Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chromatin architecture in addiction circuitry identifies risk genes and potential biological mechanisms underlying cigarette smoking and alcohol use traits

A Correction to this article was published on 07 July 2022

This article has been updated

Abstract

Cigarette smoking and alcohol use are among the most prevalent substances used worldwide and account for a substantial proportion of preventable morbidity and mortality, underscoring the public health significance of understanding their etiology. Genome-wide association studies (GWAS) have successfully identified genetic variants associated with cigarette smoking and alcohol use traits. However, the vast majority of risk variants reside in non-coding regions of the genome, and their target genes and neurobiological mechanisms are unknown. Chromosomal conformation mappings can address this knowledge gap by charting the interaction profiles of risk-associated regulatory variants with target genes. To investigate the functional impact of common variants associated with cigarette smoking and alcohol use traits, we applied Hi-C coupled MAGMA (H-MAGMA) built upon cortical and newly generated midbrain dopaminergic neuronal Hi-C datasets to GWAS summary statistics of nicotine dependence, cigarettes per day, problematic alcohol use, and drinks per week. The identified risk genes mapped to key pathways associated with cigarette smoking and alcohol use traits, including drug metabolic processes and neuronal apoptosis. Risk genes were highly expressed in cortical glutamatergic, midbrain dopaminergic, GABAergic, and serotonergic neurons, suggesting them as relevant cell types in understanding the mechanisms by which genetic risk factors influence cigarette smoking and alcohol use. Lastly, we identified pleiotropic genes between cigarette smoking and alcohol use traits under the assumption that they may reveal substance-agnostic, shared neurobiological mechanisms of addiction. The number of pleiotropic genes was ~26-fold higher in dopaminergic neurons than in cortical neurons, emphasizing the critical role of ascending dopaminergic pathways in mediating general addiction phenotypes. Collectively, brain region- and neuronal subtype-specific 3D genome architecture helps refine neurobiological hypotheses for smoking, alcohol, and general addiction phenotypes by linking genetic risk factors to their target genes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Gene regulatory landscape in cortical and dopaminergic neurons.
Fig. 2: Genes and pathways associated with cigarette smoking and alcohol use traits.
Fig. 3: Cellular and brain regional expression profiles of cigarette smoking and alcohol use risk genes.
Fig. 4: Pleiotropic genes highlight shared neurobiological bases of cigarette smoking and alcohol use.

Similar content being viewed by others

Data availability

CN (syn21760712) and DN (syn24184521) Hi-C datasets described in this manuscript are available via the PsychENCODE Knowledge Portal (https://psychencode.synapse.org/). The PsychENCODE Knowledge Portal is a platform for accessing data, analyses, and tools generated through grants funded by the National Institute of Mental Health (NIMH) PsychENCODE program. Data is available for general research use according to the following requirements for data access and data attribution: (https://psychencode.synapse.org/DataAccess). H-MAGMA input and output files are available in the Github repository (https://github.com/thewonlab/H-MAGMA). GWAS summary statistics for DPW and CPD were obtained from https://genome.psych.umn.edu/index.php/GSCAN. GWAS summary statistics for ND and PAU were obtained from dbGaP with the accession numbers and phs001532.v1.p1 and phs001672.v3.p1, respectively. RNA-seq and ATAC-seq data from hiPSC-derived CNs and DNs were obtained from GSE129017.

Code availability

All custom code used in this work is available in the following Github repository: https://github.com/thewonlab/H-MAGMA.

Change history

References

  1. Key Substance Use and Mental Health Indicators in the United States: Results from the 2018 National Survey on Drug Use and Health. https://www.samhsa.gov/data/sites/default/files/cbhsq-reports/NSDUHNationalFindingsReport2018/NSDUHNationalFindingsReport2018.pdf. Accessed 17 August 2020.

  2. Peacock A, Leung J, Larney S, Colledge S, Hickman M, Rehm J, et al. Global statistics on alcohol, tobacco and illicit drug use: 2017 status report. Addiction. 2018;113:1905–26.

    Article  PubMed  Google Scholar 

  3. National Center for Chronic Disease Prevention and Health Promotion (US) Office on Smoking and Health. The Health Consequences of Smoking—50 Years of Progress: A Report of the Surgeon General. Atlanta (GA): Centers for Disease Control and Prevention (US); 2014.

