Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Exploring the mediation of DNA methylation across the epigenome between childhood adversity and First Episode of Psychosis—findings from the EU-GEI study

Abtract

Studies conducted in psychotic disorders have shown that DNA-methylation (DNAm) is sensitive to the impact of Childhood Adversity (CA). However, whether it mediates the association between CA and psychosis is yet to be explored. Epigenome wide association studies (EWAS) using the Illumina Infinium-Methylation EPIC array in peripheral blood tissue from 366 First-episode of psychosis and 517 healthy controls was performed. Adversity scores were created for abuse, neglect and composite adversity with the Childhood Trauma Questionnaire (CTQ). Regressions examining (I) CTQ scores with psychosis; (II) with DNAm EWAS level and (III) between DNAm and caseness, adjusted for a variety of confounders were conducted. Divide-Aggregate Composite-null Test for the composite null-hypothesis of no mediation effect was conducted. Enrichment analyses were conducted with missMethyl package and the KEGG database. Our results show that CA was associated with psychosis (Composite: OR = 1.68; p = <0.001; abuse: OR = 2.16; p < 0.001; neglect: OR = 2.27; p = <0.001). None of the CpG sites significantly mediated the adversity-psychosis association after Bonferroni correction (p < 8.1 × 10−8). However, 28, 34 and 29 differentially methylated probes associated with 21, 27, 20 genes passed a less stringent discovery threshold (p < 5 × 10−5) for composite, abuse and neglect respectively, with a lack of overlap between abuse and neglect. These included genes previously associated to psychosis in EWAS studies, such as PANK1, SPEG TBKBP1, TSNARE1 or H2R. Downstream gene ontology analyses did not reveal any biological pathways that survived false discovery rate correction. Although at a non-significant level, DNAm changes in genes previously associated with schizophrenia in EWAS studies may mediate the CA-psychosis association. These results and associated involved processes such as mitochondrial or histaminergic disfunction, immunity or neural signalling requires replication in well powered samples. The lack of overlap between mediating genes associated with abuse and neglect suggests differential biological trajectories linking CA subtypes and psychosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Interpreting the output of mediation analyses.
Fig. 2: Manhattan plot showing the DNAm mediating DMP between composite cumulative measure of adversity and psychosis.
Fig. 3: Diagram showing the mediating overlapping genes between composite, abuse and neglect analyses with psychosis.

Similar content being viewed by others

References

  1. Varese F, Smeets F, Drukker M, Lieverse R, Lataster T, Viechtbauer W, et al. Childhood adversities increase the risk of psychosis: a meta-analysis of patient-control, prospective- and cross-sectional cohort studies. Schizophr Bull. 2012;38:661–71.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Rodriguez V, Aas M, Vorontsova N, Trotta G, Gadelrab R, Rooprai NK, et al. Exploring the Interplay Between Adversity, Neurocognition, Social Cognition, and Functional Outcome in People With Psychosis: A Narrative Review. Front Psychiatry. 2021;12:596949.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Christy A, Cavero D, Navajeeva S, Murray-O’Shea R, Rodriguez V, Aas M, et al. Association Between Childhood Adversity and Functional Outcomes in People With Psychosis: A Meta-analysis. Schizophr Bull. 2023;49:285–96.

  4. Alameda L, Christy A, Rodriguez V, Salazar de Pablo G, Thrush M, Shen Y, et al. Association Between Specific Childhood Adversities and Symptom Dimensions in People With Psychosis: Systematic Review and Meta-Analysis. Schizophr Bull. 2021;47:975–85.

  5. Aas M, Haukvik UK, Djurovic S, Tesli M, Athanasiu L, Bjella T, et al. Interplay between childhood trauma and BDNF val66met variants on blood BDNF mRNA levels and on hippocampus subfields volumes in schizophrenia spectrum and bipolar disorders. J Psychiatr Res. 2014;59:14–21.

  6. Howes OD, McCutcheon R, Owen MJ, Murray RM. The Role of Genes, Stress, and Dopamine in the Development of Schizophrenia. Biol Psychiatry. 2017;81:9–20.

    Article  CAS  PubMed  Google Scholar 

  7. Ruby E, Polito S, McMahon K, Gorovitz M, Corcoran C, Malaspina D. Pathways Associating Childhood Trauma to the Neurobiology of Schizophrenia. Front Psychol Behav Sci. 2014;3:1–17.

