Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

APP and DYRK1A regulate axonal and synaptic vesicle protein networks and mediate Alzheimer’s pathology in trisomy 21 neurons

Abstract

Trisomy 21 (T21) causes Down syndrome and an early-onset form of Alzheimer’s disease (AD). Here, we used human induced pluripotent stem cells (hiPSCs) along with CRISPR-Cas9 gene editing to investigate the contribution of chromosome 21 candidate genes to AD-relevant neuronal phenotypes. We utilized a direct neuronal differentiation protocol to bypass neurodevelopmental cell fate phenotypes caused by T21 followed by unbiased proteomics and western blotting to define the proteins dysregulated in T21 postmitotic neurons. We show that normalization of copy number of APP and DYRK1A each rescue elevated tau phosphorylation in T21 neurons, while reductions of RCAN1 and SYNJ1 do not. To determine the T21 alterations relevant to early-onset AD, we identified common pathways altered in familial Alzheimer’s disease neurons and determined which of these were rescued by normalization of APP and DYRK1A copy number in T21 neurons. These studies identified disruptions in T21 neurons in both the axonal cytoskeletal network and presynaptic proteins that play critical roles in axonal transport and synaptic vesicle cycling. These alterations in the proteomic profiles have functional consequences: fAD and T21 neurons exhibit dysregulated axonal trafficking and T21 neurons display enhanced synaptic vesicle release. Taken together, our findings provide insights into the initial molecular alterations within neurons that ultimately lead to synaptic loss and axonal degeneration in Down syndrome and early-onset AD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Trisomy 21 neurons express elevated phosphorylated tau and higher Aβ levels.
Fig. 2: Widespread changes in RNA and protein expression in T21 neurons.
Fig. 3: Normalization of copy number of APP or DYRK1A, but not RCAN1 and SYNJ1, rescues elevated phosphorylated tau levels in T21 neurons.
Fig. 4: Global analyses of tau peptides reveal alterations at multiple sites across the tau protein in T21 neurons, a subset of which are rescued by APP and/or DYRK1A copy number normalization.
Fig. 5: Normalization of APP and DYRK1A copy number rescues alterations in cytoskeletal and synaptic vesicle protein networks disrupted in T21 neurons.
Fig. 6: Dysregulation of axonal transport in fAD and T21 neurons.
Fig. 7: Enhanced synaptic vesicle release in T21 neurons mediated by elevated APP and DYRK1A levels.

Similar content being viewed by others

Code availability

The MATLAB and ImageJ codes used for this study are available at GitHub: https://github.com/ThomasSchwarzLab/ArrayScanCodes. https://github.com/ThomasSchwarzLab/KymolyzerCodes.

References

  1. Zigman WB, Schupf N, Urv T, Zigman A, Silverman W. Incidence and temporal patterns of adaptive behavior change in adults with mental retardation. Am J Ment Retard. 2002;107:161–74.

    Article  PubMed  Google Scholar 

  2. Lott IT, Dierssen M. Cognitive deficits and associated neurological complications in individuals with Down’s syndrome. Lancet Neurol. 2010;9:623–33.

    Article  PubMed  Google Scholar 

  3. Lott IT. Neurological phenotypes for Down syndrome across the life span. Prog Brain Res. 2012;197:101–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. McCarron M, McCallion P, Reilly E, Mulryan N. A prospective 14-year longitudinal follow-up of dementia in persons with Down syndrome. J Intellect Disabil Res. 2014;58:61–70.

    Article  CAS  PubMed  Google Scholar 

  5. Prasher VP, Farrer MJ, Kessling AM, Fisher EM, West RJ, Barber PC, et al. Molecular mapping of Alzheimer-type dementia in Down’s syndrome. Ann Neurol. 1998;43:380–3.

    Article  CAS  PubMed  Google Scholar 

  6. Korbel JO, Tirosh-Wagner T, Urban AE, Chen XN, Kasowski M, Dai L, et al. The genetic architecture of Down syndrome phenotypes revealed by high-resolution analysis of human segmental trisomies. Proc Natl Acad Sci USA. 2009;106:12031–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hooli BV, Mohapatra G, Mattheisen M, Parrado AR, Roehr JT, Shen Y, et al. Role of common and rare APP DNA sequence variants in Alzheimer disease. Neurology. 78:1250–7.

