Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Expert Review
  • Published:

Opportunities and limitations for studying neuropsychiatric disorders using patient-derived induced pluripotent stem cells

Abstract

Neuropsychiatric disorders affect a large proportion of the global population and there is an urgent need to understand the pathogenesis and to develop novel and improved treatments of these devastating disorders. However, the diverse symptomatology combined with complex polygenic etiology, and the limited access to disorder-relevant cell types in human brains represent a major obstacle for mechanistic disease research. Conventional animal models, such as rodents, are limited by inherent species differences in brain development, architecture, and function. Advances in human induced pluripotent stem cells (hiPSCs) technologies have provided platforms for new discoveries in neuropsychiatric disorders. First, hiPSC-based disease models enable unprecedented investigation of psychiatric disorders at the molecular, cellular, and structural levels. Second, hiPSCs derived from patients with known genetics, symptoms, and drug response profiles offer an opportunity to recapitulate pathogenesis in relevant cell types and provide novel approaches for understanding disease mechanisms and for developing effective treatments. Third, genome-editing technologies have extended the potential of hiPSCs for generating models to elucidate the genetic basis of rare monogenetic and complex polygenic psychiatric disorders and to establish the causality between genotype and phenotype. Here we review opportunities and limitations for studying psychiatric disorders using various hiPSC-derived model systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Diagram of hiPSC-based models.
Fig. 2: Molecular, cellular, and architectural read-outs for iPSC-based disease modeling.

Similar content being viewed by others

References

  1. Wen Z, Christian KM, Song H, Ming GL. Modeling psychiatric disorders with patient-derived iPSCs. Curr Opin Neurobiol. 2016;36:118–27.

    Article  CAS  PubMed  Google Scholar 

  2. Amin ND, Paşca SP. Building models of brain disorders with three-dimensional organoids. Neuron. 2018;100:389–405.

    Article  CAS  PubMed  Google Scholar 

  3. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861–72.

    Article  CAS  PubMed  Google Scholar 

  4. Jacob F, Schnoll JG, Song H, Ming GL. Building the brain from scratch: Engineering region-specific brain organoids from human stem cells to study neural development and disease. Curr Top Dev Biol. 2021;142:477–530.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Wang M, Zhang L, Gage FH. Modeling neuropsychiatric disorders using human induced pluripotent stem cells. Protein Cell. 2020;11:45–59.

    Article  CAS  PubMed  Google Scholar 

  6. Zhang DY, Song H, Ming GL. Modeling neurological disorders using brain organoids. Semin Cell Dev Biol. 2021;111:4–14.

    Article  PubMed  Google Scholar 

  7. Zhou Y, Su Y, Li S, Kennedy BC, Zhang DY, Bond AM, et al. Molecular landscapes of human hippocampal immature neurons across lifespan. Nature. 2022;607:527–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tao Y, Zhang SC. Neural subtype specification from human pluripotent stem cells. Cell Stem Cell. 2016;19:573–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Coghlan S, Horder J, Inkster B, Mendez MA, Murphy DG, Nutt DJ. GABA system dysfunction in autism and related disorders: from synapse to symptoms. Neurosci Biobehav Rev. 2012;36:2044–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Marín O. Interneuron dysfunction in psychiatric disorders. Nat Rev Neurosci. 2012;13:107–20.

    Article  PubMed  Google Scholar 

  11. Chao HT, Chen H, Samaco RC, Xue M, Chahrour M, Yoo J, et al. Dysfunction in GABA signalling mediates autism-like stereotypies and Rett syndrome phenotypes. Nature. 2010;468:263–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Javitt DC. Glutamatergic theories of schizophrenia. Isr J Psychiatry Relat Sci. 2010;47:4–16.

    PubMed  Google Scholar 

  13. Lewis DA, Hashimoto T, Volk DW. Cortical inhibitory neurons and schizophrenia. Nat Rev Neurosci. 2005;6:312–24.

    Article  CAS  PubMed  Google Scholar 

  14. Li XJ, Zhang X, Johnson MA, Wang ZB, Lavaute T, Zhang SC. Coordination of sonic hedgehog and Wnt signaling determines ventral and dorsal telencephalic neuron types from human embryonic stem cells. Development. 2009;136:4055–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shi Y, Kirwan P, Livesey FJ. Directed differentiation of human pluripotent stem cells to cerebral cortex neurons and neural networks. Nat Protoc. 2012;7:1836–46.

