et al. Automatic mood-congruent amygdala responses to masked facial expressions in major depression. Biol Psychiatry. 2010;67:155–60.

    PubMed  Google Scholar 

  46. Berboth S, Morawetz C. Amygdala-prefrontal connectivity during emotion regulation: a meta-analysis of psychophysiological interactions. Neuropsychologia 2021;153:107767.

    PubMed  Google Scholar 

  47. Treadway MT, Buckholtz JW, Martin JW, Jan K, Asplund CL, Ginther MR, et al. Corticolimbic gating of emotion-driven punishment. Nat Neurosci. 2014;17:1270–5.

    CAS  PubMed  Google Scholar 

  48. Edens JL, Gil KM. Experimental induction of pain: Utility in the study of clinical pain. Behav Ther. 1995;26:197–216.

    Google Scholar 

  49. Hines EA, Brown GE. The cold pressor test for measuring the reactibility of the blood pressure: Data concerning 571 normal and hypertensive subjects. Am Heart J. 1936;11:1–9.

    Google Scholar 

  50. Mitchell LA, MacDonald RAR, Brodie EE. Temperature and the cold pressor test. J Pain. 2004;5:233–7.

    PubMed  Google Scholar 

  51. Wolf S, Hardy JD. Studies on pain; observations on pain due to local cooling and on factors involved in the cold pressor effect. J Clin Investig. 1941;20:521–33.

    CAS  PubMed Central  PubMed  Google Scholar 

  52. Kragel PA, Kano M, Van Oudenhove L, Ly HG, Dupont P, Rubio A, et al. Generalizable Representations of Pain, Cognitive Control, and Negative Emotion in Medial Frontal Cortex. Nat Neurosci. 2018;21:283–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  53. First MB. Structured clinical interview for DSM-IV axis I disorders. Biom Res Dep. 1997.

  54. Posner K, Brent D, Lucas C, Gould M, Stanley B, Brown G, et al. Columbia-suicide severity rating scale (C-SSRS). N Y NY Columbia Univ Med Cent. 2008;10.

  55. Cooper JA, Nuutinen MR, Lawlor VM, DeVries BAM, Barrick EM, Hossein S, et al. Reduced adaptation of glutamatergic stress response is associated with pessimistic expectations in depression. Nat Commun. 2021;12:3166.

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Smeets T, Cornelisse S, Quaedflieg CWEM, Meyer T, Jelicic M, Merckelbach H. Introducing the Maastricht Acute Stress Test (MAST): A quick and non-invasive approach to elicit robust autonomic and glucocorticoid stress responses. Psychoneuroendocrinology 2012;37:1998–2008.

    CAS  PubMed  Google Scholar 

  57. Quaedflieg CWEM, Meyer T, Smeets T. The imaging Maastricht Acute Stress Test (iMAST): A neuroimaging compatible psychophysiological stressor. Psychophysiology 2013;50:758–66.

    PubMed  Google Scholar 

  58. Whitfield-Gabrieli S, Nieto-Castanon A. Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connect. 2012;2:125–41.

    PubMed  Google Scholar 

  59. Fenster RJ, Lebois LAM, Ressler KJ, Suh J. Brain circuit dysfunction in post-traumatic stress disorder: from mouse to man. Nat Rev Neurosci. 2018;19:535–51.

    CAS  PubMed Central  PubMed  Google Scholar 

  60. van Oort J, Tendolkar I, Hermans EJ, Mulders PC, Beckmann CF, Schene AH, et al. How the brain connects in response to acute stress: a review at the human brain systems level. Neurosci Biobehav Rev. 2017;83:281–97.

    PubMed  Google Scholar 

  61. Amunts K, Kedo O, Kindler M, Pieperhoff P, Mohlberg H, Shah NJ, et al. Cytoarchitectonic mapping of the human amygdala, hippocampal region and entorhinal cortex: intersubject variability and probability maps. Anat Embryol (Berl). 2005;210:343–52.

    CAS  PubMed  Google Scholar 

  62. Jung WH, Lee S, Lerman C, Kable JW. Amygdala functional and structural connectivity predicts individual risk tolerance. Neuron 2018;98:394–404.e4.

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Tymofiyeva O, Henje E, Yuan JP, Huang CY, Connolly CG, Ho TC, et al. Reduced anxiety and changes in amygdala network properties in adolescents with training for awareness, resilience, and action (TARA). NeuroImage Clin. 2021;29:102521.

    PubMed  Google Scholar 

  64. Stern RA, Arruda JE, Hooper CR, Wolfner GD, Morey CE. Visual analogue mood scales to measure internal mood state in neurologically impaired patients: description and initial validity evidence. Aphasiology 1997;11:59–71.

    Google Scholar 

  65. Cohen S, Kamarck T, Mermelstein R. A global measure of perceived stress. J Health Soc Behav. 1983;24:385–96.

    CAS  PubMed  Google Scholar 

  66. Beck AT, Ward CH, Mendelson M, Mock J, Erbaugh J. An inventory for measuring depression. Arch Gen Psychiatry. 1961;4:561–71.

