Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Predicting causal genes from psychiatric genome-wide association studies using high-level etiological knowledge

Abstract

Genome-wide association studies have discovered hundreds of genomic loci associated with psychiatric traits, but the causal genes underlying these associations are often unclear, a research gap that has hindered clinical translation. Here, we present a Psychiatric Omnilocus Prioritization Score (PsyOPS) derived from just three binary features encapsulating high-level assumptions about psychiatric disease etiology – namely, that causal psychiatric disease genes are likely to be mutationally constrained, be specifically expressed in the brain, and overlap with known neurodevelopmental disease genes. To our knowledge, PsyOPS is the first method specifically tailored to prioritizing causal genes at psychiatric GWAS loci. We show that, despite its extreme simplicity, PsyOPS achieves state-of-the-art performance at this task, comparable to a prior domain-agnostic approach relying on tens of thousands of features. Genes prioritized by PsyOPS are substantially more likely than other genes at the same loci to have convergent evidence of direct regulation by the GWAS variant according to both DNA looping assays and expression or splicing quantitative trait locus (QTL) maps. We provide examples of genes hundreds of kilobases away from the lead variant, like GABBR1 for schizophrenia, that are prioritized by all three of PsyOPS, DNA looping and QTLs. Our results underscore the power of incorporating high-level knowledge of trait etiology into causal gene prediction at GWAS loci, and comprise a resource for researchers interested in experimentally characterizing psychiatric gene candidates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Enrichments of PsyOPS’s three features among the five nearest genes to each genome-wide-significant psychiatric GWAS locus.
Fig. 2: Enrichments of PsyOPS’s three features among genes nearest to genome-wide-significant psychiatric and non-psychiatric GWAS variants.
Fig. 3: PsyOPS achieves state-of-the-art performance at identifying candidate causal genes from GWAS.
Fig. 4: PsyOPS-prioritized genes are more likely to have convergent evidence from DNA looping and QTLs.
Fig. 5: In-depth visualization of two loci, one where PsyOPS prioritizes the nearest gene (GABBR2, top), and one where PsyOPS prioritizes the non-nearest gene (GABBR1, bottom).

Similar content being viewed by others

Code availability

Code to run PsyOPS is available at https://github.com/Wainberg/PsyOPS.

References

  1. Visscher PM, Wray NR, Zhang Q, Sklar P, McCarthy MI, Brown MA, et al. 10 years of GWAS discovery: biology, function, and translation. Am J Hum Genet. 2017;101:5–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Klein RJ, Zeiss C, Chew EY, Tsai J-Y, Sackler RS, Haynes C, et al. Complement factor H polymorphism in age-related macular degeneration. Science. 2005;308:385–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tam V, Patel N, Turcotte M, Bossé Y, Paré G, Meyre D. Benefits and limitations of genome-wide association studies. Nat Rev Genet. 2019;20:467–84.

    Article  CAS  PubMed  Google Scholar 

  4. Bray NJ, O’Donovan MC The genetics of neuropsychiatric disorders. Brain Neurosci Adv. 2019; 2. https://doi.org/10.1177/2398212818799271.

  5. Maurano MT, Humbert R, Rynes E, Thurman RE, Haugen E, Wang H, et al. Systematic localization of common disease-associated variation in regulatory DNA. Science. 2012;337:1190–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Smemo S, Tena JJ, Kim K-H, Gamazon ER, Sakabe NJ, Gómez-Marín C, et al. Obesity-associated variants within FTO form long-range functional connections with IRX3. Nature. 2014;507:371–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gallagher MD, Chen-Plotkin AS. The post-GWAS era: from association to function. Am J Hum Genet. 2018;102:717–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Javierre BM, Burren OS, Wilder SP, Kreuzhuber R, Hill SM, Sewitz S, et al. Lineage-specific genome architecture links enhancers and non-coding disease variants to target gene promoters. Cell. 2016;167:1369–1384. e19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rajarajan P, Borrman T, Liao W, Schrode N, Flaherty E, Casiño C et al. Neuron-specific signatures in the chromosomal connectome associated with schizophrenia risk. Science. 2018; 362. https://doi.org/10.1126/science.aat4311.