  4. Kranzler HR, Zhou H, Kember RL, Vickers Smith R, Justice AC, Damrauer S, et al. Genome-wide association study of alcohol consumption and use disorder in 274,424 individuals from multiple populations. Nat Commun. 2019;10:1499.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Liu M, Jiang Y, Wedow R, Li Y, Brazel DM, Chen F, et al. Association studies of up to 1.2 million individuals yield new insights into the genetic etiology of tobacco and alcohol use. Nat Genet. 2019;51:237–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhou H, Sealock JM, Sanchez-Roige S, Clarke T-K, Levey DF, Cheng Z, et al. Genome-wide meta-analysis of problematic alcohol use in 435,563 individuals yields insights into biology and relationships with other traits. Nat Neurosci 2020;23:809–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Quach BC, Bray MJ, Gaddis NC, Liu M, Palviainen T, Minica CC, et al. Expanding the genetic architecture of nicotine dependence and its shared genetics with multiple traits. Nat Commun. 2020;11:1–13.

    Article  Google Scholar 

  8. Dekker J. Gene regulation in the third dimension. Science 2008;319:1793–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Won H, de la Torre-Ubieta L, Stein JL, Parikshak NN, Huang J, Opland CK, et al. Chromosome conformation elucidates regulatory relationships in developing human brain. Nature 2016;538:523–7.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Mah W, Won H. The three-dimensional landscape of the genome in human brain tissue unveils regulatory mechanisms leading to schizophrenia risk. Schizophr Res. 2020;217:17–25.

    Article  PubMed  Google Scholar 

  11. Sey NYA, Hu B, Mah W, Fauni H, McAfee JC, Rajarajan P, et al. A computational tool (H-MAGMA) for improved prediction of brain-disorder risk genes by incorporating brain chromatin interaction profiles. Nat Neurosci. https://doi.org/10.1038/s41593-020-0603-0. 2020.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Rajarajan P, Borrman T, Liao W, Schrode N, Flaherty E, Casiño C, et al. Neuron-specific signatures in the chromosomal connectome are associated with schizophrenia risk. Science. 2018;362:eaat4311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Koob GF, Volkow ND. Neurobiology of addiction: a neurocircuitry analysis. Lancet Psychiatry. 2016;3:760–73.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lammel S, Lim BK, Malenka RC. Reward and aversion in a heterogeneous midbrain dopamine system. Neuropharmacology. 2014;76 Pt B:351–9.

  15. Hu B, Won H, Mah W, Park RB, Kassim B, Spiess K, et al. Neuronal and glial 3D chromatin architecture informs the cellular etiology of brain disorders. Nat Commun. 2021;12:3968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Espeso-Gil S, Halene T, Bendl J, Kassim B, Ben Hutta G, Iskhakova M, et al. A chromosomal connectome for psychiatric and metabolic risk variants in adult dopaminergic neurons. Genome Med. 2020;12:19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Consortium, Roadmap Epigenomics, Kundaje A, Meuleman W, Ernst J, Bilenky M, Yen A, et al. Integrative analysis of 111 reference human epigenomes. Nature 2015;518:317–30.

    Article  Google Scholar 

  18. Finucane HK, Bulik-Sullivan B, Gusev A, Trynka G, Reshef Y, Loh P-R, et al. Partitioning heritability by functional annotation using genome-wide association summary statistics. Nat Genet 2015;47:1228–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Berke JD, Hyman SE. Addiction, dopamine, and the molecular mechanisms of memory. Neuron 2000;25:515–32.

    Article  CAS  PubMed  Google Scholar 

  20. Zhang S, Zhang H, Zhou Y, Qiao M, Zhao S, Kozlova A, et al. Allele-specific open chromatin in human iPSC neurons elucidates functional disease variants. Science 2020;369:561–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nott A, Holtman IR, Coufal NG, Schlachetzki JCM, Yu M, Hu R, et al. Brain cell type-specific enhancer-promoter interactome maps and disease-risk association. Science 2019;366:1134–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Stark R, Brown G, et al. DiffBind: differential binding analysis of ChIP-Seq peak data. R Package Version. 2011;100:4–3.