    PubMed  PubMed Central  Google Scholar 

  8. Alameda L, Fournier M, Khadimallah I, Griffa A, Cleusix M, Jenni R, et al. Redox dysregulation as a link between childhood trauma and psychopathological and neurocognitive profile in patients with early psychosis. Proc Natl Acad Sci. 2018;115:12495–12500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Alameda L, Rodriguez V, Carr E, Aas M, Trotta G, Marino P, et al. A systematic review on mediators between adversity and psychosis: potential targets for treatment. Psychol Med. 2020;50:1966–76.

    Article  PubMed  Google Scholar 

  10. Binder EB. Dissecting the molecular mechanisms of gene x environment interactions: implications for diagnosis and treatment of stress-related psychiatric disorders. Eur J Psychotraumatol. 2017;8:1412745.

    Article  PubMed  Google Scholar 

  11. Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet. 2003;33:245–54.

    Article  CAS  PubMed  Google Scholar 

  12. Alameda L, Trotta G, Quigley H, Rodriguez V, Gadelrab R, Dwir D, et al. Can epigenetics shine a light on the biological pathways underlying major mental disorders? Psychol Med. 2022;52:1645–65.

  13. Baron RM, Kenny DA. The moderator–mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. J Personal Soc Psychol. 1986;51:1173.

    Article  CAS  Google Scholar 

  14. Sobel ME. Asymptotic confidence intervals for indirect effects in structural equation models. Sociol Methodol. 1982;13:290–312.

    Article  Google Scholar 

  15. Barfield R, Shen J, Just AC, Vokonas PS, Schwartz J, Baccarelli AA, et al. Testing for the indirect effect under the null for genome‐wide mediation analyses. Genet Epidemiol. 2017;41:824–33.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Liu Z, Shen J, Barfield R, Schwartz J, Baccarelli AA, Lin X. Large-Scale Hypothesis Testing for Causal Mediation Effects with Applications in Genome-wide Epigenetic Studies. J Am Stat Assoc. 2022;117:67–81.

  17. Liu Z, Shen J, Barfield R, Schwartz J, Baccarelli AA, Lin X. Large-scale hypothesis testing for causal mediation effects with applications in genome-wide epigenetic studies. J Am Stat Assoc. 2022;117:67–81.

    Article  CAS  PubMed  Google Scholar 

  18. Gayer-Anderson C, Jongsma HE, Di Forti M, Quattrone D, Velthorst E, de Haan L, et al. The EUropean Network of National Schizophrenia Networks Studying Gene-Environment Interactions (EU-GEI): Incidence and First-Episode Case-Control Programme. Soc Psychiatry Psychiatr Epidemiol. 2020;55:645–57.

    Article  PubMed  Google Scholar 

  19. Quattrone D, Di Forti M, Gayer-Anderson C, Ferraro L, Jongsma HE, Tripoli G, et al. Transdiagnostic dimensions of psychopathology at first episode psychosis: findings from the multinational EU-GEI study. Psychological Med. 2018;1–14.

  20. McGuffin P, Farmer A, Harvey I. A polydiagnostic application of operational criteria in studies of psychotic illness: development and reliability of the OPCRIT system. Arch Gen Psychiatry. 1991;48:764–70.

    Article  CAS  PubMed  Google Scholar 

  21. Mallett R, Leff J, Bhugra D, Pang D, Zhao JH. Social environment, ethnicity and schizophrenia. A case-control study. Soc psychiatry Psychiatr Epidemiol. 2002;37:329–35.

    Article  PubMed  Google Scholar 

  22. Bernstein DP, Stein JA, Newcomb MD, Walker E, Pogge D, Ahluvalia T, et al. Development and validation of a brief screening version of the Childhood Trauma Questionnaire. Child Abus Negl. 2003;27:169–90.

    Article  Google Scholar 

  23. Bernstein DP, Fink L, Handelsman L, Foote J, Lovejoy M, Wenzel K, et al. Initial reliability and validity of a new retrospective measure of child abuse and neglect. Am J Psychiatry. 1994;151:1132–6.

  24. Aas M, Alameda L, Di Forti M, Quattrone D, Dazzan P, Trotta A, et al. Synergistic effects of childhood adversity and polygenic risk in first-episode psychosis: the EU-GEI study. Psychological Med. 2021;1–9. https://doi.org/10.1017/S0033291721003664.