  10. Ulirsch JC, Lareau CA, Bao EL, Ludwig LS, Guo MH, Benner C, et al. Interrogation of human hematopoiesis at single-cell and single-variant resolution. Nat Genet. 2019;51:683–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nott A, Holtman IR, Coufal NG, Schlachetzki JCM, Yu M, Hu R, et al. Brain cell type-specific enhancer-promoter interactome maps and disease risk association. Science. 2019;366:1134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sey NYA, Hu B, Mah W, Fauni H, McAfee JC, Rajarajan P, et al. A computational tool (H-MAGMA) for improved prediction of brain-disorder risk genes by incorporating brain chromatin interaction profiles. Nat Neurosci. 2020;23:583–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nasser J, Bergman DT, Fulco CP, Guckelberger P, Doughty BR, Patwardhan TA et al. Genome-wide enhancer maps link risk variants to disease genes. Nature. 2021; 593. https://doi.org/10.1038/s41586-021-03446-x.

  14. Plagnol V, Smyth DJ, Todd JA, Clayton DG. Statistical independence of the colocalized association signals for type 1 diabetes and RPS26 gene expression on chromosome 12q13. Biostatistics. 2009;10:327–34.

    Article  PubMed  Google Scholar 

  15. Nica AC, Montgomery SB, Dimas AS, Stranger BE, Beazley C, Barroso I, et al. Candidate causal regulatory effects by integration of expression QTLs with complex trait genetic associations. PLoS Genet. 2010;6:e1000895.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Wallace C, Rotival M, Cooper JD, Rice CM, Yang JHM, McNeill M, et al. Statistical colocalization of monocyte gene expression and genetic risk variants for type 1 diabetes. Hum Mol Genet. 2012;21:2815–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. He X, Fuller CK, Song Y, Meng Q, Zhang B, Yang X, et al. Sherlock: detecting gene-disease associations by matching patterns of expression QTL and GWAS. Am J Hum Genet. 2013;92:667–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Giambartolomei C, Vukcevic D, Schadt EE, Franke L, Hingorani AD, Wallace C, et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet. 2014;10:e1004383.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Hormozdiari F, van de Bunt M, Segrè AV, Li X, Joo JWJ, Bilow M, et al. Colocalization of GWAS and eQTL signals detects target genes. Am J Hum Genet. 2016;99:1245–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wen X, Pique-Regi R, Luca F. Integrating molecular QTL data into genome-wide genetic association analysis: Probabilistic assessment of enrichment and colocalization. PLoS Genet. 2017;13:e1006646.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Chun S, Casparino A, Patsopoulos NA, Croteau-Chonka DC, Raby BA, De Jager PL, et al. Limited statistical evidence for shared genetic effects of eQTLs and autoimmune disease-associated loci in three major immune cell types. Nat Genet. 2017;49:600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gamazon ER, Wheeler HE, Shah KP, Mozaffari SV, Aquino-Michaels K, Carroll RJ, et al. A gene-based association method for mapping traits using reference transcriptome data. Nat Genet. 2015;47:1091–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gusev A, Ko A, Shi H, Bhatia G, Chung W, Penninx BWJ, et al. Integrative approaches for large-scale transcriptome-wide association studies. Nat Genet. 2016;48:245–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhu Z, Zhang F, Hu H, Bakshi A, Robinson MR, Powell JE, et al. Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nat Genet. 2016;48:481–7.

    Article  CAS  PubMed  Google Scholar 

  25. Porcu E, Rüeger S, Lepik K, Santoni FA, Reymond A, Kutalik Z. Mendelian randomization integrating GWAS and eQTL data reveals genetic determinants of complex and clinical traits. Nat Commun. 2019;10:1–12.

    Article  CAS  Google Scholar 

  26. van der Graaf A, Claringbould A, Rimbert A, Westra H-J, Li Y, Wijmenga C, et al. Mendelian randomization while jointly modeling cis genetics identifies causal relationships between gene expression and lipids. Nat Commun. 2020;11:1–12.

    CAS  Google Scholar 

  27. Mountjoy E, Schmidt EM, Carmona M, Schwartzentruber J, Peat G, Miranda A et al. An open approach to systematically prioritize causal variants and genes at all published human GWAS trait-associated loci. Nat Genet. 2021: 1–7.

  28. Forgetta V, Jiang L, Vulpescu NA, Hogan MS, Chen S, Morris JA et al. An Effector Index to Predict Causal Genes at GWAS Loci. bioRxiv. 2021;2020.06.28.171561.