  8. Rovelet-Lecrux A, Hannequin D, Raux G, Le Meur N, Laquerriere A, Vital A, et al. APP locus duplication causes autosomal dominant early-onset Alzheimer disease with cerebral amyloid angiopathy. Nat Genet. 2006;38:24–6.

    Article  CAS  PubMed  Google Scholar 

  9. Sleegers K, Brouwers N, Gijselinck I, Theuns J, Goossens D, Wauters J, et al. APP duplication is sufficient to cause early-onset Alzheimer’s dementia with cerebral amyloid angiopathy. Brain 2006;129:2977–83.

    Article  PubMed  Google Scholar 

  10. Kasuga K, Shimohata T, Nishimura A, Shiga A, Mizuguchi T, Tokunaga J, et al. Identification of independent APP locus duplication in Japanese patients with early-onset Alzheimer disease. J Neurol Neurosurg Psychiatry. 2009;80:1050–2.

    Article  CAS  PubMed  Google Scholar 

  11. McNaughton D, Knight W, Guerreiro R, Ryan N, Lowe J, Poulter M, et al. Duplication of amyloid precursor protein (APP), but not prion protein (PRNP) gene is a significant cause of early onset dementia in a large UK series. Neurobiol Aging. 2012;33:426 e13–21.

    Article  Google Scholar 

  12. Weick JP, Kang H, Bonadurer GF 3rd, Bhattacharyya A. Gene expression studies on human trisomy 21 iPSCs and neurons: towards mechanisms underlying Down’s syndrome and early Alzheimer’s disease-like pathologies. Methods Mol Biol. 2016;1303:247–65.

    Article  PubMed  Google Scholar 

  13. Weick JP, Held DL, Bonadurer GF 3rd, Doers ME, Liu Y, Maguire C, et al. Deficits in human trisomy 21 iPSCs and neurons. Proc Natl Acad Sci USA. 2013;110:9962–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hibaoui Y, Grad I, Letourneau A, Sailani MR, Dahoun S, Santoni FA, et al. Modelling and rescuing neurodevelopmental defect of Down syndrome using induced pluripotent stem cells from monozygotic twins discordant for trisomy 21. EMBO Mol Med. 2014;6:259–77.

    Article  CAS  PubMed  Google Scholar 

  15. Letourneau A, Santoni FA, Bonilla X, Sailani MR, Gonzalez D, Kind J, et al. Domains of genome-wide gene expression dysregulation in Down’s syndrome. Nature 2014;508:345–50.

    Article  CAS  PubMed  Google Scholar 

  16. Gonzales PK, Roberts CM, Fonte V, Jacobsen C, Stein GH, Link CD. Transcriptome analysis of genetically matched human induced pluripotent stem cells disomic or trisomic for chromosome 21. PLoS One. 2018;13:e0194581.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ponroy Bally B, Farmer WT, Jones EV, Jessa S, Kacerovsky JB, Mayran A, et al. Human iPSC-derived Down syndrome astrocytes display genome-wide perturbations in gene expression, an altered adhesion profile, and increased cellular dynamics. Hum Mol Genet. 2020;29:785–802.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Murray A, Letourneau A, Canzonetta C, Stathaki E, Gimelli S, Sloan-Bena F, et al. Brief report: isogenic induced pluripotent stem cell lines from an adult with mosaic down syndrome model accelerated neuronal ageing and neurodegeneration. Stem Cells. 2015;33:2077–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Huo HQ, Qu ZY, Yuan F, Ma L, Yao L, Xu M, et al. Modeling Down syndrome with patient iPSCs reveals cellular and migration deficits of GABAergic neurons. Stem Cell Rep. 2018;10:1251–66.

    Article  CAS  Google Scholar 

  20. Botte A, Laine J, Xicota L, Heiligenstein X, Fontaine G, Kasri A, et al. Ultrastructural and dynamic studies of the endosomal compartment in Down syndrome. Acta Neuropathol Commun. 2020;8:89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Araujo BHS, Kaid C, De Souza JS, Gomes da Silva S, Goulart E, Caires LCJ, et al. Down syndrome iPSC-derived Astrocytes impair neuronal Synaptogenesis and the mTOR pathway in vitro. Mol Neurobiol. 2018;55:5962–75.