  25. Perroud N, Paoloni-Giacobino A, Prada P, Olie E, Salzmann A, Nicastro R. Increased methylation of glucocorticoid receptor gene (NR3C1) in adults with a history of childhood maltreatment: a link with the severity and type of trauma. Transl Psychiatry, 2011;1:e59.

  26. Marzi SJ, Sugden K, Arseneault L, Belsky DW, Burrage J, Corcoran DL, et al. Analysis of DNA Methylation in Young People: Limited Evidence for an Association Between Victimization Stress and Epigenetic Variation in Blood. Am J Psychiatry. 2018. appiajp201717060693.

  27. Bowtell DD. Rapid isolation of eukaryotic DNA. Anal Biochem. 1987;162:463–5.

    Article  CAS  PubMed  Google Scholar 

  28. Jeanpierre M. A rapid method for the purification of DNA from blood. Nucleic Acids Res. 1987;15:9611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Pidsley R, Viana J, Hannon E, Spiers H, Troakes C, Al-Saraj S, et al. Methylomic profiling of human brain tissue supports a neurodevelopmental origin for schizophrenia. Genome Biol. 2014;15:483.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Bhering LL. Rbio: A tool for biometric and statistical analysis using the R platform. Crop Breed Appl Biotechnol. 2017;17:187–90.

    Article  Google Scholar 

  31. Pidsley R, Wong CC, Volta M, Lunnon K, Mill J, Schalkwyk LC. A data-driven approach to preprocessing Illumina 450K methylation array data. BMC Genomics. 2013;14:293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hannon E, Dempster EL, Mansell G, Burrage J, Bass N, Bohlken MM, et al. DNA methylation meta-analysis reveals cellular alterations in psychosis and markers of treatment-resistant schizophrenia. eLife. 2021;10:e58430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Turner SD. qqman: an R package for visualizing GWAS results using QQ and manhattan plots. Biorxiv. 2014. https://doi.org/10.1101/005165.

  34. Houseman EA, Accomando WP, Koestler DC, Christensen BC, Marsit CJ, Nelson HH, et al. DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinforma. 2012;13:1–16.

    Article  Google Scholar 

  35. Elliott HR, Tillin T, McArdle WL, Ho K, Duggirala A, Frayling TM, et al. Differences in smoking associated DNA methylation patterns in South Asians and Europeans. Clin Epigenetics. 2014;6:1–10.

    Article  Google Scholar 

  36. Dietz PM, Homa D, England LJ, Burley K, Tong VT, Dube SR, et al. Estimates of nondisclosure of cigarette smoking among pregnant and nonpregnant women of reproductive age in the United States. Am J Epidemiol. 2011;173:355–9.

    Article  PubMed  Google Scholar 

  37. Spencer K, Cowans NJ. Accuracy of self‐reported smoking status in first trimester aneuploidy screening. Prenat Diagnosis. 2013;33:245–50.

    Article  CAS  Google Scholar 

  38. Kandaswamy R, Hannon E, Arseneault L, Mansell G, Sugden K, Williams B, et al. DNA methylation signatures of adolescent victimization: analysis of a longitudinal monozygotic twin sample. Epigenetics 2021;16:1169–86.

  39. Sammallahti S, Cortes Hidalgo AP, Tuominen S, Malmberg A, Mulder RH, Brunst KJ, et al. Maternal anxiety during pregnancy and newborn epigenome-wide DNA methylation. Mol Psychiatry. 2021;26:1832–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Phipson B, Maksimovic J, Oshlack A. missMethyl: an R package for analyzing data from Illumina’s HumanMethylation450 platform. Bioinformatics. 2016;32:286–8.

    Article  CAS  PubMed  Google Scholar 

  41. Zou D, Qiu Y, Li R, Meng Y, Wu Y. A Novel Schizophrenia Diagnostic Model Based on Statistically Significant Changes in Gene Methylation in Specific Brain Regions. Biomed Res Int. 2020;2020:8047146.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Li M, Li Y, Qin H, Tubbs JD, Li M, Qiao C, et al. Genome-wide DNA methylation analysis of peripheral blood cells derived from patients with first-episode schizophrenia in the Chinese Han population. Mol Psychiatry. 2021;26;4475–85.