  29. Weeks EM, Ulirsch JC, Cheng NY, Trippe BL, Fine RS, Miao J et al. Leveraging polygenic enrichments of gene features to predict genes underlying complex traits and diseases. medRxiv 2020;2020.09.08.20190561.

  30. McLaren W, Pritchard B, Rios D, Chen Y, Flicek P, Cunningham F Deriving the consequences of genomic variants with the Ensembl API and SNP Effect Predictor. Bioinformatics. 2010; 26. https://doi.org/10.1093/bioinformatics/btq330.

  31. Fine RS, Pers TH, Amariuta T, Raychaudhuri S, Hirschhorn JN. Benchmarker: An Unbiased, Association-Data-Driven Strategy to Evaluate Gene Prioritization Algorithms. Am J Hum Genet. 2019;104:1025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Raychaudhuri S, Plenge RM, Rossin EJ, Ng ACY, International Schizophrenia Consortium, Purcell SM et al. Identifying relationships among genomic disease regions: predicting genes at pathogenic SNP associations and rare deletions. PLoS Genet. 2009; 5. https://doi.org/10.1371/journal.pgen.1000534.

  33. Pers TH, Karjalainen JM, Chan Y, Westra H-J, Wood AR, Yang J, et al. Biological interpretation of genome-wide association studies using predicted gene functions. Nat Commun. 2015;6:1–9.

    Article  CAS  Google Scholar 

  34. The Gene Ontology Consortium, Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, et al. Gene Ontology: tool for the unification of biology. Nat Genet. 2000;25:25.

    Article  PubMed Central  CAS  Google Scholar 

  35. Minoru Kanehisa SG. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28:27.

    Article  PubMed Central  Google Scholar 

  36. Joshi-Tope G, Gillespie M, Vastrik I, D’Eustachio P, Schmidt E, de Bono B, et al. Reactome: a knowledgebase of biological pathways. Nucleic Acids Res. 2005;33:D428–D432.

    Article  CAS  PubMed  Google Scholar 

  37. Smith CL, Goldsmith C-AW, Eppig JT. The Mammalian phenotype ontology as a tool for annotating, analyzing and comparing phenotypic information. Genome Biol. 2005;6:R7.

    Article  PubMed  Google Scholar 

  38. Blake JA, Richardson JE, Davisson MT, Eppig JT, Mouse Genome Informatics Group. The Mouse Genome Database (MGD). A comprehensive public resource of genetic, phenotypic and genomic data. Nucleic Acids Res. 1997;25:85–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Schwartzentruber J, Cooper S, Liu JZ, Barrio-Hernandez I, Bello E, Kumasaka N, et al. Genome-wide meta-analysis, fine-mapping and integrative prioritization implicate new Alzheimer’s disease risk genes. Nat Genet. 2021;53:392–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang Q, Chen R, Cheng F, Wei Q, Ji Y, Yang H, et al. A Bayesian framework that integrates multi-omics data and gene networks predicts risk genes from schizophrenia GWAS data. Nat Neurosci. 2019;22:691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wainberg M, Sinnott-Armstrong N, Mancuso N, Barbeira AN, Knowles DA, Golan D, et al. Opportunities and challenges for transcriptome-wide association studies. Nat Genet. 2019;51:592–9.

    Article  CAS  PubMed  Google Scholar 

  42. Stacey D, Fauman EB, Ziemek D, Sun BB, Harshfield EL, Wood AM et al. ProGeM: a framework for the prioritization of candidate causal genes at molecular quantitative trait loci. Nucleic Acids Res. 2019; 47. https://doi.org/10.1093/nar/gky837.

  43. van Arensbergen J, van Steensel B, Bussemaker HJ In search of the determinants of enhancer-promoter interaction specificity. Trends Cell Biol. 2014; 24. https://doi.org/10.1016/j.tcb.2014.07.004.

  44. Krijger PHL, de Laat W. Regulation of disease-associated gene expression in the 3D genome. Nat Rev Mol Cell Biol. 2016;17:771–82.

    Article  CAS  PubMed  Google Scholar 

  45. Yokoshi M, Fukaya T. Dynamics of transcriptional enhancers and chromosome topology in gene regulation. Dev Growth Differ. 2019;61:343–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Khatri P, Sirota M, Butte AJ. Ten Years of Pathway Analysis: Current Approaches and Outstanding Challenges. PLoS Comput Biol. 2012;8:e1002375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ma J, Shojaie A, Michailidis G. Network-based pathway enrichment analysis with incomplete network information. Bioinformatics. 2016;32:3165–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gaudet P, Dessimoz C Gene Ontology: Pitfalls, Biases, and Remedies. In: The Gene Ontology Handbook. Humana Press, New York, NY, 2017, pp 189–205.