    Google Scholar 

  23. Zeisel A, Hochgerner H, Lönnerberg P, Johnsson A, Memic F, van der Zwan J, et al. Molecular architecture of the mouse nervous system. Cell 2018;174:999–1014. e22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Metzakopian E, Lin W, Salmon-Divon M, Dvinge H, Andersson E, Ericson J, et al. Genome-wide characterization of Foxa2 targets reveals upregulation of floor plate genes and repression of ventrolateral genes in midbrain dopaminergic progenitors. Development 2012;139:2625–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lee H-S, Bae E-J, Yi S-H, Shim J-W, Jo A-Y, Kang J-S, et al. Foxa2 and Nurr1 synergistically yield A9 nigral dopamine neurons exhibiting improved differentiation, function, and cell survival. Stem Cells. 2010;28:501–12.

    Article  CAS  PubMed  Google Scholar 

  26. Saucedo-Cardenas O, Quintana-Hau JD, Le WD, Smidt MP, Cox JJ, De Mayo F, et al. Nurr1 is essential for the induction of the dopaminergic phenotype and the survival of ventral mesencephalic late dopaminergic precursor neurons. Proc Natl Acad Sci USA. 1998;95:4013–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 2012;485:376–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Simon HH, Saueressig H, Wurst W, Goulding MD, O’Leary DD. Fate of midbrain dopaminergic neurons controlled by the engrailed genes. J Neurosci. 2001;21:3126–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Palmer AA, Low MJ, Grandy DK, Phillips TJ. Effects of a Drd2 deletion mutation on ethanol-induced locomotor stimulation and sensitization suggest a role for epistasis. Behav Genet. 2003;33:311–24.

    Article  PubMed  Google Scholar 

  30. Herman AI, DeVito EE, Jensen KP, Sofuoglu M. Pharmacogenetics of nicotine addiction: role of dopamine. Pharmacogenomics 2014;15:221–34.

    Article  CAS  PubMed  Google Scholar 

  31. June HL, Foster KL, Eiler WJA, Goergen J, Cook JB, Johnson N, et al. Dopamine and Benzodiazepine-Dependent Mechanisms Regulate the EtOH-Enhanced Locomotor Stimulation in the GABAA α1 Subunit Null Mutant Mice. Neuropsychopharmacology 2007;32:137–52.

    Article  CAS  PubMed  Google Scholar 

  32. Jeanblanc J, He D-Y, Carnicella S, Kharazia V, Janak PH, Ron D. Endogenous BDNF in the dorsolateral striatum gates alcohol drinking. J Neurosci. 2009;29:13494–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhou Z, Enoch M-A, Goldman D. Gene expression in the addicted brain. Int Rev Neurobiol. 2014;116:251–73.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Semick SA, Collado-Torres L, Markunas CA, Shin JH, Deep-Soboslay A, Tao R, et al. Developmental effects of maternal smoking during pregnancy on the human frontal cortex transcriptome. Mol Psychiatry. 2018;25:3267–77.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Jensen KP, Lieberman R, Kranzler HR, Gelernter J, Clinton K, Covault J. Alcohol-responsive genes identified in human iPSC-derived neural cultures. Transl Psychiatry. 2019;9:96.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Skorput AGJ, Gupta VP, Yeh PWL, Yeh HH. Persistent interneuronopathy in the prefrontal cortex of young adult offspring exposed to ethanol in utero. J Neurosci 2015;35:10977–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kazemi T, Huang S, Avci NG, Waits CMK, Akay YM, Akay M. Investigating the influence of perinatal nicotine and alcohol exposure on the genetic profiles of dopaminergic neurons in the VTA using miRNA–mRNA analysis. Sci Rep. 2020;10:15016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fox HC, Milivojevic V, Angarita GA, Stowe R, Sinha R. Peripheral immune system suppression in early abstinent alcohol-dependent individuals: Links to stress and cue-related craving. J Psychopharmacol. 2017;31:883–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pasala S, Barr T, Messaoudi I. Impact of alcohol abuse on the adaptive immune system. Alcohol Res. 2015;37:185.

    PubMed  PubMed Central  Google Scholar 

  40. Díaz-Villanueva JF, Díaz-Molina R, García-González V. Protein folding and mechanisms of proteostasis. Int J Mol Sci 2015;16:17193–230.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Elman I, Borsook D. Common brain mechanisms of chronic pain and addiction. Neuron 2016;89:11–36.

    Article  CAS  PubMed  Google Scholar 

  42. Goodman J, Packard MG. Memory systems and the addicted brain. Front Psychiatry 2016;7:24.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Morin J-FG, Afzali MH, Bourque J, Stewart SH, Séguin JR, O’Leary-Barrett M, et al. A population-based analysis of the relationship between substance use and adolescent cognitive development. Am J Psychiatry. 2019;176:98–106.