    CAS  PubMed  Google Scholar 

  67. Fava M, Rosenbaum JF, McCarthy M, Pava JA, Steingard R, Fox R. Correlations between perceived stress and depressive symptoms among depressive outpatients. Stress Med. 1992;8:73–6.

    Google Scholar 

  68. Liu WZ, Zhang WH, Zheng ZH, Zou JX, Liu XX, Huang SH, et al. Identification of a prefrontal cortex-to-amygdala pathway for chronic stress-induced anxiety. Nat Commun. 2020;11:2221.

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Ray R, Zald DH. Anatomical insights into the interaction of emotion and cognition in the prefrontal cortex. Neurosci Biobehav Rev. 2012;36:479–501.

    PubMed  Google Scholar 

  70. Fox AS, Shackman AJ. The central extended amygdala in fear and anxiety: closing the gap between mechanistic and neuroimaging research. Neurosci Lett. 2019;693:58–67.

    CAS  PubMed  Google Scholar 

  71. Little JP, Carter AG. Synaptic mechanisms underlying strong reciprocal connectivity between the medial prefrontal cortex and basolateral amygdala. J Neurosci. 2013;33:15333–42.

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Burani K, Gallyer A, Ryan J, Jordan C, Joiner T, Hajcak G. Acute stress reduces reward-related neural activity: Evidence from the reward positivity. Stress 2021;0:1–7.

    Google Scholar 

  73. Todorov A. The role of the amygdala in face perception and evaluation. Motiv Emot. 2012;36:16–26.

    PubMed  Google Scholar 

  74. Sanacora G, Mason GF, Rothman DL, Behar KL, Hyder F, Petroff OAC, et al. Reduced cortical γ-aminobutyric acid levels in depressed patients determined by proton magnetic resonance spectroscopy. Arch Gen Psychiatry. 1999;56:1043–7.

    CAS  PubMed  Google Scholar 

  75. Hopfinger JB, Büchel C, Holmes AP, Friston KJ. A study of analysis parameters that influence the sensitivity of event-related fMRI analyses. NeuroImage 2000;11:326–33.

    CAS  PubMed  Google Scholar 

  76. Triantafyllou C, Hoge RD, Wald LL. Effect of spatial smoothing on physiological noise in high-resolution fMRI. NeuroImage 2006;32:551–7.

    PubMed  Google Scholar 

  77. Miller EK, Cohen JD. An integrative theory of prefrontal cortex function. Annu Rev Neurosci. 2001;24:167–202.

    CAS  PubMed  Google Scholar 

  78. Drevets WC, Videen TO, Price JL, Preskorn SH, Carmichael ST, Raichle ME. A functional anatomical study of unipolar depression. J Neurosci. 1992;12:3628–41.

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Siegle GJ, Steinhauer SR, Thase ME, Stenger VA, Carter CS. Can’t shake that feeling: event-related fMRI assessment of sustained amygdala activity in response to emotional information in depressed individuals. Biol Psychiatry. 2002;51:693–707.

    PubMed  Google Scholar 

  80. Abdallah CG, Geha P. Chronic pain and chronic stress: two sides of the same coin? chronic. Stress 2017;1:2470547017704763.

    Google Scholar 

  81. Hewitt PL, Flett GL, Mosher SW. The Perceived Stress Scale: Factor structure and relation to depression symptoms in a psychiatric sample. J Psychopathol Behav Assess. 1992;14:247–57.

    Google Scholar 

  82. Epskamp S, Cramer AOJ, Waldorp LJ, Schmittmann VD, Borsboom D. qgraph: network visualizations of relationships in psychometric data. J Stat Softw. 2012;48:1–18.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Mental Health R00MH102355 and R01MH108605 to MTT and K01MH126308 to JAC. Data management through REDCap was supported by UL1 TR000424. We also gratefully acknowledge support from Andrew Teer, Sandra Goulding, Amanda Shamblaw, Amanda Arulpragasam, Nicolas Rohleder, and Laurie Scott.

Author information

Authors and Affiliations

Authors

Contributions

SH planned and performed all primary analyses and drafted the manuscript; JAC aided with data collection and analysis, interpretation of results, and edited the manuscript; BAMD, MRN and ECH aided in data collection, data analysis, and edited the manuscript; PAK aided in multivariate data analysis, interpretation of results, and edited the manuscript; MTT conceived the study, oversaw analysis and helped draft the manuscript.

Corresponding author

Correspondence to Michael T. Treadway.

Ethics declarations

Competing interests

The authors report no conflicts of interest, financial or otherwise. In the past three years, MTT has served as a paid consultant to Blackthorn Therapeutics and Boehringer Ingelheim. None of these entities supported the current work, and all views expressed herein are solely those of the authors.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hossein, S., Cooper, J.A., DeVries, B.A.M. et al. Effects of acute stress and depression on functional connectivity between prefrontal cortex and the amygdala. Mol Psychiatry 28, 4602–4612 (2023). https://doi.org/10.1038/s41380-023-02056-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-023-02056-5

This article is cited by

Search

Quick links