Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Systematic Review
  • Published:

Alterations in brain synaptic proteins and mRNAs in mood disorders: a systematic review and meta-analysis of postmortem brain studies

Abstract

The pathophysiological mechanisms underlying bipolar (BD) and major depressive disorders (MDD) are multifactorial but likely involve synaptic dysfunction and dysregulation. There are multiple synaptic proteins but three synaptic proteins, namely SNAP-25, PSD-95, and synaptophysin, have been widely studied for their role in synaptic function in human brain postmortem studies in BD and MDD. These studies have yielded contradictory results, possibly due to the small sample size and sourcing material from different cortical regions of the brain. We performed a systematic review and meta-analysis to understand the role of these three synaptic proteins and other synaptic proteins, messenger RNA (mRNA) and their regional localizations in BD and MDD. A systematic literature search was conducted and the review is reported in accordance with the MOOSE Guidelines. Meta-analysis was performed to compare synaptic marker levels between BD/MDD groups and controls separately. 1811 papers were identified in the literature search and screened against the preset inclusion and exclusion criteria. A total of 72 studies were screened in the full text, of which 47 were identified as eligible to be included in the systematic review. 24 of these 47 papers were included in the meta-analysis. The meta-analysis indicated that SNAP-25 protein levels were significantly lower in BD. On average, PSD-95 mRNA levels were lower in BD, and protein levels of SNAP-25, PSD-95, and syntaxin were lower in MDD. Localization analysis showed decreased levels of PSD-95 protein in the frontal cortex. We found specific alterations in synaptic proteins and RNAs in both BD and MDD. The review was prospectively registered online in PROSPERO international prospective register of systematic reviews, registration no. CRD42020196932.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: PRISMA diagram for studies used in the meta-analysis and systematic review.
Fig. 2: Forest plot of synaptic markers in mood disorders.

Similar content being viewed by others

References

  1. Whiteford HA, Degenhardt L, Rehm J, Baxter AJ, Ferrari AJ, Erskine HE, et al. Global burden of disease attributable to mental and substance use disorders: findings from the Global Burden of Disease Study 2010. Lancet. 2013;382:1575–86.

    Article  PubMed  Google Scholar 

  2. Maes M, Fišar Z, Medina M, Scapagnini G, Nowak G, Berk M. New drug targets in depression: Inflammatory, cell-mediate immune, oxidative and nitrosative stress, mitochondrial, antioxidant, and neuroprogressive pathways. and new drug candidates-Nrf2 activators and GSK-3 inhibitors. Inflammopharmacology. 2012;20:127–50.

    Article  CAS  PubMed  Google Scholar 

  3. Duman RS, Monteggia LM. A neurotrophic model for stress-related mood disorders. Biol Psychiatry. 2006;59:1116–27.

    Article  CAS  PubMed  Google Scholar 

  4. Li N, Liu RJ, Dwyer JM, Banasr M, Lee B, Son H, et al. Glutamate N-methyl-Daspartate receptor antagonists rapidly reverse behavioral and synaptic deficits caused by chronic stress exposure. Biol Psychiatry. 2011;69:754–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ching CRK, Hibar DP, Gurholt TP, Nunes A, Thomopoulos SI, Abé C, et al. What we learn about bipolar disorder from large-scale neuroimaging: Findings and future directions from the ENIGMA Bipolar Disorder Working Group. Hum Brain Mapp. 2020;15:1–27.

    Google Scholar 

  6. Schmaal L, Pozzi E, C Ho T, van Velzen LS, Veer IM, Opel N, et al. ENIGMA MDD: seven years of global neuroimaging studies of major depression through worldwide data sharing. Transl Psychiatry. 2020;10:1–19.

    Article  Google Scholar 

  7. Cotter D, Mackay D, Chana G, Beasley C, Landau S, Everall IP. Reduced neuronal size and glial cell density in area 9 of the dorsolateral prefrontal cortex in subjects with major depressive disorder. Cereb Cortex. 2002;12:386–94.

    Article  PubMed  Google Scholar 

  8. Rajkowska G. Postmortem studies in mood disorders indicate altered numbers of neurons and glial cells. Biol Psychiatry. 2000;48:766–77.

