Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Enhancing GluN2A-type NMDA receptors impairs long-term synaptic plasticity and learning and memory

Abstract

N-methyl-D-aspartic acid type glutamate receptors (NMDARs) play critical roles in synaptic transmission and plasticity, the dysregulation of which leads to cognitive defects. Here, we identified a rare variant in the NMDAR subunit GluN2A (K879R) in a patient with intellectual disability. The K879R mutation enhanced receptor expression on the cell surface by disrupting a KKK motif that we demonstrated to be an endoplasmic reticulum retention signal. Expression of GluN2A_K879R in mouse hippocampal CA1 neurons enhanced the excitatory postsynaptic currents mediated by GluN2A-NMDAR but suppressed those mediated by GluN2B-NMDAR and the AMPA receptor. GluN2A_K879R knock-in mice showed similar defects in synaptic transmission and exhibited impaired learning and memory. Furthermore, both LTP and LTD were severely impaired in the KI mice, likely explaining their learning and memory defects. Therefore, our study reveals a new mechanism by which elevated synaptic GluN2A-NMDAR impairs long-term synaptic plasticity as well as learning and memory.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Pedigree and identification of the GluN2A_K879R variant.
Fig. 2: The K879R variant enhances the surface expression of NMDARs by disrupting ER retention.
Fig. 3: Overexpression of GluN2A_K879R enhances NMDAR-EPSCs.
Fig. 4: GluN2A_K879R KI mice show impaired learning and memory capacities.
Fig. 5: The expression of glutamate receptor proteins in KI mice.
Fig. 6: GluN2A_K879R KI alters synaptic transmission and plasticity.

Similar content being viewed by others

References

  1. Traynelis SF, Wollmuth LP, McBain CJ, Menniti FS, Vance KM, Ogden KK, et al. Glutamate receptor ion channels: structure, regulation, and function. Pharm Rev. 2010;62:405–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Paoletti P, Bellone C, Zhou Q. NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease. Nat Rev Neurosci. 2013;14:383–400.

    Article  CAS  PubMed  Google Scholar 

  3. Ghasemi M, Schachter SC. The NMDA receptor complex as a therapeutic target in epilepsy: a review. Epilepsy Behav. 2011;22:617–40.

    Article  PubMed  Google Scholar 

  4. Yuan H, Low CM, Moody OA, Jenkins A, Traynelis SF. Ionotropic GABA and glutamate receptor mutations and human neurologic diseases. Mol Pharm. 2015;88:203–17.

    Article  CAS  Google Scholar 

  5. Lesca G, Rudolf G, Bruneau N, Lozovaya N, Labalme A, Boutry-Kryza N, et al. GRIN2A mutations in acquired epileptic aphasia and related childhood focal epilepsies and encephalopathies with speech and language dysfunction. Nat Genet. 2013;45:1061–6.

    Article  CAS  PubMed  Google Scholar 

  6. Tarabeux J, Kebir O, Gauthier J, Hamdan FF, Xiong L, Piton A, et al. Rare mutations in N-methyl-D-aspartate glutamate receptors in autism spectrum disorders and schizophrenia. Transl Psychiatry. 2011;1:e55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Carvill GL, Regan BM, Yendle SC, O’Roak BJ, Lozovaya N, Bruneau N, et al. GRIN2A mutations cause epilepsy-aphasia spectrum disorders. Nat Genet. 2013;45:1073–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Reutlinger C, Helbig I, Gawelczyk B, Subero JI, Tonnies H, Muhle H, et al. Deletions in 16p13 including GRIN2A in patients with intellectual disability, various dysmorphic features, and seizure disorders of the rolandic region. Epilepsia. 2010;51:1870–3.

    Article  CAS  PubMed  Google Scholar 

  9. Fernandez-Marmiesse A, Kusumoto H, Rekarte S, Roca I, Zhang J, Myers SJ, et al. A novel missense mutation in GRIN2A causes a nonepileptic neurodevelopmental disorder. Mov Disord. 2018;33:992–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chen W, Tankovic A, Burger PB, Kusumoto H, Traynelis SF, Yuan H. Functional evaluation of a de novo GRIN2A mutation identified in a patient with profound global developmental delay and refractory epilepsy. Mol Pharm. 2017;91:317–30.