    Article  CAS  PubMed  Google Scholar 

  16. Shi Y, Kirwan P, Smith J, Robinson HP, Livesey FJ. Human cerebral cortex development from pluripotent stem cells to functional excitatory synapses. Nat Neurosci. 2012;15:477–86.

    Article  CAS  PubMed  Google Scholar 

  17. Wonders CP, Anderson SA. The origin and specification of cortical interneurons. Nat Rev Neurosci. 2006;7:687–96.

    Article  CAS  PubMed  Google Scholar 

  18. Liu Y, Liu H, Sauvey C, Yao L, Zarnowska ED, Zhang SC. Directed differentiation of forebrain GABA interneurons from human pluripotent stem cells. Nat Protoc. 2013;8:1670–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Maroof AM, Keros S, Tyson JA, Ying SW, Ganat YM, Merkle FT, et al. Directed differentiation and functional maturation of cortical interneurons from human embryonic stem cells. Cell Stem Cell. 2013;12:559–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nicholas CR, Chen J, Tang Y, Southwell DG, Chalmers N, Vogt D, et al. Functional maturation of hPSC-derived forebrain interneurons requires an extended timeline and mimics human neural development. Cell Stem Cell. 2013;12:573–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Abi-Dargham A. Schizophrenia: overview and dopamine dysfunction. J Clin Psychiatry. 2014;75:e31.

    Article  PubMed  Google Scholar 

  22. Whitton AE, Treadway MT, Pizzagalli DA. Reward processing dysfunction in major depression, bipolar disorder and schizophrenia. Curr Opin Psychiatry. 2015;28:7–12.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kriks S, Shim JW, Piao J, Ganat YM, Wakeman DR, Xie Z, et al. Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson’s disease. Nature. 2011;480:547–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Swistowski A, Peng J, Liu Q, Mali P, Rao MS, Cheng L, et al. Efficient generation of functional dopaminergic neurons from human induced pluripotent stem cells under defined conditions. Stem Cells. 2010;28:1893–904.

    Article  CAS  PubMed  Google Scholar 

  25. Ma L, Liu Y, Zhang SC. Directed differentiation of dopamine neurons from human pluripotent stem cells. Methods Mol Biol. 2011;767:411–8.

    Article  CAS  PubMed  Google Scholar 

  26. Yu DX, Di Giorgio FP, Yao J, Marchetto MC, Brennand K, Wright R, et al. Modeling hippocampal neurogenesis using human pluripotent stem cells. Stem Cell Rep. 2014;2:295–310.

    Article  CAS  Google Scholar 

  27. Mertens J, Wang QW, Kim Y, Yu DX, Pham S, Yang B, et al. Differential responses to lithium in hyperexcitable neurons from patients with bipolar disorder. Nature. 2015;527:95–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sakaguchi H, Kadoshima T, Soen M, Narii N, Ishida Y, Ohgushi M, et al. Generation of functional hippocampal neurons from self-organizing human embryonic stem cell-derived dorsomedial telencephalic tissue. Nat Commun. 2015;6:8896.

    Article  CAS  PubMed  Google Scholar 

  29. Ming GL, Song H. Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron. 2011;70:687–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Reif A, Fritzen S, Finger M, Strobel A, Lauer M, Schmitt A, et al. Neural stem cell proliferation is decreased in schizophrenia, but not in depression. Mol Psychiatry. 2006;11:514–22.

    Article  CAS  PubMed  Google Scholar 

  31. Tamminga CA, Thomas BP, Chin R, Mihalakos P, Youens K, Wagner AD, et al. Hippocampal novelty activations in schizophrenia: disease and medication effects. Schizophr Res. 2012;138:157–63.

    Article  PubMed  Google Scholar 

  32. Sarkar A, Mei A, Paquola ACM, Stern S, Bardy C, Klug JR, et al. Efficient generation of CA3 neurons from human pluripotent stem cells enables modeling of hippocampal connectivity in vitro. Cell Stem Cell. 2018;22:684–697.e689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Barres BA. The mystery and magic of glia: a perspective on their roles in health and disease. Neuron. 2008;60:430–40.