    Article  CAS  PubMed  Google Scholar 

  9. Stockmeier CA, Rajkowska G. Cellular abnormalities in depression: Evidence from postmortem brain tissue. Dialogues Clin Neurosci. 2004;6:185–97.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Harrison PJ. The neuropathology of primary mood disorder. Brain. 2002;125:1428–49.

    Article  PubMed  Google Scholar 

  11. Duman RS, Aghajanian GK, Sanacora G, Krystal JH. Synaptic plasticity and depression: New insights from stress and rapid-acting antidepressants. Nat Med. 2016;22:238–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pittenger C, Duman RS. Stress, depression, and neuroplasticity: a convergence of mechanisms. Neuropsychopharmacology. 2008;33:88–109.

    Article  CAS  PubMed  Google Scholar 

  13. Kang HJ, Voleti B, Hajszan T, Rajkowska G, Stockmeier CA, Licznerski P, et al. Decreased expression of synapse-related genes and loss of synapses in major depressive disorder. Nat Med. 2012;18:1413–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ryan MM, Lockstone HE, Huffaker SJ, Wayland MT, Webster MJ, Bahn S. Gene expression analysis of bipolar disorder reveals downregulation of the ubiquitin cycle and alterations in synaptic genes. Mol Psychiatry. 2006;11:965–78.

    Article  CAS  PubMed  Google Scholar 

  15. Calhoun ME, Jucker M, Martin LJ, Thinakaran G, Price DL, Mouton PR. Comparative evaluation of synaptophysin-based methods for quantification of synapses. J Neurocytol. 1996;25:821–28.

    Article  CAS  PubMed  Google Scholar 

  16. Cheng J, Xiong Z, Duffney LJ, Wei J, Liu A, Liu S, et al. Methylphenidate exerts dose-dependent effects on glutamate receptors and behaviors. Biol Psychiatry. 2014;76:953–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Béïque JC, Lin DT, Kang MG, Aizawa H, Takamiya K, Huganir RL. Synapse-specific regulation of AMPA receptor function by PSD-95. Proc Natl Acad Sci USA. 2006;103:19535–40.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Beasley CL, Honer WG, Bergmann K, Falkai P, Lütjohann D, Bayer TA. Reductions in cholesterol and synaptic markers in association cortex in mood disorders. Bipolar Disord. 2005;7:449–55.

    Article  CAS  PubMed  Google Scholar 

  19. Chambers JS, Thomas D, Saland L, Neve RL, Perrone-Bizzozero NI. Growthassociated protein 43 (GAP-43) and synaptophysin alterations in the dentate gyrus of patients with schizophrenia. Prog Neuro-Psychopharmacology. Biol Psychiatry. 2005;29:283–90.

    CAS  Google Scholar 

  20. Eastwood SL, Harrison PJ. Synaptic pathology in the anterior cingulate cortex in schizophrenia and mood disorders. A review and a Western blot study of synaptophysin, GAP-43 and the complexins. Brain Res Bull. 2001;55:569–78.

    Article  CAS  PubMed  Google Scholar 

  21. Feyissa AM, Chandran A, Stockmeier CA, Karolewicz B. Reduced levels of NR2A and NR2B subunits of NMDA receptor and PSD-95 in the prefrontal cortex in major depression. Prog Neuropsychopharmacol Biol Psychiatry. 2009;33:70–5.

    Article  CAS  PubMed  Google Scholar 

  22. Karolewicz B, Szebeni K, Gilmore T, MacIag D, Stockmeier CA, Ordway GA. Elevated levels of NR2A and PSD-95 in the lateral amygdala in depression. Int J Neuropsychopharmacol. 2009;12:143–53.

    Article  CAS  PubMed  Google Scholar 

  23. Kristiansen LV, Meador-Woodruff JH. Abnormal striatal expression of transcripts encoding NMDA interacting PSD proteins in schizophrenia, bipolar disorder and major depression. Schizophr Res. 2005;78:87–93.

    Article  PubMed  Google Scholar 

  24. Honer WG, Falkai P, Bayer TA, Xie J, Hu L, Li HY, et al. Abnormalities of SNARE mechanism proteins in anterior frontal cortex in severe mental illness. Cereb Cortex. 2002;12:349–56.

