Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Target deconvolution studies of (2R,6R)-hydroxynorketamine: an elusive search

Abstract

The off-label use of racemic ketamine and the FDA approval of (S)-ketamine are promising developments for the treatment of depression. Nevertheless, racemic ketamine and (S)-ketamine are controlled substances with known abuse potential and their use is associated with undesirable side effects. For these reasons, research efforts have focused on identifying alternatives. One candidate is (2R,6R)-hydroxynorketamine ((2R,6R)-HNK), a ketamine metabolite that in preclinical models lacks the dissociative and abuse properties of ketamine while retaining its antidepressant-like behavioral efficacy. (2R,6R)-HNK’s mechanism of action however is unclear. The main goals of this study were to perform an in-depth pharmacological characterization of (2R,6R)-HNK at known ketamine targets, to use target deconvolution approaches to discover novel proteins that bind to (2R,6R)-HNK, and to characterize the biodistribution and behavioral effects of (2R,6R)-HNK across several procedures related to substance use disorder liability. We found that unlike (S)- or (R)-ketamine, (2R,6R)-HNK did not directly bind to any known or proposed ketamine targets. Extensive screening and target deconvolution experiments at thousands of human proteins did not identify any other direct (2R,6R)-HNK-protein interactions. Biodistribution studies using radiolabeled (2R,6R)-HNK revealed non-selective brain regional enrichment, and no specific binding in any organ other than the liver. (2R,6R)-HNK was inactive in conditioned place preference, open-field locomotor activity, and intravenous self-administration procedures. Despite these negative findings, (2R,6R)-HNK produced a reduction in immobility time in the forced swim test and a small but significant increase in metabolic activity across a network of brain regions, and this metabolic signature differed from the brain metabolic profile induced by ketamine enantiomers. In sum, our results indicate that (2R,6R)-HNK does not share pharmacological or behavioral profile similarities with ketamine or its enantiomers. However, it could still be possible that both ketamine and (2R,6R)-HNK exert antidepressant-like efficacy through a common and previously unidentified mechanism. Given its pharmacological profile, we predict that (2R,6R)-HNK will exhibit a favorable safety profile in clinical trials, and we must wait for clinical studies to determine its antidepressant efficacy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: (2R,6R)-HNK does not bind nor activate known ketamine binding sites.
Fig. 2: Target deconvolution assays and other suggested targets.
Fig. 3: Fast clearance and no brain regional specificity of (2R,6R)-HNK uptake.
Fig. 4: Changes in metabolic activity induced by (2R,6R)-HNK differ from those produced by (S)-ketamine.
Fig. 5: Lack of effects of (2R,6R)-HNK on locomotor activity, CPP and self-administration.

Similar content being viewed by others

References

  1. Krystal JH, Abdallah CG, Sanacora G, Charney DS, Duman RS. Ketamine: a paradigm shift for depression research and treatment. Neuron 2019;101:774–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Bahji A, Vazquez GH, Zarate CA. Comparative efficacy of racemic ketamine and esketamine for depression: A systematic review and meta-analysis. J Affect Disord. 2021;278:542–55.

    CAS  PubMed  Google Scholar 

  3. Schatzberg AF. A word to the wise about intranasal esketamine. Am J Psychiatry. 2019;176:422–4.

    PubMed  Google Scholar 

  4. Schatzberg AF. A word to the wise about ketamine. Am J Psychiatry. 2014;171:262–4.

    PubMed  Google Scholar 

  5. Davis L, Uezato A, Newell JM, Frazier E. Major depression and comorbid substance use disorders. Curr Opin Psychiatry. 2008;21:14–18.

    PubMed  Google Scholar 

  6. Compton WM, Thomas YF, Stinson FS, Grant BF. Prevalence, correlates, disability, and comorbidity of DSM-IV drug abuse and dependence in the United States: Results from the national epidemiologic survey on alcohol and related conditions. Arch Gen Psychiatry. 2007;64:566–76.