    Article  CAS  PubMed  Google Scholar 

  34. Molofsky AV, Krencik R, Ullian EM, Tsai HH, Deneen B, Richardson WD, et al. Astrocytes and disease: a neurodevelopmental perspective. Genes Dev. 2012;26:891–907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Santos R, Vadodaria KC, Jaeger BN, Mei A, Lefcochilos-Fogelquist S, Mendes APD, et al. Differentiation of inflammation-responsive astrocytes from glial progenitors generated from human induced pluripotent stem cells. Stem Cell Rep. 2017;8:1757–69.

    Article  CAS  Google Scholar 

  36. Simons M, Nave KA. Oligodendrocytes: Myelination and axonal support. Cold Spring Harb Perspect Biol. 2015;8:a020479.

    Article  PubMed  Google Scholar 

  37. Hu BY, Du ZW, Zhang SC. Differentiation of human oligodendrocytes from pluripotent stem cells. Nat Protoc. 2009;4:1614–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wang S, Bates J, Li X, Schanz S, Chandler-Militello D, Levine C, et al. Human iPSC-derived oligodendrocyte progenitor cells can myelinate and rescue a mouse model of congenital hypomyelination. Cell Stem Cell. 2013;12:252–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rodrigues GMC, Gaj T, Adil MM, Wahba J, Rao AT, Lorbeer FK, et al. Defined and scalable differentiation of human oligodendrocyte precursors from pluripotent stem cells in a 3D culture system. Stem Cell Rep. 2017;8:1770–83.

    Article  CAS  Google Scholar 

  40. Hammond TR, Robinton D, Stevens B. Microglia and the brain: complementary partners in development and disease. Annu Rev Cell Dev Biol. 2018;34:523–44.

    Article  CAS  PubMed  Google Scholar 

  41. Ginhoux F, Greter M, Leboeuf M, Nandi S, See P, Gokhan S, et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science. 2010;330:841–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kierdorf K, Erny D, Goldmann T, Sander V, Schulz C, Perdiguero EG, et al. Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways. Nat Neurosci. 2013;16:273–80.

    Article  CAS  PubMed  Google Scholar 

  43. Abud EM, Ramirez RN, Martinez ES, Healy LM, Nguyen CHH, Newman SA, et al. iPSC-derived human microglia-like cells to study neurological diseases. Neuron. 2017;94:278–293.e279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pandya H, Shen MJ, Ichikawa DM, Sedlock AB, Choi Y, Johnson KR, et al. Differentiation of human and murine induced pluripotent stem cells to microglia-like cells. Nat Neurosci. 2017;20:753–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Muffat J, Li Y, Yuan B, Mitalipova M, Omer A, Corcoran S, et al. Efficient derivation of microglia-like cells from human pluripotent stem cells. Nat Med. 2016;22:1358–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. McQuade A, Coburn M, Tu CH, Hasselmann J, Davtyan H, Blurton-Jones M. Development and validation of a simplified method to generate human microglia from pluripotent stem cells. Mol Neurodegener. 2018;13:67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhang Y, Pak C, Han Y, Ahlenius H, Zhang Z, Chanda S, et al. Rapid single-step induction of functional neurons from human pluripotent stem cells. Neuron. 2013;78:785–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yang N, Chanda S, Marro S, Ng YH, Janas JA, Haag D, et al. Generation of pure GABAergic neurons by transcription factor programming. Nat Methods. 2017;14:621–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ng YH, Chanda S, Janas JA, Yang N, Kokubu Y, Südhof TC, et al. Efficient generation of dopaminergic induced neuronal cells with midbrain characteristics. Stem Cell Rep. 2021;16:1763–76.

    Article  CAS  Google Scholar 

  50. Powell SK, O’Shea C, Townsley K, Prytkova I, Dobrindt K, Elahi R, et al. Induction of dopaminergic neurons for neuronal subtype-specific modeling of psychiatric disease risk. Mol Psychiatry. 2021. https://doi.org/10.1038/s41380-021-01273-0. Online ahead of print.