    Article  PubMed  Google Scholar 

  25. Gray LJ, Dean B, Kronsbein HC, Robinson PJ, Scarr E. Region and diagnosisspecific changes in synaptic proteins in schizophrenia and bipolar I disorder. Psychiatry Res. 2010;178:374–80.

    Article  CAS  PubMed  Google Scholar 

  26. Scarr E, Gray L, Keriakous D, Robinson PJ, Dean B. Increased levels of SNAP-25 and synaptophysin in the dorsolateral prefrontal cortex in bipolar I disorder. Bipolar Disord. 2006;8:133–43.

    Article  CAS  PubMed  Google Scholar 

  27. Rafalo-Ulinska A, Piotrowska J, Kryczyk A, Opoka W, Sowa-Kucma M, Misztak P, et al. Zinc transporters protein level in postmortem brain of depressed subjects and suicide victims. Journal of psychiatric research. 2016;83:220–9.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Shao L, Golbaz K, Honer WG, Beasley CL. Deficits in axon-associated proteins in prefrontal white matter in bipolar disorder but not schizophrenia. Bipolar Disord. 2016;18:342–51.

    Article  CAS  PubMed  Google Scholar 

  29. Martins-De-Souza D, Guest PC, Harris LW, Vanattou-Saifoudine N, Webster MJ, Rahmoune H, et al. Identification of proteomic signatures associated with depression and psychotic depression in post-mortem brains from major depression patients. Transl Psychiatry. 2012;2:e87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhao J, Bao AM, Qi XR, Kamphuis W, Luchetti S, Lou JS, et al. Gene expression of GABA and glutamate pathway markers in the prefrontal cortex of non-suicidal elderly depressed patients. J Affect Disord. 2012;138:494–502.

    Article  CAS  PubMed  Google Scholar 

  31. Vawter MP, Howard AL, Hyde TM, Kleinman JE, Freed WJ. Alterations of hippocampal secreted N-CAM in bipolar disorder and synaptophysin in schizophrenia. Mol Psychiatry. 1999;4:467–75.

    Article  CAS  PubMed  Google Scholar 

  32. Thompson PM, Cruz DA, Fucich EA, Olukotun DY, Takahashi M, Itakura M, et al. SNAP-25a/b Isoform Levels in Human Brain Dorsolateral Prefrontal Cortex and Anterior Cingulate Cortex. Molecular neuropsychiatry. 2015;1:220–34.

    PubMed  PubMed Central  Google Scholar 

  33. McClure-Begley TD, Esterlis I, Stone KL, Lam TT, Grady SR, Colangelo CM, et al. Evaluation of the nicotinic acetylcholine receptor-associated proteome at baseline and following nicotine exposure in human and mouse cortex. ENeuro. 2016;3:1–20.

    Article  Google Scholar 

  34. Honer WG, Falkai P, Chen C, Arango V, Mann JJ, Dwork AJ. Synaptic and plasticity-associated proteins in anterior frontal cortex in severe mental illness. Neuroscience. 1999;91:1247–55.

    Article  CAS  PubMed  Google Scholar 

  35. Gilabert-Juan J, Varea E, Guirado R, Blasco-Ibáñez JM, Crespo C, Nácher J. Alterations in the expression of PSA-NCAM and synaptic proteins in the dorsolateral prefrontal cortex of psychiatric disorder patients. Neurosci Lett. 2012;530:97–102.

    Article  CAS  PubMed  Google Scholar 

  36. Varea E, Guirado R, Gilabert-Juan J, Martí U, Castillo-Gomez E, Blasco-Ibáñez JM, et al. Expression of PSA-NCAM and synaptic proteins in the amygdala of psychiatric disorder patients. J Psychiatr Res. 2012;46:189–97.

    Article  PubMed  Google Scholar 

  37. Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson G, Moher D, et al. Metaanalysis of Observational Studies in Epidemiology: A Proposal for Reporting -Meta-analysis Of Observational Studies in Epidemiology (MOOSE) Group B. JAMA Neurol. 2000;283.