    PubMed  Google Scholar 

  7. Hashimoto K. Rapid-acting antidepressant ketamine, its metabolites and other candidates: A historical overview and future perspective. Psychiatry Clin Neurosci. 2019;73:613–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Hashimoto K. Molecular mechanisms of the rapid-acting and long-lasting antidepressant actions of (R)-ketamine. Biochem Pharmacol. 2020;177:113935. https://doi.org/10.1016/j.bcp.2020.113935.

  9. Bonaventura J, Lam S, Carlton M, Boehm MA, Gomez JL, Solís O, et al. Pharmacological and behavioral divergence of ketamine enantiomers: implications for abuse liability. Mol Psychiatry. 2021. https://doi.org/10.1038/s41380-021-01093-2.

  10. Jelen LA, Young AH, Stone JM. Ketamine: a tale of two enantiomers. J Psychopharmacol. 2021;35:109–23.

    CAS  PubMed  Google Scholar 

  11. Zanos P, Highland JN, Liu X, Troppoli TA, Georgiou P, Lovett J, et al. (R)-Ketamine exerts antidepressant actions partly via conversion to (2R,6R)-hydroxynorketamine, while causing adverse effects at sub-anaesthetic doses. Br J Pharm. 2019;176:2573–92.

    CAS  Google Scholar 

  12. Zanos P, Moaddel R, Morris PJ, Georgiou P, Fischell J, Elmer GI, et al. NMDAR inhibition-independent antidepressant actions of ketamine metabolites. Nature. 2016;533:481–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Leal GC, Bandeira ID, Correia-Melo FS, Telles M, Mello RP, Vieira F, et al. Intravenous arketamine for treatment-resistant depression: open-label pilot study. Eur Arch Psychiatry Clin Neurosci. 2021;271:577–82.

    PubMed  Google Scholar 

  14. Lumsden EW, Troppoli TA, Myers SJ, Zanos P, Aracava Y, Kehr J, et al. Antidepressant-relevant concentrations of the ketamine metabolite (2R,6R)-hydroxynorketamine do not block NMDA receptor function. Proc Natl Acad Sci USA. 2019;116:5160–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Zanos P, Highland JN, Stewart BW, Georgiou P, Jenne CE, Lovett J, et al. (2R,6R)-hydroxynorketamine exerts mGlu2 receptordependent antidepressant actions. Proc Natl Acad Sci USA. 2019;116:6441–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Casarotto PC, Girych M, Fred SM, Kovaleva V, Moliner R, Enkavi G, et al. Antidepressant drugs act by directly binding to TRKB neurotrophin receptors. Cell. 2021;184:1299–1313. e19.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Chou D, Peng HY, Lin TB, Lai CY, Hsieh MC, Wen YC, et al. (2R,6R)-hydroxynorketamine rescues chronic stress-induced depression-like behavior through its actions in the midbrain periaqueductal gray. Neuropharmacology. 2018;139:1–12.

    CAS  PubMed  Google Scholar 

  18. Aguilar-Valles A, De Gregorio D, Matta-Camacho E, Eslamizade MJ, Khlaifia A, Skaleka A, et al. Antidepressant actions of ketamine engage cell-specific translation via eIF4E. Nature. 2021;590:315–9.

    CAS  PubMed  Google Scholar 

  19. Elmer GI, Tapocik JD, Mayo CL, Zanos P, Gould TD. Ketamine metabolite (2R,6R)-hydroxynorketamine reverses behavioral despair produced by adolescent trauma. Pharm Biochem Behav. 2020;196:172973.

    CAS  Google Scholar 

  20. Zanos P, Moaddel R, Morris PJ, Riggs LM, Highland JN, Georgiou P, et al. Ketamine and ketamine metabolite pharmacology: Insights into therapeutic mechanisms. Pharm Rev. 2018;70:621–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Highland JN, Zanos P, Riggs LM, Georgiou P, Clark SM, Morris PJ, et al. Hydroxynorketamines: Pharmacology and potential therapeutic applications. Pharm Rev. 2021;73:763–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Riggs LM, Aracava Y, Zanos P, Fischell J, Albuquerque EX, Pereira EFR, et al. (2R,6R)-hydroxynorketamine rapidly potentiates hippocampal glutamatergic transmission through a synapse-specific presynaptic mechanism. Neuropsychopharmacol. 2019;45:426–36. 2019 452.