  51. Canals I, Ginisty A, Quist E, Timmerman R, Fritze J, Miskinyte G, et al. Rapid and efficient induction of functional astrocytes from human pluripotent stem cells. Nat Methods. 2018;15:693–6.

    Article  CAS  PubMed  Google Scholar 

  52. Ehrlich M, Mozafari S, Glatza M, Starost L, Velychko S, Hallmann AL, et al. Rapid and efficient generation of oligodendrocytes from human induced pluripotent stem cells using transcription factors. Proc Natl Acad Sci USA. 2017;114:E2243–e2252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chen SW, Hung YS, Fuh JL, Chen NJ, Chu YS, Chen SC, et al. Efficient conversion of human induced pluripotent stem cells into microglia by defined transcription factors. Stem Cell Rep. 2021;16:1363–80.

    Article  CAS  Google Scholar 

  54. Dräger NM, Sattler SM, Huang CT, Teter OM, Leng K, Hashemi SH, et al. A CRISPRi/a platform in human iPSC-derived microglia uncovers regulators of disease states. Nat Neurosci. 2022;25:1149–62.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Pasca SP, Arlotta P, Bateup HS, Camp JG, Cappello S, Gage FH, et al. A nomenclature consensus for nervous system organoids and assembloids. Nature. 2022;609:907–10.

    Article  CAS  PubMed  Google Scholar 

  56. Lancaster MA, Renner M, Martin CA, Wenzel D, Bicknell LS, Hurles ME, et al. Cerebral organoids model human brain development and microcephaly. Nature. 2013;501:373–9.

    Article  CAS  PubMed  Google Scholar 

  57. Paşca AM, Sloan SA, Clarke LE, Tian Y, Makinson CD, Huber N, et al. Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture. Nat Methods. 2015;12:671–8.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Qian X, Jacob F, Song MM, Nguyen HN, Song H, Ming GL. Generation of human brain region-specific organoids using a miniaturized spinning bioreactor. Nat Protoc. 2018;13:565–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Qian X, Nguyen HN, Song MM, Hadiono C, Ogden SC, Hammack C, et al. Brain-region-specific organoids using mini-bioreactors for Modeling ZIKV exposure. Cell. 2016;165:1238–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Kadoshima T, Sakaguchi H, Nakano T, Soen M, Ando S, Eiraku M, et al. Self-organization of axial polarity, inside-out layer pattern, and species-specific progenitor dynamics in human ES cell-derived neocortex. Proc Natl Acad Sci USA. 2013;110:20284–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Muguruma K, Nishiyama A, Kawakami H, Hashimoto K, Sasai Y. Self-organization of polarized cerebellar tissue in 3D culture of human pluripotent stem cells. Cell Rep. 2015;10:537–50.

    Article  CAS  PubMed  Google Scholar 

  62. Xiang Y, Tanaka Y, Cakir B, Patterson B, Kim KY, Sun P, et al. hESC-derived thalamic organoids form reciprocal projections when fused with cortical organoids. Cell Stem Cell. 2019;24:487–497.e487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Huang WK, Wong SZH, Pather SR, Nguyen PTT, Zhang F, Zhang DY, et al. Generation of hypothalamic arcuate organoids from human induced pluripotent stem cells. Cell Stem Cell. 2021;28:1657–1670.e1610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Monzel AS, Smits LM, Hemmer K, Hachi S, Moreno EL, van Wuellen T, et al. Derivation of human midbrain-specific organoids from neuroepithelial stem cells. Stem Cell Rep. 2017;8:1144–54.

    Article  CAS  Google Scholar 

  65. Qian X, Su Y, Adam CD, Deutschmann AU, Pather SR, Goldberg EM, et al. Sliced human cortical organoids for modeling distinct cortical layer formation. Cell Stem Cell. 2020;26:766–781.e769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Marton RM, Pasca SP. Organoid and assembloid technologies for investigating cellular crosstalk in human brain development and disease. Trends Cell Biol. 2020;30:133–43.