    Article  CAS  PubMed  Google Scholar 

  22. Briggs JA, Sun J, Shepherd J, Ovchinnikov DA, Chung TL, Nayler SP, et al. Integration-free induced pluripotent stem cells model genetic and neural developmental features of down syndrome etiology. Stem Cells. 2013;31:467–78.

    Article  CAS  PubMed  Google Scholar 

  23. Jiang J, Jing Y, Cost GJ, Chiang JC, Kolpa HJ, Cotton AM, et al. Translating dosage compensation to trisomy 21. Nature 2013;500:296–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lu HE, Yang YC, Chen SM, Su HL, Huang PC, Tsai MS, et al. Modeling neurogenesis impairment in Down syndrome with induced pluripotent stem cells from Trisomy 21 amniotic fluid cells. Exp Cell Res. 2013;319:498–505.

    Article  CAS  PubMed  Google Scholar 

  25. Xu R, Brawner AT, Li S, Liu JJ, Kim H, Xue H, et al. OLIG2 drives abnormal neurodevelopmental phenotypes in human iPSC-based organoid and chimeric mouse models of Down syndrome. Cell Stem Cell. 2019;24:908–26 e8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shi Y, Kirwan P, Smith J, MacLean G, Orkin SH, Livesey FJ. A human stem cell model of early Alzheimer’s disease pathology in Down syndrome. Sci Transl Med. 2012;4:124ra29.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Hung COY, Livesey FJ. Altered gamma-Secretase processing of APP disrupts lysosome and autophagosome function in monogenic Alzheimer’s disease. Cell Rep. 2018;25:3647–60 e2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ovchinnikov DA, Korn O, Virshup I, Wells CA, Wolvetang EJ. The impact of APP on Alzheimer-like pathogenesis and gene expression in down syndrome iPSC-derived neurons. Stem Cell Rep. 2018;11:32–42.

    Article  CAS  Google Scholar 

  29. Alic I, Goh PA, Murray A, Portelius E, Gkanatsiou E, Gough G, et al. Patient-specific Alzheimer-like pathology in trisomy 21 cerebral organoids reveals BACE2 as a gene dose-sensitive AD suppressor in human brain. Mol Psychiatry. 2021;26:5766–88.

  30. Colacurcio DJ, Pensalfini A, Jiang Y, Nixon RA. Dysfunction of autophagy and endosomal-lysosomal pathways: roles in pathogenesis of Down syndrome and Alzheimer’s disease. Free Radic Biol Med. 2018;114:40–51.

    Article  CAS  PubMed  Google Scholar 

  31. Zhang Y, Pak C, Han Y, Ahlenius H, Zhang Z, Chanda S, et al. Rapid single-step induction of functional neurons from human pluripotent stem cells. Neuron 2013;78:785–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Selkoe DJ, Hardy J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med. 2016;8:595–608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ferrer I, Barrachina M, Puig B, Martinez de Lagran M, Marti E, Avila J, et al. Constitutive Dyrk1A is a,bnormally expressed in Alzheimer disease, Down syndrome, Pick disease, and related transgenic models. Neurobiol Dis. 2005;20:392–400.

    Article  CAS  PubMed  Google Scholar 

  34. Ryoo SR, Jeong HK, Radnaabazar C, Yoo JJ, Cho HJ, Lee HW, et al. DYRK1A-mediated hyperphosphorylation of Tau. A functional link between Down syndrome and Alzheimer disease. J Biol Chem. 2007;282:34850–7.

    Article  CAS  PubMed  Google Scholar 

  35. Feki A, Hibaoui Y. DYRK1A protein, a promising therapeutic target to improve cognitive deficits in down syndrome. Brain Sci. 2018;8:187.

  36. Arbones ML, Thomazeau A, Nakano-Kobayashi A, Hagiwara M, Delabar JM. DYRK1A and cognition: a lifelong relationship. Pharm Ther. 2019;194:199–221.