    Article  PubMed  Google Scholar 

  44. Elmenhorst E-M, Elmenhorst D, Benderoth S, Kroll T, Bauer A, Aeschbach D. Cognitive impairments by alcohol and sleep deprivation indicate trait characteristics and a potential role for adenosine A1 receptors. Proc Natl Acad Sci USA. 2018;115:8009–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Xu Z, Qi F, Wang Y, Jia X, Lin P, Geng M, et al. Cancer mortality attributable to cigarette smoking in 2005, 2010 and 2015 in Qingdao, China. PLoS One. 2018;13:e0204221.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Darmanis S, Sloan SA, Zhang Y, Enge M, Caneda C, Shuer LM, et al. A survey of human brain transcriptome diversity at the single cell level. Proc Natl Acad Sci USA. 2015;112:7285–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lake BB, Ai R, Kaeser GE, Salathia NS, Yung YC, Liu R, et al. Neuronal subtypes and diversity revealed by single-nucleus RNA sequencing of the human brain. Science 2016;352:1586–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Matzeu A, Martin-Fardon R. Drug seeking and relapse: new evidence of a role for orexin and dynorphin co-transmission in the paraventricular nucleus of the thalamus. Front Neurol. 2018;9:720.

    Article  PubMed  PubMed Central  Google Scholar 

  49. La Manno G, Gyllborg D, Codeluppi S, Nishimura K, Salto C, Zeisel A, et al. Molecular diversity of midbrain development in mouse, human, and stem cells. Cell 2016;167:566–80.e19.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Morello F, Partanen J. Diversity and development of local inhibitory and excitatory neurons associated with dopaminergic nuclei. FEBS Lett 2015;589:3693–701.

    Article  CAS  PubMed  Google Scholar 

  51. Kirby LG, Zeeb FD, Winstanley CA. Contributions of serotonin in addiction vulnerability. Neuropharmacology 2011;61:421–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tran MN, Maynard KR, Spangler A, Huuki LA, Montgomery KD, Sadashivaiah V, et al. Single-nucleus transcriptome analysis reveals cell-type-specific molecular signatures across reward circuitry in the human brain. Neuron 2021;109:3088–103.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wang D, Liu S, Warrell J, Won H, Shi X, Navarro FCP, et al. Comprehensive functional genomic resource and integrative model for the human brain. Science. 2018;362.

  54. Gould TJ. Nicotine and hippocampus-dependent learning. Mol Neurobiol. 2006;34:93–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhu Y, Wienecke CFR, Nachtrab G, Chen X. A thalamic input to the nucleus accumbens mediates opiate dependence. Nature 2016;530:219–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Abuse S Mental Health Services Administration. (2018). Key substance use and mental health indicators in the United States: Results from the 2017 National Survey on Drug Use and Health (HHS Publication No. SMA 18-5068, NSDUH Series H-53). Rockville, MD: Center for Behavioral Health Statistics and Quality. Substance Abuse and Mental Health Services Administration Retrieved from https://www.SamhsaGov/data.2019. 2019.

  57. Savell KE, Tuscher JJ, Zipperly ME, Duke CG, Phillips RA 3rd, Bauman AJ, et al. A dopamine-induced gene expression signature regulates neuronal function and cocaine response. Sci Adv. 2020;6:eaba4221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hendershot CS, Wardell JD, Samokhvalov AV, Rehm J. Effects of naltrexone on alcohol self-administration and craving: meta-analysis of human laboratory studies. Addiction Biol. 2017;22:1515–27.

    Article  CAS  Google Scholar 

  59. Stead LF, Perera R, Bullen C, Mant D, Hartmann-Boyce J, Cahill K, et al. Nicotine replacement therapy for smoking cessation. Cochrane Database Syst Rev. 2012;11:CD000146.

    PubMed  Google Scholar 

  60. Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 2016;44:W90–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Castillo-Carniglia A, Keyes KM, Hasin DS, Cerdá M. Psychiatric comorbidities in alcohol use disorder. Lancet Psychiatry. 2019;6:1068–80.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Murthy P, Mahadevan J, Chand PK. Treatment of substance use disorders with co-occurring severe mental health disorders. Curr Opin Psychiatry. 2019;32:293–9.