    Google Scholar 

  23. Fukumoto K, Fogaca MV, Liu RJ, Duman C, Kato T, Li XY, et al. Activity-dependent brain-derived neurotrophic factor signaling is required for the antidepressant actions of (2R,6R)-hydroxynorketamine. Proc Natl Acad Sci USA. 2019;116:297–302.

    CAS  PubMed  Google Scholar 

  24. Chen BK, Luna VM, LaGamma CT, Xu X, Deng SX, Suckow RF, et al. Sex-specific neurobiological actions of prophylactic (R,S)-ketamine, (2R,6R)-hydroxynorketamine, and (2S,6S)-hydroxynorketamine. Neuropsychopharmacology 2020;45:1545–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Chou D Brain-derived neurotrophic factor in the ventrolateral periaqueductal gray contributes to (2R,6R)-hydroxynorketamine-mediated actions. Neuropharmacology. 2020;170:108068. https://doi.org/10.1016/j.neuropharm.2020.108068.

  26. Herzog DP, Perumal N, Manicam C, Treccani G, Nadig J, Rossmanith M, et al. Longitudinal CSF proteome profiling in mice to uncover the acute and sustained mechanisms of action of rapid acting antidepressant (2R,6R)-hydroxynorketamine (HNK). Neurobiol Stress. 2021;15:100404.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Highland JN, Morris PJ, Zanos P, Lovett J, Ghosh S, Wang AQ, et al. Mouse, rat, and dog bioavailability and mouse oral antidepressant efficacy of (2R,6R)-hydroxynorketamine. J Psychopharmacol. 2019;33:12–24.

    CAS  PubMed  Google Scholar 

  28. Pham TH, Defaix C, Xu X, Deng SX, Fabresse N, Alvarez JC, et al. Common neurotransmission recruited in (R,S)-ketamine and (2R,6R)-hydroxynorketamine-induced sustained antidepressant-like effects. Biol Psychiatry. 2018;84:e3–e6.

    CAS  PubMed  Google Scholar 

  29. Wulf HA, Browne CA, Zarate CA, Lucki I Mediation of the behavioral effects of ketamine and (2R,6R)-hydroxynorketamine in mice by kappa opioid receptors. Psychopharmacology. 2022. April 2022. https://doi.org/10.1007/S00213-022-06118-4.

  30. Zanos P, Highland JN, Stewart BW, Georgiou P, Jenne CE, Lovett J, et al. (2R,6R)-hydroxynorketamine exerts mGlu2 receptordependent antidepressant actions. Proc Natl Acad Sci USA. 2019;116:6441–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Aleksandrova LR, Wang YT, Phillips AG. Ketamine and its metabolite, (2R,6R)-HNK, restore hippocampal LTP and long-term spatial memory in the Wistar-Kyoto rat model of depression. Mol Brain. 2020;13:92. https://doi.org/10.1186/s13041-020-00627-z.

  32. Peng WH, Kan HW, Ho YC. Periaqueductal gray is required for controlling chronic stress-induced depression-like behavior. Biochem Biophys Res Commun. 2022;593:28–34.

    CAS  PubMed  Google Scholar 

  33. Ju L, Yang J, Zhu T, Liu P, Yang J. BDNF-TrkB signaling-mediated upregulation of Narp is involved in the antidepressant-like effects of (2R,6R)-hydroxynorketamine in a chronic restraint stress mouse model. BMC Psychiatry. 2022;22:182. https://doi.org/10.1186/s12888-022-03838-x.

  34. Zhong X, Ouyang C, Liang W, Dai C, Zhang W. (2R,6R)-hydroxynorketamine alleviates electroconvulsive shock-induced learning impairment by inhibiting autophagy. Neuropsychiatr Dis Treat.2021;17:297–304.

    PubMed  PubMed Central  Google Scholar 

  35. Wray NH, Schappi JM, Singh H, Senese NB, Rasenick MM. NMDAR-independent, cAMP-dependent antidepressant actions of ketamine. Mol Psychiatry. 2019;24:1833–43.

    CAS  PubMed  Google Scholar 

  36. Collo G, Cavalleri L, Chiamulera C, Merlo Pich E. (2R,6R)-Hydroxynorketamine promotes dendrite outgrowth in human inducible pluripotent stem cell-derived neurons through AMPA receptor with timing and exposure compatible with ketamine infusion pharmacokinetics in humans. Neuroreport. 2018;29:1425–30.

    CAS  PubMed  Google Scholar 

  37. Yao N, Skiteva O, Zhang X, Svenningsson P, Chergui K. Ketamine and its metabolite (2R,6R)-hydroxynorketamine induce lasting alterations in glutamatergic synaptic plasticity in the mesolimbic circuit. Mol Psychiatry. 2018;23:2066–77.

    CAS  PubMed  Google Scholar 

  38. Shaffer CL, Dutra JK, Tseng WC, Weber ML, Bogart LJ, Hales K, et al. Pharmacological evaluation of clinically relevant concentrations of (2R,6R)-hydroxynorketamine. Neuropharmacology. 2019;153:73–81.

    CAS  PubMed  Google Scholar 

  39. Kroin JS, Das V, Moric M, Buvanendran A. Efficacy of the ketamine metabolite (2R,6R)-hydroxynorketamine in mice models of pain. Reg Anesth Pain Med. 2019;44:111–7.

    PubMed  Google Scholar 

  40. Farmer CA, Gilbert JR, Moaddel R, George J, Adeojo L, Lovett J, et al. Ketamine metabolites, clinical response, and gamma power in a randomized, placebo-controlled, crossover trial for treatment-resistant major depression. Neuropsychopharmacology. 2020;45:1398–404.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Grunebaum MF, Galfalvy HC, Choo TH, Parris MS, Burke AK, Suckow RF, et al. Ketamine metabolite pilot study in a suicidal depression trial. J Psychiatr Res. 2019;117:129–34.

    PubMed  PubMed Central  Google Scholar 

  42. Phase 1 Evaluation of (2R,6R)-Hydroxynorketamine - Full Text View - ClinicalTrials.gov. https://clinicaltrials.gov/ct2/show/NCT04711005?term=%28R%29-ketamine&draw=3&rank=40. Accessed November 2021.

  43. Hillhouse TM, Porter JH. Ketamine, but not MK-801, produces antidepressant-like effects in rats responding on a differential-reinforcement-of-low-rate operant schedule. Behav Pharm. 2014;25:80–91.

    CAS  Google Scholar 

  44. Hillhouse TM, Porte JH, Negus SS. Comparison of antidepressant-like and abuse-related effects of phencyclidine in rats. Drug Dev Res. 2014;75:479–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Henter ID, Park LT, Zarate CA. Novel glutamatergic modulators for the treatment of mood disorders: current status. CNS Drugs. 2021;35:527–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Moaddel R, Abdrakhmanova G, Kozak J, Jozwiak K, Toll L, Jimenez L, et al. Sub-anesthetic concentrations of (R,S)-ketamine metabolites inhibit acetylcholine-evoked currents in α7 nicotinic acetylcholine receptors. Eur J Pharm. 2013;698:228–34.

    CAS  Google Scholar 

  47. Morris PJ, Moaddel R, Zanos P, Moore CE, Gould T, Zarate CA, et al. Synthesis and N-Methyl- d -aspartate (NMDA) receptor activity of ketamine metabolites. Org Lett. 2017;19:4572–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Joseph TT, Bu W, Lin W, Zoubak L, Yeliseev A. Liu R, et al. Ketamine Metabolite (2 R,6 R)-Hydroxynorketamine Interacts with μ and κ Opioid Receptors. ACS Chem Neurosci. 2021;12:1487–97.

    CAS  PubMed  Google Scholar 

  49. Williams NR, Heifets BD, Blasey C, Sudheimer K, Pannu J, Pankow H, et al. Attenuation of antidepressant effects of ketamine by opioid receptor antagonism. Am J Psychiatry. 2018;175:1205–15.

    PubMed  PubMed Central  Google Scholar 

  50. Williams NR, Heifets BD, Bentzley BS, Blasey C, Sudheimer KD, Hawkins J, et al. Attenuation of antidepressant and antisuicidal effects of ketamine by opioid receptor antagonism. Mol Psychiatry. 2019;24:1779–86.

    CAS  PubMed  Google Scholar 

  51. Chen X, Shu S, Bayliss DA. HCN1 channel subunits are a molecular substrate for hypnotic actions of ketamine. J Neurosci. 2009;29:600–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Shepard AR, Conrow RE, Pang IH, Jacobson N, Rezwan M, Rutschmann K, et al. Identification of PDE6D as a molecular target of anecortave acetate via a methotrexate-anchored yeast three-hybrid screen. ACS Chem Biol. 2013;8:549–58.

    CAS  PubMed  Google Scholar 

  53. Morris PJ, Burke RD, Sharma AK, Lynch DC, Lemke-Boutcher LE, Mathew S, et al. A comparison of the pharmacokinetics and NMDAR antagonism-associated neurotoxicity of ketamine, (2R,6R)-hydroxynorketamine and MK-801. Neurotoxicol Teratol. 2021;87:106993.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Adams JD, Baillie TA, Trevor AJ, Castagnoli N. Studies on the biotransformation of ketamine 1—Identification of metabolites produced in vitro from rat liver microsomal preparations. Biol Mass Spectrom. 1981;8:527–38.

    CAS  Google Scholar 

  55. Hijazi Y, Boulieu R. Contribution of CYP3A4, CYP2B6, and CYP2C9 isoforms to N-demethylation of ketamine in human liver microsomes. Drug Metab Dispos. 2002;30:853–8.

    CAS  PubMed  Google Scholar 

  56. Nair A, Jacob S. A simple practice guide for dose conversion between animals and human. J Basic Clin Pharm. 2016;7:27.

    PubMed  PubMed Central  Google Scholar 

  57. De Luca MT, Badiani A. Ketamine self-administration in the rat: evidence for a critical role of setting. Psychopharmacol. 2011;214:549–56.

    Google Scholar 

  58. Moaddel R, Abdrakhmanova G, Kozak J, Jozwiak K, Toll L, Jimenez L, et al. Sub-anesthetic concentrations of (R,S)-ketamine metabolites inhibit acetylcholine-evoked currents in α7 nicotinic acetylcholine receptors. Eur J Pharm. 2013;698:228–34.

    CAS  Google Scholar 

  59. Suzuki K, Nosyreva E, Hunt KW, Kavalali ET, Monteggia LM. Effects of a ketamine metabolite on synaptic NMDAR function. Nature. 2017;546:E1–E3.

    CAS  PubMed  Google Scholar 

  60. Lilius TO, Viisanen H, Jokinen V, Niemi M, Kalso EA, Rauhala PV. Interactions of (2S,6S;2R,6R)-Hydroxynorketamine, a Secondary Metabolite of (R,S)-Ketamine, with Morphine. Basic Clin Pharm Toxicol. 2018;122:481–8.

    CAS  Google Scholar 

  61. Li J, Chen FF, Chen XD, Zhou C. Inhibition of HCN1 channels by ketamine accounts for its antidepressant actions. J Sichuan Univ Medical Sci Ed. 2014;45:888–92, 932.

  62. Lewis AS, Vaidya SP, Blaiss CA, Liu Z, Stoub TR, Brager DH, et al. Deletion of the hyperpolarization-activated cyclic nucleotide-gated channel auxiliary subunit TRIP8b impairs hippocampal Ih localization and function and promotes antidepressant behavior in mice. J Neurosci. 2011;31:7424–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Kim CS, Chang PY, Johnston D. Enhancement of dorsal hippocampal activity by knockdown of hcn1 channels leads to anxiolytic- and antidepressant-like behaviors. Neuron. 2012;75:503–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Han Y, Heuermann RJ, Lyman KA, Fisher D, Ismail QA, Chetkovich DM. HCN-channel dendritic targeting requires bipartite interaction with TRIP8b and regulates antidepressant-like behavioral effects. Mol Psychiatry. 2017;22:458–65.

    CAS  PubMed  Google Scholar 

  65. Knoll AT, Halladay LR, Holmes A, Levitt P. Quantitative trait loci and a novel genetic candidate for fear learning. J Neurosci. 2016;36:6258–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Can A, Zanos P, Moaddel R, Kang HJ, Dossou KSS, Wainer IW, et al. Effects of ketamine and ketamine metabolites on evoked striatal dopamine release, dopamine receptors, and monoamine transporters. J Pharm Exp Ther. 2016;359:159–70.

    CAS  Google Scholar 

  67. Ho MF, Zhang C, Zhang L, Li H, Weinshilboum RM. Ketamine and active ketamine metabolites regulate STAT3 and the Type i interferon pathway in human microglia: Molecular mechanisms linked to the antidepressant effects of ketamine. Front Pharm. 2019;10:1302.

    CAS  Google Scholar 

  68. Sommi RW, Crismon ML, Bowden CL. Fluoxetine: a serotonin‐specific, second‐generation antidepressant. pharmacother. J Hum Pharmacol Drug Ther. 1987;7:1–14.

    CAS  Google Scholar 

  69. Yamaguchi J, Toki H, Qu Y, Yang C, Koike H, Hashimoto K, et al. (2R,6R)-Hydroxynorketamine is not essential for the antidepressant actions of (R)-ketamine in mice. Neuropsychopharmacology. 2018;43:1900.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Zarate CA, Brutsche N, Laje G, Luckenbaugh DA, Venkata SLV, Ramamoorthy A, et al. Relationship of ketamine’s plasma metabolites with response, diagnosis, and side effects in major depression. Biol Psychiatry. 2012;72:331–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Desta Z, Moaddel R, Ogburn ET, Xu C, Ramamoorthy A, Venkata SLV, et al. Stereoselective and regiospecific hydroxylation of ketamine and norketamine. Xenobiotica. 2012;42:1076–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Goswamee P, Rice R, Leggett E, Zhang F, Manicka S, Porter JH, et al. Effects of subanesthetic ketamine and (2R,6R) hydroxynorketamine on working memory and synaptic transmission in the nucleus reuniens in mice. Neuropharmacology. 2022;208:108965.

    CAS  PubMed  Google Scholar 

  73. Zhang K, Fujita Y, Hashimoto K. Lack of metabolism in (R)-ketamine’s antidepressant actions in a chronic social defeat stress model. Sci Rep. 2018;8:1–8.

    Google Scholar 

  74. Hashimoto K, Shirayama Y. What are the causes for discrepancies of antidepressant actions of (2R,6R)-Hydroxynorketamine? Biol Psychiatry. 2018;84:e7–e8.

    CAS  PubMed  Google Scholar 

  75. Xiong Z, Fujita Y, Zhang K, Pu Y, Chang L, Ma M, et al. Beneficial effects of (R)-ketamine, but not its metabolite (2R,6R)-hydroxynorketamine, in the depression-like phenotype, inflammatory bone markers, and bone mineral density in a chronic social defeat stress model. Behav Brain Res. 2019;368:111904.

    CAS  PubMed  Google Scholar 

  76. Sorge RE, Martin LJ, Isbester KA, Sotocinal SG, Rosen S, Tuttle AH, et al. Olfactory exposure to males, including men, causes stress and related analgesia in rodents. Nat Methods. 2014;11:629–32.

    CAS  PubMed  Google Scholar 

  77. Mogil JS. Laboratory environmental factors and pain behavior: The relevance of unknown unknowns to reproducibility and translation. Lab Anim. 2017;46:136–41.

    Google Scholar 

  78. Georgiou P, Zanos P, Mou T-CM, An X, Gerhard DM, Dryanovski DI, et al. Experimenter sex modulates mouse biobehavioural and pharmacological responses. BioRxiv. 2022:2022.01.09.475572.

  79. Jiang LI, Collins J, Davis R, Lin K-M, DeCamp D, Roach T, et al. Use of a cAMP BRET Sensor to Characterize a Novel Regulation of cAMP by the Sphingosine 1-Phosphate/G13 Pathway. J Biol Chem. 2007;282:10576.

    CAS  PubMed  Google Scholar 

  80. Cai N-S, Quiroz C, Bonaventura J, Bonifazi A, Cole TO, Purks J, et al. Opioid-galanin receptor heteromers mediate the dopaminergic effects of opioids. J Clin Invest. 2019;129:2730–44.

  81. Bonaventura J, Eldridge MAG, Hu F, Gomez JL, Sanchez-Soto M, Abramyan AM, et al. High-potency ligands for DREADD imaging and activation in rodents and monkeys. Nat Commun. 2019;10:4627. https://doi.org/10.1038/s41467-019-12236-z.

  82. Schiffer WK, Mirrione MM, Biegon A, Alexoff DL, Patel V, Dewey SL. Serial microPET measures of the metabolic reaction to a microdialysis probe implant. J Neurosci Methods. 2006;155:272–84.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Some Ki determinations, and agonist and/or antagonist functional data were generously provided by the National Institute of Mental Health’s Psychoactive Drug Screening Program, Contract # HHSN-271-2018-00023-C (NIMH PDSP). The NIMH PDSP is Directed by Bryan L. Roth MD, PhD at the University of North Carolina at Chapel Hill and Project Officer Jamie Driscoll at NIMH, Bethesda MD, USA. This work was supported by the NIDA Intramural Research Program (ZIA000069), the NIA, NIMH and NCATS Intramural Research Programs and by Grants RYC-2019-027371-I (JB) and PID2020-117989RA-I00 (JB) funded by MCIN/AEI /10.13039/501100011033 and by “ESF Investing in your future”. TDG was supported by NIH R01-MH107615 and RAI145211A, and VA Merit Awards 1I01BX004062 and 101BX003631-01A1.

Author information

Authors and Affiliations

Authors

Contributions

JB, JLG, MLC, SL, MSS, RM, HJK and PZ performed the experiments. JB, JLG, MLC, SL, MSS, PJM, RM and HYJ analyzed the data. JB, PJM, RM, TDG, CJT, CJZ and MM supervised the experiments. PJM, CJT, DRS, CAZ, MM provided access to resources and support. JB and MM designed the study and wrote the manuscript with input from all coauthors. All authors critically reviewed the content and approved the final version before submission. All coauthors reviewed the manuscript and provided comments.

Corresponding author

Correspondence to Michael Michaelides.

Ethics declarations

Competing interests

CZ is listed as a co-inventor on a patent for the use of ketamine in major depression and suicidal ideation. CZ and RM are co-inventors on a patent for the use of (2R,6R)-HNK, (S)-dehydronorketamine, and other stereoisomeric dehydroxylated and hydroxylated metabolites of (R,S)-ketamine metabolites in the treatment of depression and neuropathic pain. PZ, RM, PM, CJT, CAZ and TDG are co-inventors on a patent application for the use of (2R,6R)-HNK and (2S,6S)-HNK in the treatment of depression, anxiety, anhedonia, suicidal ideation, and post-traumatic stress disorders, and on a patent on the crystal forms and methods of synthesis of (2R,6R)-HNK and (2S,6S)-HNK. PM and CJT are co-inventors on a patent application for the salts of (2R,6R)-HNK, their crystal forms, and methods of making the same and the process for synthesis and purification of (2R,6R)-HNK. RM, PM, CAZ, and CT have assigned their patent rights to the U.S. government but will share a percentage of any royalties that may be received by the government. PZ and TDG have assigned their patent rights to the University of Maryland Baltimore but will share a percentage of any royalties that may be received by the University of Maryland Baltimore. MM has received research funding from AstraZeneca, Redpin Therapeutics and Attune Neurosciences. All other authors declare no conflicts of interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonaventura, J., Gomez, J.L., Carlton, M.L. et al. Target deconvolution studies of (2R,6R)-hydroxynorketamine: an elusive search. Mol Psychiatry 27, 4144–4156 (2022). https://doi.org/10.1038/s41380-022-01673-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-022-01673-w

This article is cited by

Search

Quick links