  43. Daugherty M, Polanuyer B, Farrell M, Scholle M, Lykidis A, de Crécy-Lagard V, et al. Complete reconstitution of the human coenzyme A biosynthetic pathway via comparative genomics. J Biol Chem. 2002;277:21431–9.

    Article  CAS  PubMed  Google Scholar 

  44. Cuenod M, Steullet P, Cabungcal J-H, Dwir D, Khadimallah I, Klauser P, et al. Caught in vicious circles: a perspective on dynamic feed-forward loops driving oxidative stress in schizophrenia. Mol Psychiatry. 2022;27:1886–97.

    Article  CAS  PubMed  Google Scholar 

  45. Zhang L, Silva TC, Young JI, Gomez L, Schmidt MA, Hamilton-Nelson KL, et al. Epigenome-wide meta-analysis of DNA methylation differences in prefrontal cortex implicates the immune processes in Alzheimer’s disease. Nat Commun. 2020;11:1–13.

    Article  Google Scholar 

  46. Zhu L, Li Y, Xie X, Zhou X, Gu M, Jie Z, et al. TBKBP1 and TBK1 form a growth factor signalling axis mediating immunosuppression and tumourigenesis. Nat Cell Biol. 2019;21:1604–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Broce I, Karch CM, Wen N, Fan CC, Wang Y, Hong Tan C, et al. Immune-related genetic enrichment in frontotemporal dementia: an analysis of genome-wide association studies. PLoS Med. 2018;15:e1002487.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Mazza MG, Lucchi S, Rossetti A, Clerici M. Neutrophil-lymphocyte ratio, monocyte-lymphocyte ratio and platelet-lymphocyte ratio in non-affective psychosis: A meta-analysis and systematic review. World J Biol Psychiatry. 2020;21:326–38.

    Article  PubMed  Google Scholar 

  49. Birnbaum R, Weinberger DR. A genetics perspective on the role of the (neuro) immune system in schizophrenia. Schizophrenia Res. 2020;217:105–13.

    Article  Google Scholar 

  50. Montano C, Taub MA, Jaffe A, Briem E, Feinberg JI, Trygvadottir R, et al. Association of DNA Methylation Differences With Schizophrenia in an Epigenome-Wide Association Study. JAMA Psychiatry. 2016;73:506–14.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Aberg KA, McClay JL, Nerella S, Clark S, Kumar G, Chen W, et al. Methylome-wide association study of schizophrenia: identifying blood biomarker signatures of environmental insults. JAMA Psychiatry. 2014;71:255–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hannon E, Dempster E, Viana J, Burrage J, Smith AR, Macdonald R, et al. An integrated genetic-epigenetic analysis of schizophrenia: evidence for co-localization of genetic associations and differential DNA methylation. Genome Biol. 2016;17:176.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Liu J, Chen J, Ehrlich S, Walton E, White T, Perrone-Bizzozero N, et al. Methylation patterns in whole blood correlate with symptoms in Schizophrenia patients. Schizophrenia Bull. 2014;40:769–76.

    Article  Google Scholar 

  54. Prados J, Stenz L, Courtet P, Prada P, Nicastro R, Adouan W. Borderline personality disorder and childhood maltreatment: a genome-wide methylation analysis. Genes Brain Behav. 2015;14:177–88.

  55. Uddin M, Aiello AE, Wildman DE, Koenen KC, Pawelec G, de Los Santos R, et al. Epigenetic and immune function profiles associated with posttraumatic stress disorder. Proc Natl Acad Sci. 2010;107:9470–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Arranz MJ, Gallego-Fabrega C, Martín-Blanco A, Soler J, Elices M, Dominguez-Clavé E, et al. A genome-wide methylation study reveals X chromosome and childhood trauma methylation alterations associated with borderline personality disorder. Transl Psychiatry 2021;11:5.