    Article  PubMed  Google Scholar 

  63. Hartz SM, Horton AC, Oehlert M, Carey CE, Agrawal A, Bogdan R, et al. Association between substance use disorder and polygenic liability to schizophrenia. Biol Psychiatry. 2017;82:709–15.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Chang L-H, Whitfield JB, Liu M, Medland SE, Hickie IB, Martin NG, et al. Associations between polygenic risk for tobacco and alcohol use and liability to tobacco and alcohol use, and psychiatric disorders in an independent sample of 13,999 Australian adults. Drug Alcohol Depend. 2019;205:107704.

    Article  CAS  PubMed  Google Scholar 

  65. Hoffman JL, Faccidomo S, Kim M, Taylor SM, Agoglia AE, May AM, et al. Alcohol drinking exacerbates neural and behavioral pathology in the 3xTg-AD mouse model of Alzheimer’s disease. Int Rev Neurobiol. 2019;148:169–230.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Nicholatos JW, Francisco AB, Bender CA, Yeh T, Lugay FJ, Salazar JE, et al. Nicotine promotes neuron survival and partially protects from Parkinson’s disease by suppressing SIRT6. Acta Neuropatholo Commun. 2018;6:120.

    Article  CAS  Google Scholar 

  67. Piao W-H, Campagnolo D, Dayao C, Lukas RJ, Wu J, Shi F-D. Nicotine and inflammatory neurological disorders. Acta Pharmacologica Sin. 2009;30:715–22.

    Article  CAS  Google Scholar 

  68. Bush T, Lovejoy JC, Deprey M, Carpenter KM. The effect of tobacco cessation on weight gain, obesity, and diabetes risk. Obesity 2016;24:1834–41.

    Article  PubMed  Google Scholar 

  69. Germeroth LJ, Levine MD. Postcessation weight gain concern as a barrier to smoking cessation: Assessment considerations and future directions. Addict Behav. 2018;76:250–7.

    Article  PubMed  Google Scholar 

  70. McCrory EJ, Mayes L. Understanding Addiction as a Developmental Disorder: An Argument for a Developmentally Informed Multilevel Approach. Curr Addiction Rep. 2015;2:326–30.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank members of the Won lab for helpful discussions and comments about this paper, in particular, Nana Matoba, Won Mah, and Jessica McAfee. We also acknowledge helpful advice and discussion from Jonathan Pollock, Amy Lossie, and Susan Wright. We thank Stefano Marenco and Barbara Lipska from the Human Brain Collection Core (HBCC, Bethesda, MD) for providing postmortem brain specimens; Mette Peters, Kelsey Montgomery, and Juliane Schneider for assisting data deposition into synapse. This research was supported by the National Institute on Drug Abuse (R21DA051921, HW, DBH, EOJ; U01DA048279, SA), National Institute of Mental Health (R00MH113823, DP2MH122403, HW), the NARSAD Young Investigator Award from the Brain and Behavior Research Foundation (HW). NYAS was supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. DGE-1650116 and in part by a grant to the University of North Carolina at Chapel Hill from the Howard Hughes Medical Institute through the James H. Gilliam Fellowship for Advanced Study Program. SL was supported by the National Institute of General Medical Sciences (5T32GM067553). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Author information

Authors and Affiliations

Authors

Contributions

NYAS, BH, DBH, EOJ, SA, and HW designed the research. SA supervised DN Hi-C library generation. NS and GBH sorted dopaminergic nuclei from the midbrain. MI generated DN Hi-C libraries. BH and SL analyzed ATAC-seq, RNA-seq, and Hi-C data and developed DN H-MAGMA framework. NYAS performed H-MAGMA analysis and functional characterization of risk genes. BCQ, JAM, EOJ, and DBH performed meta-analysis of ND GWAS. HS performed EnrichR analysis. HW, NYAS, and BH generated and edited figures. HW, NYAS, and BH co-wrote the first draft of the manuscript, which was subsequently revised by all other co-authors.

Corresponding authors

Correspondence to Schahram Akbarian or Hyejung Won.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: In Fig. 3B of this article, a typo Hippocmapus was corrected to Hippocampus. The original article has been corrected.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sey, N.Y.A., Hu, B., Iskhakova, M. et al. Chromatin architecture in addiction circuitry identifies risk genes and potential biological mechanisms underlying cigarette smoking and alcohol use traits. Mol Psychiatry 27, 3085–3094 (2022). https://doi.org/10.1038/s41380-022-01558-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-022-01558-y

This article is cited by

Search

Quick links