  49. Tomczak A, Mortensen JM, Winnenburg R, Liu C, Alessi DT, Swamy V, et al. Interpretation of biological experiments changes with evolution of the Gene Ontology and its annotations. Sci Rep. 2018;8:1–10.

    Article  CAS  Google Scholar 

  50. Frankish A, Diekhans M, Ferreira A-M, Johnson R, Jungreis I, Loveland J, et al. GENCODE reference annotation for the human and mouse genomes. Nucleic Acids Res. 2019;47:D766–D773.

    Article  CAS  PubMed  Google Scholar 

  51. Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536:285–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alföldi J, Wang Q, et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 2020;581:434–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pardiñas AF, Holmans P, Pocklington AJ, Escott-Price V, Ripke S, Carrera N, et al. Common schizophrenia alleles are enriched in mutation-intolerant genes and in regions under strong background selection. Nat Genet. 2018;50:381–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Singh T, Walters JTR, Johnstone M, Curtis D, Suvisaari J, Torniainen M, et al. The contribution of rare variants to risk of schizophrenia in individuals with and without intellectual disability. Nat Genet. 2017;49:1167–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Rees E, Han J, Morgan J, Carrera N, Escott-Price V, Pocklington AJ, et al. De novo mutations identified by exome sequencing implicate rare missense variants in SLC6A1 in schizophrenia. Nat Neurosci. 2020;23:179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Satterstrom FK, Kosmicki JA, Wang J, Breen MS, De Rubeis S, An J-Y, et al. Large-scale exome sequencing study implicates both developmental and functional changes in the neurobiology of Autism. Cell. 2020;180:568–584. e23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Epi25 Collaborative. Ultra-rare genetic variation in the epilepsies: a whole-exome sequencing study of 17,606 individuals. Am J Hum Genet. 2019;105:267–82.

    Article  CAS  Google Scholar 

  58. Wainberg M, Merico D, Huguet G, Zarrei M, Jacquemont S, Scherer SW et al. Deletion of loss-of-function–intolerant genes and risk of 5 psychiatric disorders. JAMA Psychiatry. 2021. https://doi.org/10.1001/jamapsychiatry.2021.3211.

  59. Finucane HK, Reshef YA, Anttila V, Slowikowski K, Gusev A, Byrnes A, et al. Heritability enrichment of specifically expressed genes identifies disease-relevant tissues and cell types. Nat Genet. 2018;50:621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A et al. Tissue-based map of the human proteome. Science. 2015; 347. https://doi.org/10.1126/science.1260419.

  61. Hobbs BD, de Jong K, Lamontagne M, Bossé Y, Shrine N, Artigas MS, et al. Genetic loci associated with chronic obstructive pulmonary disease overlap with loci for lung function and pulmonary fibrosis. Nat Genet. 2017;49:426–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Howson JMM, Zhao W, Barnes DR, Ho W-K, Young R, Paul DS, et al. Fifteen new risk loci for coronary artery disease highlight arterial-wall-specific mechanisms. Nat Genet. 2017;49:1113–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Nievergelt CM, Maihofer AX, Klengel T, Atkinson EG, Chen C-Y, Choi KW, et al. International meta-analysis of PTSD genome-wide association studies identifies sex- and ancestry-specific genetic risk loci. Nat Commun. 2019;10:1–16.

    Article  CAS  Google Scholar 

  64. Parenti I, Rabaneda LG, Schoen H, Novarino G. Neurodevelopmental disorders: from genetics to functional pathways. Trends Neurosci. 2020;43:608–21.

    Article  CAS  PubMed  Google Scholar 

  65. Grove J, Ripke S, Als TD, Mattheisen M, Walters RK, Won H, et al. Identification of common genetic risk variants for autism spectrum disorder. Nat Genet. 2019;51:431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Gandal MJ, Haney JR, Parikshak NN, Leppa V, Ramaswami G, Hartl C, et al. Shared molecular neuropathology across major psychiatric disorders parallels polygenic overlap. Science. 2018;359:693–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Martin AR, Williams E, Foulger RE, Leigh S, Daugherty LC, Niblock O, et al. PanelApp crowdsources expert knowledge to establish consensus diagnostic gene panels. Nat Genet. 2019;51:1560–5.