    Article  CAS  PubMed  Google Scholar 

  67. Bagley JA, Reumann D, Bian S, Lévi-Strauss J, Knoblich JA. Fused cerebral organoids model interactions between brain regions. Nat Methods. 2017;14:743–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Birey F, Andersen J, Makinson CD, Islam S, Wei W, Huber N, et al. Assembly of functionally integrated human forebrain spheroids. Nature. 2017;545:54–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bennett ML, Song H, Ming GL. Microglia modulate neurodevelopment in human neuroimmune organoids. Cell Stem Cell. 2021;28:2035–6.

    Article  CAS  PubMed  Google Scholar 

  70. Song L, Yuan X, Jones Z, Vied C, Miao Y, Marzano M, et al. Functionalization of brain region-specific spheroids with isogenic Microglia-like cells. Sci Rep. 2019;9:11055.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Shen Q, Goderie SK, Jin L, Karanth N, Sun Y, Abramova N, et al. Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science. 2004;304:1338–40.

    Article  CAS  PubMed  Google Scholar 

  72. Yin X, Mead BE, Safaee H, Langer R, Karp JM, Levy O. Engineering stem cell organoids. Cell Stem Cell. 2016;18:25–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Raybaud C. Normal and abnormal embryology and development of the intracranial vascular system. Neurosurg Clin N. Am. 2010;21:399–426.

    Article  PubMed  Google Scholar 

  74. Paredes I, Himmels P, Ruiz de Almodovar C. Neurovascular communication during CNS development. Dev Cell. 2018;45:10–32.

    Article  CAS  PubMed  Google Scholar 

  75. Santander N, Lizama CO, Meky E, McKinsey GL, Jung B, Sheppard D, et al. Lack of Flvcr2 impairs brain angiogenesis without affecting the blood-brain barrier. J Clin Invest. 2020;130:4055–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Shi Y, Sun L, Wang M, Liu J, Zhong S, Li R, et al. Vascularized human cortical organoids (vOrganoids) model cortical development in vivo. PLoS Biol. 2020;18:e3000705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Pham MT, Pollock KM, Rose MD, Cary WA, Stewart HR, Zhou P, et al. Generation of human vascularized brain organoids. Neuroreport. 2018;29:588–93.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Chen HI, Wolf JA, Blue R, Song MM, Moreno JD, Ming GL, et al. Transplantation of human brain organoids: revisiting the science and ethics of brain chimeras. Cell Stem Cell. 2019;25:462–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Mansour AA, Gonçalves JT, Bloyd CW, Li H, Fernandes S, Quang D, et al. An in vivo model of functional and vascularized human brain organoids. Nat Biotechnol. 2018;36:432–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Dong X, Xu SB, Chen X, Tao M, Tang XY, Fang KH, et al. Human cerebral organoids establish subcortical projections in the mouse brain after transplantation. Mol Psychiatry. 2021;26:2964–76.

    Article  CAS  PubMed  Google Scholar 

  81. Revah O, Gore F, Kelley KW, Andersen J, Sakai N, Chen X, et al. Maturation and circuit integration of transplanted human cortical organoids. Nature. 2022;610:319–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Sacco R, Cacci E, Novarino G. Neural stem cells in neuropsychiatric disorders. Curr Opin Neurobiol. 2018;48:131–8.

    Article  CAS  PubMed  Google Scholar 

  83. Villa C, Combi R, Conconi D, Lavitrano M. Patient-derived Induced Pluripotent Stem Cells (iPSCs) and cerebral organoids for drug screening and development in autism spectrum disorder: opportunities and challenges. Pharmaceutics. 2021;13:280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kahn RS, Sommer IE, Murray RM, Meyer-Lindenberg A, Weinberger DR, Cannon TD, et al. Schizophrenia. Nat Rev Dis Prim. 2015;1:15067.

    Article  PubMed  Google Scholar 

  85. Chiang CH, Su Y, Wen Z, Yoritomo N, Ross CA, Margolis RL, et al. Integration-free induced pluripotent stem cells derived from schizophrenia patients with a DISC1 mutation. Mol Psychiatry. 2011;16:358–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Brennand KJ, Simone A, Jou J, Gelboin-Burkhart C, Tran N, Sangar S, et al. Modelling schizophrenia using human induced pluripotent stem cells. Nature. 2011;473:221–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Robicsek O, Karry R, Petit I, Salman-Kesner N, Muller FJ, Klein E, et al. Abnormal neuronal differentiation and mitochondrial dysfunction in hair follicle-derived induced pluripotent stem cells of schizophrenia patients. Mol Psychiatry. 2013;18:1067–76.