  38. Covidence—Better systematic review management. https://www.covidence.org/. Accessed 18 June 2021.

  39. Page MJ, Moher D, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. PRISMA 2020 explanation and elaboration: Updated guidance and exemplars for reporting systematic reviews. BMJ. 2021;372.

  40. Cabell’s International—About predatory reports. http://www2.cabells.com/about-predatory. Accessed 18 June 2021.

  41. Jackson D, Turner R Power analysis for random-effects meta-analysis. Res Synth Methods. 2017;8.

  42. Viechtbauer W. Conducting meta-analyses in R with the metafor package. J Stat Softw. 2010;36:1–48.

    Article  Google Scholar 

  43. R Development Core Team. R: a language and environment for statistical computing. R: The R Project for Statistical Computing. https://www.r-project.org/. Accessed 18 June 2021.

  44. Fatemi SH, Earle JA, Stary JM, Lee S, Sedgewick J. Altered levels of the synaptosomal associated protein SNAP-25 in hippocampus of subjects with mood disorders and schizophrenia. Neuroreport. 2001;12:3257–62.

    Article  CAS  PubMed  Google Scholar 

  45. Hill SL, Shao L, Beasley CL. Diminished levels of the chemokine fractalkine in post-mortem prefrontal cortex in schizophrenia but not bipolar disorder. World J Biol Psychiatry. 2021;22:94–103.

    Article  PubMed  Google Scholar 

  46. Thompson PM, Egbufoama S, Vawter MP. SNAP-25 reduction in the hippocampus of patients with schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 2003;27:411–7.

    Article  CAS  PubMed  Google Scholar 

  47. Thompson PM, Cruz DA, Fucich EA, Olukotun DY, Takahashi M, Itakura M. SNAP-25a/b isoform levels in human brain dorsolateral prefrontal cortex and anterior cingulate cortex. Mol Neuropsychiatry. 2015;1:220–34.

    PubMed  PubMed Central  Google Scholar 

  48. Kim S, Webster MJ. Correlation analysis between genome-wide expression profiles and cytoarchitectural abnormalities in the prefrontal cortex of psychiatric disorders. Mol Psychiatry. 2010;15:326–36.

    Article  CAS  PubMed  Google Scholar 

  49. Vawter MP, Thatcher L, Usen N, Hyde TM, Kleinman JE, Freed WJ. Reduction of synapsin in the hippocampus of patients with bipolar disorder and schizophrenia. Mol Psychiatry. 2002;7:571–8.

    Article  CAS  PubMed  Google Scholar 

  50. Gil-Pisa I, Munarriz-Cuezva E, Ramos-Miguel A, Urigüen L, Meana JJ, García-Sevilla JA Regulation of munc18-1 and syntaxin-1A interactive partners in schizophrenia prefrontal cortex: Down-regulation of munc18-1a isoform and 75 kDa SNARE complex after antipsychotic treatment. Int J Neuropsychopharmacol. 2012;15.

  51. Dean B, Gibbons AS, Boer S, Uezato A, Meador-Woodruff J, Scarr E, et al. Changes in cortical N-methyl-d-aspartate receptors and post-synaptic density protein 95 in schizophrenia, mood disorders and suicide. Aust N Z J Psychiatry. 2016;50:275–83.

    Article  PubMed  Google Scholar 

  52. Toro C, Deakin JF. NMDA receptor subunit NRI and postsynaptic protein PSD-95 in hippocampus and orbitofrontal cortex in schizophrenia and mood disorder. Schizophr Res. 2005;80:323–30.

    Article  PubMed  Google Scholar 

  53. Castillo MA, Ghose S, Tamminga CA, Ulery-Reynolds PG. Deficits in Syntaxin 1 Phosphorylation in Schizophrenia Prefrontal Cortex. Biol Psychiatry. 2010;67:208–16.

    Article  CAS  PubMed  Google Scholar 

  54. Freemantle E, Mechawar N, Turecki G. Cholesterol and phospholipids in frontal cortex and synaptosomes of suicide completers: Relationship with endosomal lipid trafficking genes. J Psychiatr Res. 2013;47:272–9.