    Article  CAS  PubMed  Google Scholar 

  68. Howard DM, Adams MJ, Clarke T-K, Hafferty JD, Gibson J, Shirali M, et al. Genome-wide meta-analysis of depression identifies 102 independent variants and highlights the importance of the prefrontal brain regions. Nat Neurosci. 2019;22:343–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Mullins N, Forstner AJ, O’Connell KS, Coombes B, Coleman JRI, Qiao Z, et al. Genome-wide association study of more than 40,000 bipolar disorder cases provides new insights into the underlying biology. Nat Genet. 2021;53:817–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Finucane HK, Bulik-Sullivan B, Gusev A, Trynka G, Reshef Y, Loh P-R, et al. Partitioning heritability by functional annotation using genome-wide association summary statistics. Nat Genet. 2015;47:1228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, et al. Comprehensive mapping of long range interactions reveals folding principles of the human genome. Science. 2009;326:289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Collado-Torres L, Burke EE, Peterson A, Shin J, Straub RE, Rajpurohit A et al. Regional heterogeneity in gene expression, regulation, and coherence in the frontal cortex and hippocampus across development and Schizophrenia. Neuron. 2019; 103. https://doi.org/10.1016/j.neuron.2019.05.013.

  73. Pandey GN, Sharma A, Rizavi HS, Ren X. Dysregulation of protein kinase C in adult depression and suicide: evidence from postmortem brain studies. Int J Neuropsychopharmacol. 2021;24:400–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Banerjee-Basu S, Packer A. SFARI gene: an evolving database for the autism research community. Dis Model Mech. 2010;3:133–5.

    Article  PubMed  Google Scholar 

  75. Regev A, Teichmann SA, Lander ES, Amit I, Benoist C, Birney E et al. Science forum: the human cell atlas. 2017. https://doi.org/10.7554/eLife.27041.

  76. Darnell JC, Van Driesche SJ, Zhang C, Hung KY, Mele A, Fraser CE et al. FMRP stalls ribosomal translocation on mRNAs linked to synaptic function and autism. Cell. 2011; 146. https://doi.org/10.1016/j.cell.2011.06.013.

  77. Schaid DJ, Chen W, Larson NB. From genome-wide associations to candidate causal variants by statistical fine-mapping. Nat Rev Genet. 2018;19:491–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: machine learning in python. J Mach Learn Res. 2011;12:2825–30.

    Google Scholar 

  79. Ochoa D, Hercules A, Carmona M, Suveges D, Gonzalez-Uriarte A, Malangone C, et al. Open Targets Platform: supporting systematic drug–target identification and prioritisation. Nucleic Acids Res. 2020;49:D1302–D1310.

    Article  PubMed Central  CAS  Google Scholar 

  80. The 1000 Genomes Project Consortium. A global reference for human genetic variation. Nature. 2015;526:68–74.

    Article  CAS  Google Scholar 

  81. The International HapMap 3 Consortium. Integrating common and rare genetic variation in diverse human populations. Nature. 2010;467:52–58.

    Article  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

MW and SJT acknowledge support from the Kavli Foundation, Krembil Foundation, CAMH Discovery Fund, the McLaughlin Foundation, NSERC (RGPIN-2020-05834 and DGECR-2020-00048) and CIHR (NGN-171423). The authors gratefully acknowledge Naomi Wray for helpful feedback on the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

MW and SJT designed the study; MW performed analyses; SJT supervised the study; MW wrote the manuscript with key input from DM, MCK, and EBF.

Corresponding author

Correspondence to Shreejoy J. Tripathy.

Ethics declarations

Competing interests

DM is a full-time employee and stockholder of Deep Genomics. EBF is affiliated with Pfizer Worldwide Research, but contributed as an individual and the work was not part of a Pfizer collaboration nor was it funded by Pfizer; the author has no financial interests to declare. MW, SJT, and MCK declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wainberg, M., Merico, D., Keller, M.C. et al. Predicting causal genes from psychiatric genome-wide association studies using high-level etiological knowledge. Mol Psychiatry 27, 3095–3106 (2022). https://doi.org/10.1038/s41380-022-01542-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-022-01542-6

Search

Quick links