    Article  CAS  PubMed  Google Scholar 

  88. Stertz L, Di ReJ, Pei G, Fries GR, Mendez E, Li S, et al. Convergent genomic and pharmacological evidence of PI3K/GSK3 signaling alterations in neurons from schizophrenia patients. Neuropsychopharmacology. 2021;46:673–82.

    Article  CAS  PubMed  Google Scholar 

  89. Wen Z, Nguyen HN, Guo Z, Lalli MA, Wang X, Su Y, et al. Synaptic dysregulation in a human iPS cell model of mental disorders. Nature. 2014;515:414–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Page SC, Sripathy SR, Farinelli F, Ye Z, Wang Y, Hiler DJ, et al. Electrophysiological measures from human iPSC-derived neurons are associated with schizophrenia clinical status and predict individual cognitive performance. Proc Natl Acad Sci USA. 2022;119:e2109395119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Lord C, Brugha TS, Charman T, Cusack J, Dumas G, Frazier T, et al. Autism spectrum disorder. Nat Rev Dis Prim. 2020;6:5.

    Article  PubMed  Google Scholar 

  92. Geschwind DH. Autism: many genes, common pathways? Cell. 2008;135:391–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Marchetto MC, Belinson H, Tian Y, Freitas BC, Fu C, Vadodaria K, et al. Altered proliferation and networks in neural cells derived from idiopathic autistic individuals. Mol Psychiatry. 2017;22:820–35.

    Article  CAS  PubMed  Google Scholar 

  94. Mariani J, Coppola G, Zhang P, Abyzov A, Provini L, Tomasini L, et al. FOXG1-dependent dysregulation of GABA/Glutamate neuron differentiation in autism spectrum disorders. Cell. 2015;162:375–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Wang M, Wei PC, Lim CK, Gallina IS, Marshall S, Marchetto MC, et al. Increased neural progenitor proliferation in a hiPSC Model of autism induces replication stress-associated genome instability. Cell Stem Cell. 2020;26:221–233.e226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Malhotra D, Sebat J. CNVs: harbingers of a rare variant revolution in psychiatric genetics. Cell. 2012;148:1223–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Sebat J, Lakshmi B, Malhotra D, Troge J, Lese-Martin C, Walsh T, et al. Strong association of de novo copy number mutations with autism. Science. 2007;316:445–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. McCarthy SE, Makarov V, Kirov G, Addington AM, McClellan J, Yoon S, et al. Microduplications of 16p11.2 are associated with schizophrenia. Nat Genet. 2009;41:1223–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Pinto D, Pagnamenta AT, Klei L, Anney R, Merico D, Regan R, et al. Functional impact of global rare copy number variation in autism spectrum disorders. Nature. 2010;466:368–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Yoon KJ, Nguyen HN, Ursini G, Zhang F, Kim NS, Wen Z, et al. Modeling a genetic risk for schizophrenia in iPSCs and mice reveals neural stem cell deficits associated with adherens junctions and polarity. Cell Stem Cell. 2014;15:79–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Sawada T, Chater TE, Sasagawa Y, Yoshimura M, Fujimori-Tonou N, Tanaka K, et al. Developmental excitation-inhibition imbalance underlying psychoses revealed by single-cell analyses of discordant twins-derived cerebral organoids. Mol Psychiatry. 2020;25:2695–711.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Sellgren CM, Gracias J, Watmuff B, Biag JD, Thanos JM, Whittredge PB, et al. Increased synapse elimination by microglia in schizophrenia patient-derived models of synaptic pruning. Nat Neurosci. 2019;22:374–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. de Jong JO, Llapashtica C, Genestine M, Strauss K, Provenzano F, Sun Y, et al. Cortical overgrowth in a preclinical forebrain organoid model of CNTNAP2-associated autism spectrum disorder. Nat Commun. 2021;12:4087.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Urresti J, Zhang P, Moran-Losada P, Yu NK, Negraes PD, Trujillo CA, et al. Cortical organoids model early brain development disrupted by 16p11.2 copy number variants in autism. Mol Psychiatry. 2021;26:7560–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Martin-Brevet S, Rodríguez-Herreros B, Nielsen JA, Moreau C, Modenato C, Maillard AM, et al. Quantifying the effects of 16p11.2 copy number variants on brain structure: a multisite genetic-first study. Biol Psychiatry. 2018;84:253–64.