    Article  CAS  Google Scholar 

  11. Marwick KFM, Skehel PA, Hardingham GE, Wyllie DJA. The human NMDA receptor GluN2A(N615K) variant influences channel blocker potency. Pharm Res Perspect. 2019;7:e00495.

    Article  Google Scholar 

  12. Mota Vieira M, Nguyen TA, Wu K, Badger JD 2nd, Collins BM, Anggono V, et al. An epilepsy-associated GRIN2A rare variant disrupts CaMKIIalpha phosphorylation of GluN2A and NMDA receptor trafficking. Cell Rep. 2020;32:108104.

    Article  CAS  PubMed  Google Scholar 

  13. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17:405–24.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Li YJ, Duan GF, Sun JH, Wu D, Ye C, Zang YY, et al. Neto proteins regulate gating of the kainate-type glutamate receptor GluK2 through two binding sites. J Biol Chem. 2019;294:17889–902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Horak M, Wenthold RJ. Different roles of C-terminal cassettes in the trafficking of full-length NR1 subunits to the cell surface. J Biol Chem. 2009;284:9683–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Standley S, Roche KW, McCallum J, Sans N, Wenthold RJ. PDZ domain suppression of an ER retention signal in NMDA receptor NR1 splice variants. Neuron 2000;28:887–98.

    Article  CAS  PubMed  Google Scholar 

  17. Tabata H, Nakajima K. Efficient in utero gene transfer system to the developing mouse brain using electroporation: visualization of neuronal migration in the developing cortex. Neuroscience. 2001;103:865–72.

    Article  CAS  PubMed  Google Scholar 

  18. Jiang CH, Wei M, Zhang C, Shi YS. The amino-terminal domain of GluA1 mediates LTP maintenance via interaction with neuroplastin-65. Proc Natl Acad Sci USA. 2021;118:e2019194118.

  19. Adesnik H, Li G, During MJ, Pleasure SJ, Nicoll RA. NMDA receptors inhibit synapse unsilencing during brain development. Proc Natl Acad Sci USA. 2008;105:5597–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gray JA, Shi Y, Usui H, During MJ, Sakimura K, Nicoll RA. Distinct modes of AMPA receptor suppression at developing synapses by GluN2A and GluN2B: single-cell NMDA receptor subunit deletion in vivo. Neuron. 2011;71:1085–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Neyton J, Paoletti P. Relating NMDA receptor function to receptor subunit composition: limitations of the pharmacological approach. J Neurosci. 2006;26:1331–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lu W, Shi Y, Jackson AC, Bjorgan K, During MJ, Sprengel R, et al. Subunit composition of synaptic AMPA receptors revealed by a single-cell genetic approach. Neuron. 2009;62:254–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu XR, Xu XX, Lin SM, Fan CY, Ye TT, Tang B, et al. GRIN2A variants associated with idiopathic generalized epilepsies. Front Mol Neurosci. 2021;14:720984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Scott DB, Blanpied TA, Swanson GT, Zhang C, Ehlers MD. An NMDA receptor ER retention signal regulated by phosphorylation and alternative splicing. J Neurosci. 2001;21:3063–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Yang W, Zheng C, Song Q, Yang X, Qiu S, Liu C, et al. A three amino acid tail following the TM4 region of the N-methyl-D-aspartate receptor (NR) 2 subunits is sufficient to overcome endoplasmic reticulum retention of NR1-1a subunit. J Biol Chem. 2007;282:9269–78.

    Article  CAS  PubMed  Google Scholar 

  26. Sheng M, Cummings J, Roldan LA, Jan YN, Jan LY. Changing subunit composition of heteromeric NMDA receptors during development of rat cortex. Nature. 1994;368:144–7.