    Article  CAS  Google Scholar 

  37. Liu F, Liang Z, Wegiel J, Hwang YW, Iqbal K, Grundke-Iqbal I, et al. Overexpression of Dyrk1A contributes to neurofibrillary degeneration in Down syndrome. FASEB J. 2008;22:3224–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shi J, Zhang T, Zhou C, Chohan MO, Gu X, Wegiel J, et al. Increased dosage of Dyrk1A alters alternative splicing factor (ASF)-regulated alternative splicing of tau in Down syndrome. J Biol Chem. 2008;283:28660–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Qian W, Liang H, Shi J, Jin N, Grundke-Iqbal I, Iqbal K, et al. Regulation of the alternative splicing of tau exon 10 by SC35 and Dyrk1A. Nucleic Acids Res. 2011;39:6161–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wegiel J, Kaczmarski W, Barua M, Kuchna I, Nowicki K, Wang KC, et al. Link between DYRK1A overexpression and several-fold enhancement of neurofibrillary degeneration with 3-repeat tau protein in Down syndrome. J Neuropathol Exp Neurol. 2011;70:36–50.

    Article  CAS  PubMed  Google Scholar 

  41. Lee SK, Ahnn J. Regulator of Calcineurin (RCAN): beyond Down Syndrome critical region. Mol Cells. 2020;43:671–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Garver TD, Kincaid RL, Conn RA, Billingsley ML. Reduction of calcineurin activity in brain by antisense oligonucleotides leads to persistent phosphorylation of tau protein at Thr181 and Thr231. Mol Pharm. 1999;55:632–41.

    CAS  Google Scholar 

  43. Porta S, Serra SA, Huch M, Valverde MA, Llorens F, Estivill X, et al. RCAN1 (DSCR1) increases neuronal susceptibility to oxidative stress: a potential pathogenic process in neurodegeneration. Hum Mol Genet. 2007;16:1039–50.

    Article  CAS  PubMed  Google Scholar 

  44. Sun X, Wu Y, Chen B, Zhang Z, Zhou W, Tong Y, et al. Regulator of calcineurin 1 (RCAN1) facilitates neuronal apoptosis through caspase-3 activation. J Biol Chem. 2011;286:9049–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Peiris H, Dubach D, Jessup CF, Unterweger P, Raghupathi R, Muyderman H, et al. RCAN1 regulates mitochondrial function and increases susceptibility to oxidative stress in mammalian cells. Oxid Med Cell Longev. 2014;2014:520316.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Sun X, Wu Y, Herculano B, Song W. RCAN1 overexpression exacerbates calcium overloading-induced neuronal apoptosis. PLoS One. 2014;9:e95471.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Martin KR, Corlett A, Dubach D, Mustafa T, Coleman HA, Parkington HC, et al. Over-expression of RCAN1 causes Down syndrome-like hippocampal deficits that alter learning and memory. Hum Mol Genet. 2012;21:3025–41.

    Article  CAS  PubMed  Google Scholar 

  48. Wong H, Levenga J, Cain P, Rothermel B, Klann E, Hoeffer C. RCAN1 overexpression promotes age-dependent mitochondrial dysregulation related to neurodegeneration in Alzheimer’s disease. Acta Neuropathol. 2015;130:829–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Drouet V, Lesage S. Synaptojanin 1 mutation in Parkinson’s disease brings further insight into the neuropathological mechanisms. Biomed Res Int. 2014;2014:289728.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Voronov SV, Frere SG, Giovedi S, Pollina EA, Borel C, Zhang H, et al. Synaptojanin 1-linked phosphoinositide dyshomeostasis and cognitive deficits in mouse models of Down’s syndrome. Proc Natl Acad Sci USA. 2008;105:9415–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. McIntire LB, Berman DE, Myaeng J, Staniszewski A, Arancio O, Di Paolo G, et al. Reduction of synaptojanin 1 ameliorates synaptic and behavioral impairments in a mouse model of Alzheimer’s disease. J Neurosci. 2012;32:15271–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhu L, Zhong M, Zhao J, Rhee H, Caesar I, Knight EM, et al. Reduction of synaptojanin 1 accelerates Abeta clearance and attenuates cognitive deterioration in an Alzheimer mouse model. J Biol Chem. 2013;288:32050–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Cossec JC, Lavaur J, Berman DE, Rivals I, Hoischen A, Stora S, et al. Trisomy for synaptojanin1 in Down syndrome is functionally linked to the enlargement of early endosomes. Hum Mol Genet. 2012;21:3156–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. McGowan H, Mirabella VR, Hamod A, Karakhanyan A, Mlynaryk N, Moore JC, et al. hsa-let-7c miRNA regulates synaptic and neuronal function in human neurons. Front Synaptic Neurosci. 2018;10:19.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Czerminski JT, Lawrence JB. Silencing Trisomy 21 with XIST in neural stem cells promotes neuronal differentiation. Dev Cell. 2020;52:294–308 e3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Mukherjee O, Acharya S, Rao M. Making NSC and neurons from patient-derived tissue samples. Methods Mol Biol. 2019;1919:9–24.

    Article  CAS  PubMed  Google Scholar 

  57. Young-Pearse TL, Morrow EM. Modeling developmental neuropsychiatric disorders with iPSC technology: challenges and opportunities. Curr Opin Neurobiol. 2015;36:66–73.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Srikanth P, Lagomarsino VN, Pearse RV 2nd, Liao M, Ghosh S, Nehme R, et al. Convergence of independent DISC1 mutations on impaired neurite growth via decreased UNC5D expression. Transl Psychiatry. 2018;8:245.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Lagomarsino VN, Pearse RV,2nd, Liu L, Hsieh YC, Fernandez MA, Vinton EA, et al. Stem cell-derived neurons reflect features of protein networks, neuropathology, and cognitive outcome of their aged human donors. Neuron. 2021;109:3402–20 e9.

    Article  CAS  PubMed  Google Scholar 

  60. Olmos-Serrano JL, Kang HJ, Tyler WA, Silbereis JC, Cheng F, Zhu Y, et al. Down Syndrome developmental brain transcriptome reveals defective oligodendrocyte differentiation and myelination. Neuron. 2016;89:1208–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sobol M, Klar J, Laan L, Shahsavani M, Schuster J, Anneren G, et al. Transcriptome and proteome profiling of neural induced pluripotent stem cells from individuals with down syndrome disclose dynamic dysregulations of key pathways and cellular functions. Mol Neurobiol. 2019;56:7113–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Johnson ECB, Dammer EB, Duong DM, Ping L, Zhou M, Yin L, et al. Large-scale proteomic analysis of Alzheimer’s disease brain and cerebrospinal fluid reveals early changes in energy metabolism associated with microglia and astrocyte activation. Nat Med. 2020;26:769–80.

  63. Muratore CR, Rice HC, Srikanth P, Callahan DG, Shin T, Benjamin L, et al. The familial Alzheimer’s disease APPV717I mutation alters APP processing and Tau expression in iPSC-derived neurons. Hum Mol Genet. 2014;23:3523–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Muratore CR, Zhou C, Liao M, Fernandez MA, Taylor WM, Lagomarsino VN, et al. Cell-type dependent Alzheimer’s disease phenotypes: probing the biology of selective neuronal vulnerability. Stem Cell Rep. 2017;9:1868–84.

    Article  CAS  Google Scholar 

  65. Mandelkow EM, Biernat J, Drewes G, Gustke N, Trinczek B, Mandelkow E. Tau domains, phosphorylation, and interactions with microtubules. Neurobiol Aging. 1995;16:355–62. discussion 62-3.

    Article  CAS  PubMed  Google Scholar 

  66. Tell V, Hilgeroth A. Recent developments of protein kinase inhibitors as potential AD therapeutics. Front Cell Neurosci. 2013;7:189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Liu F, Grundke-Iqbal I, Iqbal K, Gong CX. Contributions of protein phosphatases PP1, PP2A, PP2B and PP5 to the regulation of tau phosphorylation. Eur J Neurosci. 2005;22:1942–50.

    Article  PubMed  Google Scholar 

  68. Hsieh YC, Guo C, Yalamanchili HK, Abreha M, Al-Ouran R, Li Y, et al. Tau-Mediated Disruption of the Spliceosome Triggers Cryptic RNA Splicing and Neurodegeneration in Alzheimer’s Disease. Cell Rep. 2019;29:301–16 e10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bai B, Hales CM, Chen PC, Gozal Y, Dammer EB, Fritz JJ, et al. U1 small nuclear ribonucleoprotein complex and RNA splicing alterations in Alzheimer’s disease. Proc Natl Acad Sci USA. 2013;110:16562–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Hales CM, Dammer EB, Diner I, Yi H, Seyfried NT, Gearing M, et al. Aggregates of small nuclear ribonucleic acids (snRNAs) in Alzheimer’s disease. Brain Pathol. 2014;24:344–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Seyfried NT, Dammer EB, Swarup V, Nandakumar D, Duong DM, Yin L, et al. A multi-network approach identifies protein-specific co-expression in asymptomatic and symptomatic Alzheimer’s disease. Cell Syst. 2017;4:60–72 e4.

    Article  CAS  PubMed  Google Scholar 

  72. Fukuda Y, Pazyra-Murphy MF, Silagi ES, Tasdemir-Yilmaz OE, Li Y, Rose L, et al. Binding and transport of SFPQ-RNA granules by KIF5A/KLC1 motors promotes axon survival. J Cell Biol. 2021;220:e202005051.

  73. Fasken MB, Morton DJ, Kuiper EG, Jones SK, Leung SW, Corbett AH. The RNA exosome and human disease. Methods Mol Biol. 2020;2062:3–33.

    Article  CAS  PubMed  Google Scholar 

  74. Shlevkov E, Basu H, Bray MA, Sun Z, Wei W, Apaydin K, et al. A high-content screen identifies TPP1 and Aurora B as regulators of axonal mitochondrial transport. Cell Rep. 2019;28:3224–37 e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Basu H, Ding L, Pekkurnaz G, Cronin M, Schwarz TL. Kymolyzer, a semi-autonomous kymography tool to analyze intracellular motility. Curr Protoc Cell Biol. 2020;87:e107.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Granseth B, Odermatt B, Royle SJ, Lagnado L. Clathrin-mediated endocytosis is the dominant mechanism of vesicle retrieval at hippocampal synapses. Neuron 2006;51:773–86.

    Article  CAS  PubMed  Google Scholar 

  77. Royle SJ, Granseth B, Odermatt B, Derevier A, Lagnado L. Imaging phluorin-based probes at hippocampal synapses. Methods Mol Biol. 2008;457:293–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wiseman FK, Pulford LJ, Barkus C, Liao F, Portelius E, Webb R, et al. Trisomy of human chromosome 21 enhances amyloid-beta deposition independently of an extra copy of APP. Brain 2018;141:2457–74.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Yuan A, Rao MV, Veeranna, Nixon RA. Neurofilaments and neurofilament proteins in health and disease. Cold Spring Harb Perspect Biol. 2017;9:a018309.

  80. Kim OJ, Ariano MA, Lazzarini RA, Levine MS, Sibley DR. Neurofilament-M interacts with the D1 dopamine receptor to regulate cell surface expression and desensitization. J Neurosci. 2002;22:5920–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Yuan A, Sershen H, Veeranna, Basavarajappa BS, Kumar A, Hashim A, et al. Functions of neurofilaments in synapses. Mol Psychiatry. 2015;20:915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Yuan A, Sershen H, Veeranna, Basavarajappa BS, Kumar A, Hashim A, et al. Neurofilament subunits are integral components of synapses and modulate neurotransmission and behavior in vivo. Mol Psychiatry. 2015;20:986–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Machnicka B, Czogalla A, Hryniewicz-Jankowska A, Boguslawska DM, Grochowalska R, Heger E, et al. Spectrins: a structural platform for stabilization and activation of membrane channels, receptors and transporters. Biochim Biophys Acta. 2014;1838:620–34.

    Article  CAS  PubMed  Google Scholar 

  84. Chaudhary AR, Berger F, Berger CL, Hendricks AG. Tau directs intracellular trafficking by regulating the forces exerted by kinesin and dynein teams. Traffic 2018;19:111–21.