  57. Yang BZ, Zhang H, Ge W, Weder N, Douglas-Palumberi H, Perepletchikova F, et al. Child abuse and epigenetic mechanisms of disease risk. Am J Prev Med. 2013;44:101–7.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Sleiman P, Wang D, Glessner J, Hadley D, Gur RE, Cohen N, et al. GWAS meta analysis identifies TSNARE1 as a novel Schizophrenia / Bipolar susceptibility locus. Sci Rep. 2013;3:3075.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Li M, Shen L, Chen L, Huai C, Huang H, Wu X, et al. Novel genetic susceptibility loci identified by family based whole exome sequencing in Han Chinese schizophrenia patients. Transl Psychiatry. 2020;10:5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Schrode N, Ho SM, Yamamuro K, Dobbyn A, Huckins L, Matos MR, et al. Synergistic effects of common schizophrenia risk variants. Nat Genet. 2019;51:1475–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Fromer M, Roussos P, Sieberts SK, Johnson JS, Kavanagh DH, Perumal TM, et al. Gene expression elucidates functional impact of polygenic risk for schizophrenia. Nat Neurosci. 2016;19:1442–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Plooster M, Rossi G, Farrell MS, McAfee JC, Bell JL, Ye M, et al. Schizophrenia-Linked Protein tSNARE1 Regulates Endosomal Trafficking in Cortical Neurons. J Neurosci. 2021;41:9466–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lopez-Lengowski K, Kathuria A, Gerlovin K, Karmacharya R. Co-Culturing Microglia and Cortical Neurons Differentiated from Human Induced Pluripotent Stem Cells. J Vis Exp. 2021. https://doi.org/10.3791/62480.

  64. Ackerman SD, Luo R, Poitelon Y, Mogha A, Harty BL, D’Rozario M, et al. GPR56/ADGRG1 regulates development and maintenance of peripheral myelin. J Exp Med. 2018;215:941–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Chiou B, Gao C, Giera S, Folts CJ, Kishore P, Yu D, et al. Cell type-specific evaluation of ADGRG1/GPR56 function in developmental central nervous system myelination. Glia. 2021;69:413–23.

    Article  CAS  PubMed  Google Scholar 

  66. Millar MW, Corson N, Xu L. The Adhesion G-Protein-Coupled Receptor, GPR56/ADGRG1, Inhibits Cell-Extracellular Matrix Signaling to Prevent Metastatic Melanoma Growth. Front Oncol. 2018;8:8.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Olaniru OE, Pingitore A, Giera S, Piao X, Castañera González R, Jones PM, et al. The adhesion receptor GPR56 is activated by extracellular matrix collagen III to improve β-cell function. Cell Mol Life Sci. 2018;75:4007–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Tavares R, Wajnberg G, Scherer NM, Pauletti BA, Cassoli JS, Ferreira CG, et al. Unveiling alterative splice diversity from human oligodendrocyte proteome data. J Proteom. 2017;151:293–301.

    Article  CAS  Google Scholar 

  69. Monin A, Baumann P, Griffa A, Xin L, Mekle R, Fournier M, et al. Glutathione deficit impairs myelin maturation: relevance for white matter integrity in schizophrenia patients. Mol Psychiatry. 2015;20:827.

    Article  CAS  PubMed  Google Scholar 

  70. Cabungcal JH, Steullet P, Morishita H, Kraftsik R, Cuenod M, Hensch TK, et al. Perineuronal nets protect fast-spiking interneurons against oxidative stress. Proc Natl Acad Sci USA. 2013;110:9130–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kolomeets NS, Uranova NA Reduced number of satellite oligodendrocytes of pyramidal neurons in layer 5 of the prefrontal cortex in schizophrenia. Eur Arch Psychiatry Clin Neurosci. 2022;272:947–55.

  72. Kebir O, Chaumette B, Rivollier F, Miozzo F, Lemieux Perreault LP, Barhdadi A, et al. Methylomic changes during conversion to psychosis. Mol Psychiatry. 2017;22:512–8.

    Article  CAS  PubMed  Google Scholar 

  73. Grinchii D, Dremencov E. Mechanism of action of atypical antipsychotic drugs in mood disorders. Int J Mol Sci. 2020;21:9532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hu W, Chen Z. The roles of histamine and its receptor ligands in central nervous system disorders: An update. Pharmacol Therap. 2017;175:116–32.

    Article  CAS  Google Scholar 

  75. Karlstedt K, Senkas A, Åhman M, Panula P. Regional expression of the histamine H2 receptor in adult and developing rat brain. Neuroscience. 2001;102:201–8.

    Article  CAS  PubMed  Google Scholar 

  76. Haas HL, Sergeeva OA, Selbach O. Histamine in the nervous system. Physiol Rev. 2008;88:1183–1241.

  77. Dai H, Kaneko K, Kato H, Fujii S, Jing Y, Xu A, et al. Selective cognitive dysfunction in mice lacking histamine H1 and H2 receptors. Neurosci Res. 2007;57:306–13.