    Article  CAS  PubMed  Google Scholar 

  27. Ultanir SK, Kim JE, Hall BJ, Deerinck T, Ellisman M, Ghosh A. Regulation of spine morphology and spine density by NMDA receptor signaling in vivo. Proc Natl Acad Sci USA. 2007;104:19553–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kim MJ, Dunah AW, Wang YT, Sheng M. Differential roles of NR2A- and NR2B-containing NMDA receptors in Ras-ERK signaling and AMPA receptor trafficking. Neuron. 2005;46:745–60.

    Article  CAS  PubMed  Google Scholar 

  29. Berberich S, Jensen V, Hvalby O, Seeburg PH, Kohr G. The role of NMDAR subtypes and charge transfer during hippocampal LTP induction. Neuropharmacology. 2007;52:77–86.

    Article  CAS  PubMed  Google Scholar 

  30. Mammen AL, Kameyama K, Roche KW, Huganir RL. Phosphorylation of the alpha-amino-3-hydroxy-5-methylisoxazole4-propionic acid receptor GluR1 subunit by calcium/calmodulin-dependent kinase II. J Biol Chem. 1997;272:32528–33.

    Article  CAS  PubMed  Google Scholar 

  31. Barria A, Muller D, Derkach V, Griffith LC, Soderling TR. Regulatory phosphorylation of AMPA-type glutamate receptors by CaM-KII during long-term potentiation. Science. 1997;276:2042–5.

    Article  CAS  PubMed  Google Scholar 

  32. Kristensen AS, Jenkins MA, Banke TG, Schousboe A, Makino Y, Johnson RC, et al. Mechanism of Ca2+/calmodulin-dependent kinase II regulation of AMPA receptor gating. Nat Neurosci. 2011;14:727–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Citri A, Malenka RC. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology. 2008;33:18–41.

    Article  PubMed  Google Scholar 

  34. Malinow R, Malenka RC. AMPA receptor trafficking and synaptic plasticity. Annu Rev Neurosci. 2002;25:103–26.

    Article  CAS  PubMed  Google Scholar 

  35. Liu L, Wong TP, Pozza MF, Lingenhoehl K, Wang Y, Sheng M, et al. Role of NMDA receptor subtypes in governing the direction of hippocampal synaptic plasticity. Science. 2004;304:1021–4.

    Article  CAS  PubMed  Google Scholar 

  36. Massey PV, Johnson BE, Moult PR, Auberson YP, Brown MW, Molnar E, et al. Differential roles of NR2A and NR2B-containing NMDA receptors in cortical long-term potentiation and long-term depression. J Neurosci. 2004;24:7821–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Berberich S, Punnakkal P, Jensen V, Pawlak V, Seeburg PH, Hvalby O, et al. Lack of NMDA receptor subtype selectivity for hippocampal long-term potentiation. J Neurosci. 2005;25:6907–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Li R, Huang FS, Abbas AK, Wigstrom H. Role of NMDA receptor subtypes in different forms of NMDA-dependent synaptic plasticity. BMC Neurosci. 2007;8:55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Volianskis A, Bannister N, Collett VJ, Irvine MW, Monaghan DT, Fitzjohn SM, et al. Different NMDA receptor subtypes mediate induction of long-term potentiation and two forms of short-term potentiation at CA1 synapses in rat hippocampus in vitro. J Physiol. 2013;591:955–72.

    Article  CAS  PubMed  Google Scholar 

  40. Hackos DH, Lupardus PJ, Grand T, Chen Y, Wang TM, Reynen P, et al. Positive allosteric modulators of GluN2A-containing NMDARs with distinct modes of action and impacts on circuit function. Neuron. 2016;89:983–99.

    Article  CAS  PubMed  Google Scholar 

  41. Barria A, Malinow R. NMDA receptor subunit composition controls synaptic plasticity by regulating binding to CaMKII. Neuron. 2005;48:289–301.