    Article  CAS  PubMed  Google Scholar 

  106. Sønderby IE, Gústafsson Ó, Doan NT, Hibar DP, Martin-Brevet S, Abdellaoui A, et al. Dose response of the 16p11.2 distal copy number variant on intracranial volume and basal ganglia. Mol Psychiatry. 2020;25:584–602.

    Article  PubMed  Google Scholar 

  107. Ye F, Kang E, Yu C, Qian X, Jacob F, Yu C, et al. DISC1 regulates neurogenesis via modulating Kinetochore attachment of Ndel1/Nde1 during Mitosis. Neuron. 2017;96:1041–1054.e1045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Stoner R, Chow ML, Boyle MP, Sunkin SM, Mouton PR, Roy S, et al. Patches of disorganization in the neocortex of children with autism. N. Engl J Med. 2014;370:1209–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Stern S, Santos R, Marchetto MC, Mendes APD, Rouleau GA, Biesmans S, et al. Neurons derived from patients with bipolar disorder divide into intrinsically different sub-populations of neurons, predicting the patients’ responsiveness to lithium. Mol Psychiatry. 2018;23:1453–65.

    Article  CAS  PubMed  Google Scholar 

  110. Kamijo S, Ishii Y, Horigane SI, Suzuki K, Ohkura M, Nakai J, et al. A critical neurodevelopmental role for L-type voltage-gated calcium channels in neurite extension and radial migration. J Neurosci. 2018;38:5551–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Bhat S, Dao DT, Terrillion CE, Arad M, Smith RJ, Soldatov NM, et al. CACNA1C (Cav1.2) in the pathophysiology of psychiatric disease. Prog Neurobiol. 2012;99:1–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Birey F, Li MY, Gordon A, Thete MV, Valencia AM, Revah O, et al. Dissecting the molecular basis of human interneuron migration in forebrain assembloids from Timothy syndrome. Cell Stem Cell. 2022;29:248–264.e247.

    Article  CAS  PubMed  Google Scholar 

  113. Ruzzo EK, Pérez-Cano L, Jung JY, Wang LK, Kashef-Haghighi D, Hartl C, et al. Inherited and De Novo genetic risk for autism impacts shared networks. Cell. 2019;178:850–866.e826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Sanders SJ, Murtha MT, Gupta AR, Murdoch JD, Raubeson MJ, Willsey AJ, et al. De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature. 2012;485:237–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Grove J, Ripke S, Als TD, Mattheisen M, Walters RK, Won H, et al. Identification of common genetic risk variants for autism spectrum disorder. Nat Genet. 2019;51:431–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Satterstrom FK, Kosmicki JA, Wang J, Breen MS, De Rubeis S, An JY, et al. Large-scale exome sequencing study implicates both developmental and functional changes in the neurobiology of autism. Cell. 2020;180:568–584.e523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Cederquist GY, Tchieu J, Callahan SJ, Ramnarine K, Ryan S, Zhang C, et al. A multiplex human pluripotent stem cell platform defines molecular and functional subclasses of autism-related genes. Cell Stem Cell. 2020;27:35–49.e36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Paulsen B, Velasco S, Kedaigle AJ, Pigoni M, Quadrato G, Deo AJ, et al. Autism genes converge on asynchronous development of shared neuron classes. Nature. 2022;602:268–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Pardiñas AF, Holmans P, Pocklington AJ, Escott-Price V, Ripke S, Carrera N, et al. Common schizophrenia alleles are enriched in mutation-intolerant genes and in regions under strong background selection. Nat Genet. 2018;50:381–9.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Stahl EA, Breen G, Forstner AJ, McQuillin A, Ripke S, Trubetskoy V, et al. Genome-wide association study identifies 30 loci associated with bipolar disorder. Nat Genet. 2019;51:793–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Forrest MP, Zhang H, Moy W, McGowan H, Leites C, Dionisio LE, et al. Open chromatin profiling in hiPSC-derived neurons prioritizes functional noncoding psychiatric risk variants and highlights neurodevelopmental Loci. Cell Stem Cell. 2017;21:305–318.e308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Schrode N, Ho SM, Yamamuro K, Dobbyn A, Huckins L, Matos MR, et al. Synergistic effects of common schizophrenia risk variants. Nat Genet. 2019;51:1475–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Das D, Feuer K, Wahbeh M, Avramopoulos D. Modeling psychiatric disorder biology with stem cells. Curr Psychiatry Rep. 2020;22:24.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Brookhouser N, Tekel SJ, Standage-Beier K, Nguyen T, Schwarz G, Wang X, et al. BIG-TREE: Base-edited isogenic hPSC line generation using a transient reporter for editing enrichment. Stem Cell Rep. 2020;14:184–91.