    Article  PubMed  Google Scholar 

  55. Radhakrishnan R, Skosnik PD, Ranganathan M, Naganawa M, Toyonaga T, Finnema S, et al. In vivo evidence of lower synaptic vesicle density in schizophrenia. Mol Psychiatry. 2021;2021:1–9.

    Google Scholar 

  56. Torrey EF, Barci BM, Webster MJ, Bartko JJ, Meador-Woodruff JH, Knable MB. Neurochemical markers for schizophrenia, bipolar disorder, and major depression in postmortem brains. Biol Psychiatry. 2005;57:252–60.

    Article  CAS  PubMed  Google Scholar 

  57. Hill SL, Shao L, Beasley CL. Diminished levels of the chemokine fractalkine in post-mortem prefrontal cortex in schizophrenia but not bipolar disorder. World J Biol Psychiatry. 2020. https://doi.org/10.1080/15622975.2020.1755451.

    Article  PubMed  Google Scholar 

  58. Beneyto M, Meador-Woodruff JH. Lamina-specific abnormalities of NMDA receptor-associated postsynaptic protein transcripts in the prefrontal cortex in schizophrenia and bipolar disorder. Neuropsychopharmacology. 2008;33:2175–86.

    Article  CAS  PubMed  Google Scholar 

  59. Sowa-Kucma M, Szewczyk B, Sadlik K, Piekoszewski W, Trela F, Opoka W, et al. Zinc, magnesium and NMDA receptor alterations in the hippocampus of suicide victims. J Affect Disord. 2013;151:924–31.

    Article  CAS  PubMed  Google Scholar 

  60. Feyissa AM, Chandran A, Stockmeier CA, Karolewicz B. Reduced levels of NR2A and NR2B subunits of NMDA receptor and PSD-95 in the prefrontal cortex in major depression. Prog Neuro-Psychopharmacology. Biol Psychiatry. 2009;33:70–75.

    CAS  Google Scholar 

  61. Dean B, Gibbons AS, Boer S, Uezato A, Meador-Woodruff J, Scarr E, et al. Changes in cortical N-methyl-d-aspartate receptors and post-synaptic density protein 95 in schizophrenia, mood disorders and suicide. Aust NZ J Psychiatry. 2016;50:275–83.

    Article  Google Scholar 

  62. Gottschalk MG, Cooper JD, Chan MK, Bot M, Penninx BW, Bahn S. Discovery of serum biomarkers predicting development of a subsequent depressive episode in social anxiety disorder. Brain Behav Immun. 2015;48:123–31.

    Article  CAS  PubMed  Google Scholar 

  63. Sawada K, Young CE, Barr AM, Longworth K, Takahashi S, Arango V, et al. Altered immunoreactivity of complexin protein in prefrontal cortex in severe mental illness. Mol Psychiatry. 2002;7:484–92.

    Article  CAS  PubMed  Google Scholar 

  64. Gottschalk MG, Wesseling H, Guest PC, Bahn S. Proteomic enrichment analysis of psychotic and affective disorders reveals common signatures in presynaptic glutamatergic signaling and energy metabolism. Int J Neuropsychopharmacol. 2015;18.2:1–11.

    Google Scholar 

  65. Kim H-W, Rapoport SI, Rao JS. Altered expression of apoptotic factors and synaptic markers in postmortem brain from bipolar disorder patients. Neurobiol Dis. 2010;37:596–603.

    Article  CAS  PubMed  Google Scholar 

  66. Cane M, Maco B, Knott G, Holtmaat A. The Relationship between PSD-95 Clustering and Spine Stability In Vivo. J Neurosci. 2014;34:2075–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Yusifov R, Tippmann A, Staiger JF, Schlüter OM, Löwel S. Spine dynamics of PSD-95-deficient neurons in the visual cortex link silent synapses to structural cortical plasticity. Proc Natl Acad Sci. 2021;118:1–9.

    Article  CAS  Google Scholar 

  68. Coley AA, Gao WJ. PSD-95 deficiency disrupts PFC-associated function and behavior during neurodevelopment. Sci Rep. 2019;9:1–13.

    Article  CAS  Google Scholar 

  69. Migaud M, Charlesworth P, Dempster M, