Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Generation of human A9 dopaminergic pacemakers from induced pluripotent stem cells

Abstract

The degeneration of nigral (A9) dopaminergic (DA) neurons causes motor symptoms in Parkinson’s disease (PD). We use small-molecule compounds to direct the differentiation of human induced pluripotent stem cells (iPSCs) to A9 DA neurons that share many important properties with their in vivo counterparts. The method generates a large percentage of TH+ neurons that express appropriate A9 markers, such as GIRK2 and ALDH1A1, but mostly not the A10 marker CALBINDIN. Functionally, they exhibit autonomous pacemaking based on L-type voltage-dependent Ca2+ channels and show autoreceptor-dependent regulation of dopamine release. When transplanted in the striatum of 6-OHDA-lesioned athymic rats, the human A9 DA neurons manifest robust survival and axon outgrowth, and ameliorate motor deficits in the rat PD model. The ability to generate patient-specific A9 DA autonomous pacemakers will significantly improve PD research and facilitate the development of disease-modifying therapies.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: An existing floor plate-based protocol has different efficacies in differentiating human iPSCs and hESCs to midbrain DA neurons.
Fig. 2: Optimizing the differentiation of human iPSCs to floor plate DA progenitors.
Fig. 3: Optimal timing of dual SMAD inhibitors for the generation of midbrain DA neurons.
Fig. 4: Generation of midbrain floor plate DA progenitors from human iPSCs using small-molecule compounds.
Fig. 5: Differentiation of midbrain floor plate DA progenitors to A9 DA neurons.
Fig. 6: Physiological properties of iPSC-derived A9 dopaminergic pacemakers.
Fig. 7: Grafting iPSC-derived A9 DA neurons in rat brains.

References

  1. Jimenez-Castellanos J, Graybiel AM. Subdivisions of the dopamine-containing A8-A9-A10 complex identified by their differential mesostriatal innervation of striosomes and extrastriosomal matrix. Neuroscience. 1987;23:223–42.

    CAS  PubMed  Article  Google Scholar 

  2. German DC, Manaye KF. Midbrain dopaminergic neurons (nuclei A8, A9, and A10): three-dimensional reconstruction in the rat. J Comp Neurol. 1993;331:297–309.

    CAS  PubMed  Article  Google Scholar 

  3. Matsuda W, Furuta T, Nakamura KC, Hioki H, Fujiyama F, Arai R, et al. Single nigrostriatal dopaminergic neurons form widely spread and highly dense axonal arborizations in the neostriatum. J Neurosci. 2009;29:444–53.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. Damier P, Hirsch EC, Agid Y, Graybiel AM. The substantia nigra of the human brain. II. Patterns of loss of dopamine-containing neurons in Parkinson’s disease. Brain. 1999;122:1437–48.

    PubMed  Article  Google Scholar 

  5. Thompson L, Barraud P, Andersson E, Kirik D, Bjorklund A. Identification of dopaminergic neurons of nigral and ventral tegmental area subtypes in grafts of fetal ventral mesencephalon based on cell morphology, protein expression, and efferent projections. J Neurosci. 2005;25:6467–77.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. McRitchie DA, Hardman CD, Halliday GM. Cytoarchitectural distribution of calcium binding proteins in midbrain dopaminergic regions of rats and humans. J Comp Neurol. 1996;364:121–50.

    CAS  PubMed  Article  Google Scholar 

  7. Grealish S, Jonsson ME, Li M, Kirik D, Bjorklund A, Thompson LH. The A9 dopamine neuron component in grafts of ventral mesencephalon is an important determinant for recovery of motor function in a rat model of Parkinson’s disease. Brain. 2010;133:482–95.

    PubMed  PubMed Central  Article  Google Scholar 

  8. Grace AA, Bunney BS. The control of firing pattern in nigral dopamine neurons: single spike firing. J Neurosci. 1984;4:2866–76.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. Albin RL, Young AB, Penney JB. The functional anatomy of basal ganglia disorders. Trends Neurosci. 1989;12:366–75.

    CAS  PubMed  Article  Google Scholar 

  10. DeLong MR, Benabid AL. Discovery of high-frequency deep brain stimulation for treatment of Parkinson disease: 2014 Lasker Award. JAMA. 2014;312:1093–4.

    CAS  PubMed  Article  Google Scholar 

  11. Arenas E, Denham M, Villaescusa JC. How to make a midbrain dopaminergic neuron. Development. 2015;142:1918–36.

    CAS  PubMed  Article  Google Scholar 

  12. Chambers SM, Fasano CA, Papapetrou EP, Tomishima M, Sadelain M, Studer L. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol. 2009;27:275–80.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. Bonilla S, Hall AC, Pinto L, Attardo A, Gotz M, Huttner WB, et al. Identification of midbrain floor plate radial glia-like cells as dopaminergic progenitors. Glia. 2008;56:809–20.

    PubMed  Article  Google Scholar 

  14. Ono Y, Nakatani T, Sakamoto Y, Mizuhara E, Minaki Y, Kumai M, et al. Differences in neurogenic potential in floor plate cells along an anteroposterior location: midbrain dopaminergic neurons originate from mesencephalic floor plate cells. Development. 2007;134:3213–25.

    CAS  PubMed  Article  Google Scholar 

  15. Ribes V, Briscoe J. Establishing and interpreting graded Sonic Hedgehog signaling during vertebrate neural tube patterning: the role of negative feedback. Cold Spring Harb Perspect Biol. 2009;1:a002014.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  16. Bally-Cuif L, Wassef M. Determination events in the nervous system of the vertebrate embryo. Curr Opin Genet Dev. 1995;5:450–8.

    CAS  PubMed  Article  Google Scholar 

  17. Fasano CA, Chambers SM, Lee G, Tomishima MJ, Studer L. Efficient derivation of functional floor plate tissue from human embryonic stem cells. Cell Stem Cell. 2010;6:336–47.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. Kriks S, Shim JW, Piao J, Ganat YM, Wakeman DR, Xie Z, et al. Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson’s disease. Nature. 2011.

  19. Hobert O. Regulation of terminal differentiation programs in the nervous system. Annu Rev Cell Dev Biol. 2011;27:681–96.

    CAS  PubMed  Article  Google Scholar 

  20. Louvi A, Artavanis-Tsakonas S. Notch signalling in vertebrate neural development. Nat Rev Neurosci. 2006;7:93–102.

    CAS  PubMed  Article  Google Scholar 

  21. Crawford TQ, Roelink H. The notch response inhibitor DAPT enhances neuronal differentiation in embryonic stem cell-derived embryoid bodies independently of sonic hedgehog signaling. Dev Dyn. 2007;236:886–92.

    CAS  PubMed  Article  Google Scholar 

  22. Kirkeby A, Grealish S, Wolf DA, Nelander J, Wood J, Lundblad M, et al. Generation of regionally specified neural progenitors and functional neurons from human embryonic stem cells under defined conditions. Cell Rep. 2012;1:703–14.

    CAS  PubMed  Article  Google Scholar 

  23. Qi Y, Zhang XJ, Renier N, Wu Z, Atkin T, Sun Z, et al. Combined small-molecule inhibition accelerates the derivation of functional cortical neurons from human pluripotent stem cells. Nat Biotechnol. 2017;35:154–63.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. Lepski G, Jannes CE, Nikkhah G, Bischofberger J. cAMP promotes the differentiation of neural progenitor cells in vitro via modulation of voltage-gated calcium channels. Front Cell Neurosci. 2013;7:155.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. Xi J, Liu Y, Liu H, Chen H, Emborg ME, Zhang SC. Specification of midbrain dopamine neurons from primate pluripotent stem cells. Stem Cells. 2012;30:1655–63.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. Hu BY, Weick JP, Yu J, Ma LX, Zhang XQ, Thomson JA, et al. Neural differentiation of human induced pluripotent stem cells follows developmental principles but with variable potency. Proc Natl Acad Sci USA. 2010;107:4335–40.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. Bock C, Kiskinis E, Verstappen G, Gu H, Boulting G, Smith ZD, et al. Reference Maps of human ES and iPS cell variation enable high-throughput characterization of pluripotent cell lines. Cell. 2011;144:439–52.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  28. Ohi Y, Qin H, Hong C, Blouin L, Polo JM, Guo T, et al. Incomplete DNA methylation underlies a transcriptional memory of somatic cells in human iPS cells. Nat Cell Biol. 2011;13:541–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. Phanstiel DH, Brumbaugh J, Wenger CD, Tian S, Probasco MD, Bailey DJ, et al. Proteomic and phosphoproteomic comparison of human ES and iPS cells. Nat Methods. 2011;8:821–7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. Song B, Cha Y, Ko S, Jeon J, Lee N, Seo H, et al. Human autologous iPSC-derived dopaminergic progenitors restore motor function in Parkinson’s disease models. J Clin Invest. 2020;130:904–20.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. Schweitzer JS, Song B, Herrington TM, Park TY, Lee N, Ko S, et al. Personalized iPSC-derived dopamine progenitor cells for Parkinson’s Disease. N. Engl J Med 2020;382:1926–32.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. Doi D, Samata B, Katsukawa M, Kikuchi T, Morizane A, Ono Y, et al. Isolation of human induced pluripotent stem cell-derived dopaminergic progenitors by cell sorting for successful transplantation. Stem Cell Rep. 2014;2:337–50.

    CAS  Article  Google Scholar 

  33. Kikuchi T, Morizane A, Doi D, Magotani H, Onoe H, Hayashi T, et al. Human iPS cell-derived dopaminergic neurons function in a primate Parkinson’s disease model. Nature. 2017;548:592–6.

    CAS  PubMed  Article  Google Scholar 

  34. Kim TW, Piao J, Koo SY, Kriks S, Chung SY, Betel D, et al. Biphasic activation of WNT signaling facilitates the derivation of midbrain dopamine neurons from hESCs for translational use. Cell Stem Cell. 2021;28:343–55.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. Jovanovic VM, Salti A, Tilleman H, Zega K, Jukic MM, Zou H, et al. BMP/SMAD pathway promotes neurogenesis of midbrain dopaminergic neurons in vivo and in human induced pluripotent and neural stem cells. J Neurosci. 2018;38:1662–76.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. Jiang H, Ren Y, Yuen EY, Zhong P, Ghaedi M, Hu Z, et al. Parkin controls dopamine utilization in human midbrain dopaminergic neurons derived from induced pluripotent stem cells. Nat Commun. 2012;3:668.

    PubMed  Article  CAS  Google Scholar 

  37. Hu Z, Li H, Jiang H, Ren Y, Yu X, Qiu J, et al. Transient inhibition of mTOR in human pluripotent stem cells enables robust formation of mouse-human chimeric embryos. Sci Adv. 2020;6:eaaz0298.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. Torres EM, Lane EL, Heuer A, Smith GA, Murphy E, Dunnett SB. Increased efficacy of the 6-hydroxydopamine lesion of the median forebrain bundle in small rats, by modification of the stereotaxic coordinates. J Neurosci Methods. 2011;200:29–35.

    CAS  PubMed  Article  Google Scholar 

  39. Grealish S, Diguet E, Kirkeby A, Mattsson B, Heuer A, Bramoulle Y, et al. Human ESC-derived dopamine neurons show similar preclinical efficacy and potency to fetal neurons when grafted in a rat model of Parkinson’s disease. Cell Stem Cell. 2014;15:653–65.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. Brown A, Machan JT, Hayes L, Zervas M. Molecular organization and timing of Wnt1 expression define cohorts of midbrain dopamine neuron progenitors in vivo. J Comp Neurol. 2011;519:2978–3000.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. Sinha S, Chen JK. Purmorphamine activates the Hedgehog pathway by targeting Smoothened. Nat Chem Biol. 2006;2:29–30.

    CAS  PubMed  Article  Google Scholar 

  42. Li XJ, Hu BY, Jones SA, Zhang YS, Lavaute T, Du ZW, et al. Directed differentiation of ventral spinal progenitors and motor neurons from human embryonic stem cells by small molecules. Stem Cells. 2008;26:886–93.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. Jiang H, Xu Z, Zhong P, Ren Y, Liang G, Schilling HA, et al. Cell cycle and p53 gate the direct conversion of human fibroblasts to dopaminergic neurons. Nat Commun. 2015;6:10100.

    PubMed  Article  CAS  Google Scholar 

  44. Mercuri NB, Bonci A, Calabresi P, Stratta F, Stefani A, Bernardi G. Effects of dihydropyridine calcium antagonists on rat midbrain dopaminergic neurones. Br J Pharm. 1994;113:831–8.

    CAS  Article  Google Scholar 

  45. Lacey MG, Mercuri NB, North RA. Two cell types in rat substantia nigra zona compacta distinguished by membrane properties and the actions of dopamine and opioids. J Neurosci. 1989;9:1233–41.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. Margolis EB, Lock H, Hjelmstad GO, Fields HL. The ventral tegmental area revisited: is there an electrophysiological marker for dopaminergic neurons? J Physiol. 2006;577:907–24.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. Jones S, Kauer JA. Amphetamine depresses excitatory synaptic transmission via serotonin receptors in the ventral tegmental area. J Neurosci. 1999;19:9780–7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. Margolis EB, Lock H, Chefer VI, Shippenberg TS, Hjelmstad GO, Fields HL. Kappa opioids selectively control dopaminergic neurons projecting to the prefrontal cortex. Proc Natl Acad Sci USA. 2006;103:2938–42.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. Blauwkamp TA, Nigam S, Ardehali R, Weissman IL, Nusse R. Endogenous Wnt signalling in human embryonic stem cells generates an equilibrium of distinct lineage-specified progenitors. Nat Commun. 2012;3:1070.

    PubMed  Article  CAS  Google Scholar 

  50. Wakeman DR, Hiller BM, Marmion DJ, McMahon CW, Corbett GT, Mangan KP, et al. Cryopreservation maintains functionality of human iPSC dopamine neurons and rescues Parkinsonian phenotypes in vivo. Stem Cell Rep. 2017;9:149–61.

    CAS  Article  Google Scholar 

  51. Hartfield EM, Yamasaki-Mann M, Ribeiro Fernandes HJ, Vowles J, James WS, Cowley SA, et al. Physiological characterisation of human iPS-derived dopaminergic neurons. PLoS ONE. 2014;9:e87388.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  52. Surmeier DJ, Mercer JN, Chan CS. Autonomous pacemakers in the basal ganglia: who needs excitatory synapses anyway? Curr Opin Neurobiol. 2005;15:312–8.

    CAS  PubMed  Article  Google Scholar 

  53. Chan CS, Guzman JN, Ilijic E, Mercer JN, Rick C, Tkatch T, et al. ‘Rejuvenation’ protects neurons in mouse models of Parkinson’s disease. Nature. 2007;447:1081–6.

    CAS  PubMed  Article  Google Scholar 

  54. Chan CS, Gertler TS, Surmeier DJ. Calcium homeostasis, selective vulnerability and Parkinson’s disease. Trends Neurosci. 2009;32:249–56.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  55. Ford CP. The role of D2-autoreceptors in regulating dopamine neuron activity and transmission. Neuroscience. 2014;282:13–22.

    CAS  PubMed  Article  Google Scholar 

  56. Giguere N, Delignat-Lavaud B, Herborg F, Voisin A, Li Y, Jacquemet V, et al. Increased vulnerability of nigral dopamine neurons after expansion of their axonal arborization size through D2 dopamine receptor conditional knockout. PLoS Genet. 2019;15:e1008352.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  57. Pissadaki EK, Bolam JP. The energy cost of action potential propagation in dopamine neurons: clues to susceptibility in Parkinson’s disease. Front Comput Neurosci. 2013;7:13.

    PubMed  PubMed Central  Article  Google Scholar 

  58. Piao J, Zabierowski S, Dubose BN, Hill EJ, Navare M, Claros N, et al. Preclinical efficacy and safety of a human embryonic stem cell-derived midbrain dopamine progenitor product, MSK-DA01. Cell Stem Cell. 2021;28:217–29.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  59. Parmar M, Grealish S, Henchcliffe C. The future of stem cell therapies for Parkinson disease. Nat Rev Neurosci. 2020;21:103–15.

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

We thank E.F. Trachtman for support and Meredith A. Juncker for reading the manuscript.

Funding

The work is supported in part by NYSTEM Contract C30290GG (fellowship for H.L.), National Institutes of Health grants NS102148 (J.F.), NS113763 (J.F.), and US Department of Veterans Affairs Merit Award BX003831 (J.F). VA resources are not used on human embryonic stem cells.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization J.F., H.J. and H.L. Methodology: H.L., H.J., Z.Y., and J.F. Investigation: H.L. and H.J. performed most of the experiments and data analyses. H.L. performed electrophysiology experiments under the guidance of Z.Y.; Hq.L., H.J., and H.L. performed transplantation. L.L. performed statistical reanalysis of data. Writing: J.F., H.L., and H.J., with input from Hq.L., L.L. and Z.Y.

Corresponding author

Correspondence to Jian Feng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, H., Jiang, H., Li, H. et al. Generation of human A9 dopaminergic pacemakers from induced pluripotent stem cells. Mol Psychiatry (2022). https://doi.org/10.1038/s41380-022-01628-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41380-022-01628-1

Search

Quick links