    Article  CAS  PubMed  Google Scholar 

  42. Brigman JL, Wright T, Talani G, Prasad-Mulcare S, Jinde S, Seabold GK, et al. Loss of GluN2B-containing NMDA receptors in CA1 hippocampus and cortex impairs long-term depression, reduces dendritic spine density, and disrupts learning. J Neurosci. 2010;30:4590–600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tang YP, Shimizu E, Dube GR, Rampon C, Kerchner GA, Zhuo M, et al. Genetic enhancement of learning and memory in mice. Nature. 1999;401:63–9.

    Article  CAS  PubMed  Google Scholar 

  44. Bartlett TE, Bannister NJ, Collett VJ, Dargan SL, Massey PV, Bortolotto ZA, et al. Differential roles of NR2A and NR2B-containing NMDA receptors in LTP and LTD in the CA1 region of two-week old rat hippocampus. Neuropharmacology. 2007;52:60–70.

    Article  CAS  PubMed  Google Scholar 

  45. de Marchena J, Roberts AC, Middlebrooks PG, Valakh V, Yashiro K, Wilfley LR, et al. NMDA receptor antagonists reveal age-dependent differences in the properties of visual cortical plasticity. J Neurophysiol. 2008;100:1936–48.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Incontro S, Diaz-Alonso J, Iafrati J, Vieira M, Asensio CS, Sohal VS, et al. The CaMKII/NMDA receptor complex controls hippocampal synaptic transmission by kinase-dependent and independent mechanisms. Nat Commun. 2018;9:2069.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Gardoni F, Mauceri D, Malinverno M, Polli F, Costa C, Tozzi A, et al. Decreased NR2B subunit synaptic levels cause impaired long-term potentiation but not long-term depression. J Neurosci. 2009;29:669–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wong JM, Gray JA. Long-term depression is independent of GluN2 subunit composition. J Neurosci. 2018;38:4462–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ma YY, Chu NN, Guo CY, Han JS, Cui CL. NR2B-containing NMDA receptor is required for morphine-but not stress-induced reinstatement. Exp Neurol. 2007;203:309–19.

    Article  CAS  PubMed  Google Scholar 

  50. Morishita W, Lu W, Smith GB, Nicoll RA, Bear MF, Malenka RC. Activation of NR2B-containing NMDA receptors is not required for NMDA receptor-dependent long-term depression. Neuropharmacology. 2007;52:71–6.

    Article  CAS  PubMed  Google Scholar 

  51. Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell. 2014;157:1262–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work is supported by grants from the National Key R&D Program of China (2019YFA0801603 to YSS), the National Natural Science Foundation of China (32170951 and 91849112 to YSS, 81901161 to JC, 81770236 to ZFX, 81971398 to PH and 31871032 to NS), Strategic Priority Research Program of the Chinese Academy of Sciences (XDPB17 to NS), the Fundamental Research Funds for the Central Universities (0903-14380029 to YSS), the Natural Science Foundation of Jiangsu Province (BE2019707 to YSS and BK20181121 to PH), Special Fund for Science and Technology Innovation Strategy of Guangdong Province (2021B0909050004 to YSS) and Yunnan Applied Basic Research Projects (2019FA008 and 2019FJ003 to NS).

Author information

Authors and Affiliations

Authors

Contributions

Q-QL, JC and J-HS carried out electrophysiological analysis. Q-QL, MJ, H-YF and GC analyzed surface expression. PH, F-CQ and ZX collected the clinical information. Y-YZ and Y-YS designed the KI mice. NS, J-JY and YSS designed the experiments. YX supervised the study. YSS wrote the paper.

Corresponding authors

Correspondence to Jian-Jun Yang, Zhengfeng Xu or Yun Stone Shi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, QQ., Chen, J., Hu, P. et al. Enhancing GluN2A-type NMDA receptors impairs long-term synaptic plasticity and learning and memory. Mol Psychiatry 27, 3468–3478 (2022). https://doi.org/10.1038/s41380-022-01579-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-022-01579-7

Search

Quick links