    Article  CAS  PubMed  Google Scholar 

  78. Ogawa S, Yanai K, Watanabe T, Wang Z-M, Akaike H, Ito Y, et al. Histamine responses of large neostriatal interneurons in histamine H1 and H2 receptor knock-out mice. Brain Res Bull. 2009;78:189–94.

    Article  CAS  PubMed  Google Scholar 

  79. Iwabuchi K, Kubota Y, Ito C, Watanabe T, Watanabe T, Yanai K. Methamphetamine and brain histamine: A study using histamine‐related gene knockout mice. Ann N. Y Acad Sci. 2004;1025:129–34.

    Article  CAS  PubMed  Google Scholar 

  80. Mobarakeh JI, Takahashi K, Sakurada S, Kuramasu A, Yanai K. Enhanced antinociceptive effects of morphine in histamine H2 receptor gene knockout mice. Neuropharmacology. 2006;51:612–22.

    Article  CAS  PubMed  Google Scholar 

  81. Monette J, Mogun H, Bohn RL, Avorn J. Concurrent use of antiulcerative agents. J Clin Gastroenterol. 1997;24:207–13.

    Article  CAS  PubMed  Google Scholar 

  82. Kaminsky R, Moriarty T, Bodine J, Wolf D, Davidson M. Effect of famotidine on deficit symptoms of schizophrenia. Lancet. 1990;335:1351–2.

    Article  CAS  PubMed  Google Scholar 

  83. Assunção SSM, Ruschel SI, Rosa LDCR, Campos JAO, Alves MJO, Bracco OL, et al. Weight gain management in patients with schizophrenia during treatment with olanzapine in association with nizatidine. Braz J Psychiatry. 2006;28:270–6.

    Article  PubMed  Google Scholar 

  84. Farzin D, Hosseini SH, Shafaat A. A randomized double blind clinical trial in famotidine adjuvant therapy in schizophrenia. Iranian J Med Sci. 2005;30.

  85. Meskanen K, Ekelund H, Laitinen J, Neuvonen PJ, Haukka J, Panula P, et al. A randomized clinical trial of histamine 2 receptor antagonism in treatment-resistant schizophrenia. J Clin Psychopharmacol. 2013;33:472–8.

    Article  CAS  PubMed  Google Scholar 

  86. Poyurovsky M, Tal V, Maayan R, Gil-Ad I, Fuchs C, Weizman A. The effect of famotidine addition on olanzapine-induced weight gain in first-episode schizophrenia patients: a double-blind placebo-controlled pilot study. Eur Neuropsychopharmacol. 2004;14:332–6.

    Article  CAS  PubMed  Google Scholar 

  87. Atmaca M, Kuloglu M, Tezcan E, Ustundag B. Nizatidine treatment and its relationship with leptin levels in patients with olanzapine‐induced weight gain. Hum Psychopharmacol: Clin Exp. 2003;18:457–61.

    Article  CAS  Google Scholar 

  88. Atmaca M, Kuloglu M, Tezcan E, Ustundag B, Kilic N. Nizatidine for the treatment of patients with quetiapine‐induced weight gain. Hum Psychopharmacol: Clin Exp. 2004;19:37–40.

    Article  CAS  Google Scholar 

  89. Orange P, Heath P, Wright S, Ramchand C, Kolkeiwicz L, Pearson R. Individuals with schizophrenia have an increased incidence of the H2R649G allele for the histamine H2 receptor gene. Mol Psychiatry. 1996;1:466–9.

    CAS  PubMed  Google Scholar 

  90. Orange PR, Heath PR, Wright SR, Pearson R. Allelic variations of the human histamine H2 receptor gene. Neuroreport. 1996;7:1293–6.

    Article  CAS  PubMed  Google Scholar 

  91. Unnikrishnan A, Freeman WM, Jackson J, Wren JD, Porter H, Richardson A. The role of DNA methylation in epigenetics of aging. Pharmacol therapeutics. 2019;195:172–85.