    Article  CAS  Google Scholar 

  125. Chang YJ, Xu CL, Cui X, Bassuk AG, Mahajan VB, Tsai YT, et al. CRISPR base editing in induced pluripotent stem cells. Methods Mol Biol. 2019;2045:337–46.

    Article  CAS  PubMed  Google Scholar 

  126. Sürün D, Schneider A, Mircetic J, Neumann K, Lansing F, Paszkowski-Rogacz M, et al. Efficient generation and correction of mutations in human iPS cells utilizing mRNAs of CRISPR base editors and prime editors. Genes. 2020;11:511.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, Levy JM, et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature. 2019;576:149–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. McTague A, Rossignoli G, Ferrini A, Barral S, Kurian MA. Genome editing in iPSC-based neural systems: from disease models to future therapeutic strategies. Front Genome Ed. 2021;3:630600.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Matos MR, Ho SM, Schrode N, Brennand KJ. Integration of CRISPR-engineering and hiPSC-based models of psychiatric genomics. Mol Cell Neurosci. 2020;107:103532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Li Q, Barres BA. Microglia and macrophages in brain homeostasis and disease. Nat Rev Immunol. 2018;18:225–42.

    Article  CAS  PubMed  Google Scholar 

  131. Ormel PR, Vieira de Sa R, van Bodegraven EJ, Karst H, Harschnitz O, Sneeboer MAM, et al. Microglia innately develop within cerebral organoids. Nat Commun. 2018;9:4167.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Xu R, Boreland AJ, Li X, Erickson C, Jin M, Atkins C, et al. Developing human pluripotent stem cell-based cerebral organoids with a controllable microglia ratio for modeling brain development and pathology. Stem Cell Rep. 2021;16:1923–37.

    Article  Google Scholar 

  133. Su Y, Zhou Y, Bennett ML, Li S, Carceles-Cordon M, Lu L, et al. A single-cell transcriptome atlas of glial diversity in the human hippocampus across the postnatal lifespan. Cell Stem Cell. 2022;29:1594–1610.e1598.

    Article  CAS  PubMed  Google Scholar 

  134. Kim NS, Wen Z, Liu J, Zhou Y, Guo Z, Xu C, et al. Pharmacological rescue in patient iPSC and mouse models with a rare DISC1 mutation. Nat Commun. 2021;12:1398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Funding

The research in the authors’ laboratory were supported by grants from the Institutes of Health (R35NS097370, U19AI131130, RF1MH123979, R01MH125528 to GLM, and R35NS116843, U01HG012047, RF1AG079557, and U19MH106434 to H.S.) and from Dr. Miriam and Sheldon G. Adelson Medical Research Foundation (to GLM).

Author information

Authors and Affiliations

Authors

Contributions

YH wrote the manuscript with contributions from all co-authors.

Corresponding author

Correspondence to Guo-li Ming.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, Y., Yang, Q., Song, H. et al. Opportunities and limitations for studying neuropsychiatric disorders using patient-derived induced pluripotent stem cells. Mol Psychiatry 28, 1430–1439 (2023). https://doi.org/10.1038/s41380-023-01990-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-023-01990-8

This article is cited by

Search

Quick links