    Article  CAS  PubMed  Google Scholar 

  85. Dixit R, Ross JL, Goldman YE, Holzbaur EL. Differential regulation of dynein and kinesin motor proteins by tau. Science 2008;319:1086–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Monroy BY, Sawyer DL, Ackermann BE, Borden MM, Tan TC, Ori-McKenney KM. Competition between microtubule-associated proteins directs motor transport. Nat Commun. 2018;9:1487.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Kellogg EH, Hejab NMA, Poepsel S, Downing KH, DiMaio F, Nogales E. Near-atomic model of microtubule-tau interactions. Science 2018;360:1242–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. van Spronsen M, Mikhaylova M, Lipka J, Schlager MA, van den Heuvel DJ, Kuijpers M, et al. TRAK/Milton motor-adaptor proteins steer mitochondrial trafficking to axons and dendrites. Neuron 2013;77:485–502.

    Article  PubMed  Google Scholar 

  89. Farias GG, Guardia CM, De Pace R, Britt DJ, Bonifacino JS. BORC/kinesin-1 ensemble drives polarized transport of lysosomes into the axon. Proc Natl Acad Sci USA. 2017;114:E2955–E64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol. 2016;34:525–7.

    Article  CAS  PubMed  Google Scholar 

  91. Pimentel H, Bray NL, Puente S, Melsted P, Pachter L. Differential analysis of RNA-seq incorporating quantification uncertainty. Nat Methods. 2017;14:687–90.

    Article  CAS  PubMed  Google Scholar 

  92. Ping L, Duong DM, Yin L, Gearing M, Lah JJ, Levey AI, et al. Global quantitative analysis of the human brain proteome in Alzheimer’s and Parkinson’s Disease. Sci Data. 2018;5:180036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Higginbotham L, Ping L, Dammer EB, Duong DM, Zhou M, Gearing M, et al. Integrated proteomics reveals brain-based cerebrospinal fluid biomarkers in asymptomatic and symptomatic Alzheimer’s disease. Sci Adv. 2020;6:eaaz9360.

  94. Ping L, Kundinger SR, Duong DM, Yin L, Gearing M, Lah JJ, et al. Global quantitative analysis of the human brain proteome and phosphoproteome in Alzheimer’s disease. Sci Data. 2020;7:315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Bekker-Jensen DB, Martinez-Val A, Steigerwald S, Ruther P, Fort KL, Arrey TN, et al. A compact quadrupole-Orbitrap Mass Spectrometer with FAIMS interface improves proteome coverage in short LC gradients. Mol Cell Proteom. 2020;19:716–29.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work also was supported by the Brigham Research Institute, R01AG055909, R01NS117446, U01AG061356, R21AG053827, and R01GM069808. The results published here are in part based on human brain tissue data obtained from the AMP-AD Knowledge Portal (https://adknowledgeportal.synapse.org/). The authors would like to thank Pascal Kaesar for providing guidance and plasmids for the synaptic release assays and to Jeanne Lawrence for generously providing the T21 and T21rev (person #2) iPSC lines.

Author information

Authors and Affiliations

Authors

Contributions

CW designed experiments, performed experiments, and performed data analysis. EV, AA, YH, YB, SA, and SF performed experiments. RP performed data analysis and revised manuscript drafts. KH performed the trafficking assays and KH and TS designed and analyzed data from these experiments. DD and NS performed and analyzed data from proteomic profiling experiments. TLYP designed the study, performed data analysis, authored manuscript text, revised manuscript drafts, and supervised this work.

Corresponding author

Correspondence to Tracy L. Young-Pearse.

Ethics declarations

Competing interests

The authors declare no conflicts of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, CI., Vinton, E.A., Pearse, R.V. et al. APP and DYRK1A regulate axonal and synaptic vesicle protein networks and mediate Alzheimer’s pathology in trisomy 21 neurons. Mol Psychiatry 27, 1970–1989 (2022). https://doi.org/10.1038/s41380-022-01454-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-022-01454-5

This article is cited by

Search

Quick links