    Article  CAS  Google Scholar 

  92. Elliott HR, Tillin T, McArdle WL, Ho K, Duggirala A, Frayling TM, et al. Differences in smoking associated DNA methylation patterns in South Asians and Europeans. Clin Epigenetics. 2014;6:4.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Ji H, Ehrlich LI, Seita J, Murakami P, Doi A, Lindau P, et al. Comprehensive methylome map of lineage commitment from haematopoietic progenitors. Nature. 2010;467:338–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Razin A, Cedar H. DNA methylation and gene expression. Microbiol Rev. 1991;55:451–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Hannon E, Lunnon K, Schalkwyk L, Mill J. Interindividual methylomic variation across blood, cortex, and cerebellum: implications for epigenetic studies of neurological and neuropsychiatric phenotypes. Epigenetics. 2015;10:1024–32.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank all the contributors to the EU-GEI (WP2 group) study for their hard work: Kathryn Hubbard, Stephanie Beards, Simona A. Stilo, Mara Parellada, Pedro Cuadrado, José Juan Rodríguez Solano, Angel Carracedo, David Fraguas, Álvaro Andreu-Bernabeu, Gonzalo López, Bibiana Cabrera, Esther Lorente-Rovira, Paz Garcia-Portilla, Javier Costas, Estela Jiménez-López, Mario Matteis, Marta Rapado-Castro, Emiliano González, Covadonga M. Díaz-Caneja, Emilio Sánchez, Manuel Durán-Cutilla, Nathalie Franke, Fabian Termorshuizen, Daniella van Dam, Elsje van der Ven, Elles Messchaart, Marion Leboyer, Franck Schürhoff, Stéphane Jamain, Grégoire Baudin, Aziz Ferchiou, Baptiste Pignon, Jean-Romain Richard, Thomas Charpeaud, Anne-Marie Tronche, Flora Frijda, Giovanna Marrazzo, Crocettarachele Sartorio, Fabio Seminerio, Camila Marcelino Loureiro, Rosana Shuhama, Mirella Ruggeri, Chiara Bonetto, Doriana Cristofalo, Domnico Berardi, Marco Seri, Elena Bonora, Giuseppe D’Andrea, Laura Ferraro, Giada Tripoli, Silvia Amoretti, Gisela Mezquida. We thank strongly thank Romayne Gadelrab for her help with Fig. 3. We thank our funding bodies; The EU-GEI Project is funded by the European Community’s Seventh Framework Programme under grant agreement No. HEALTH-F2-2010-241909 (Project EU-GEI); Craig Morgan is part funded by the ESRC (ESRC Centre for Society and Mental Health at King’s College London: ESRC Reference: ES/S012567/1), and the NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King’s College London.

Author information

Authors and Affiliations

Authors

Contributions

LA conceptualised and designed the study, conducted the statistical analyses and wrote the initial draft; CW and RM conceptualised and designed the study; reviewed the initial draft and supervised the project; LZ created the DACT and conducted statistical analyses and reviewed the initial draft; PCS, MDF contributed to the design and reviewed the initial draft; MA, GT, VR, SAS, RK, CA, MA, MB, JB, LDH, CMD, CGA, LS, PBJ, HEJ, JBK, CLC, AL, ST, PML, PRM, JVO, BPR, JLS, JS, JPS, AS, IT, AT, EV, CM, ED reviewed the first draft and contributed to data collection and EUGEI planning, DD, AA reviewed the first draft, JM, EH, JB, ED reviewed the first draft and contributed to data collection and preparation; DQ data management.

Corresponding author

Correspondence to Luis Alameda.

Ethics declarations

Competing interests

MB has been a consultant for, received grant/research support and honoraria from, and been on the speakers/advisory board of AB-Biotics, Adamed, Angelini, Casen Recordati, Janssen-Cilag, Menarini, Rovi and Takeda. CA has been a consultant to or has received honoraria or grants from Acadia, Angelini, Gedeon Richter, Janssen Cilag, Lundbeck, Minerva, Otsuka, Roche, Sage, Servier, Shire, Schering Plough, Sumitomo Dainippon Pharma, Sunovion and Takeda. PBJ declare to have consulted for Ricordati and Janssen. RM has received payments for non-promotional seminars from JANSSEN, SUNOVIAN, LUNDBECK AND OTSUKA.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alameda, L., Liu, Z., Sham, P.C. et al. Exploring the mediation of DNA methylation across the epigenome between childhood adversity and First Episode of Psychosis—findings from the EU-GEI study. Mol Psychiatry 28, 2095–2106 (2023). https://doi.org/10.1038/s41380-023-02044-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-023-02044-9

This article is cited by

Search

Quick links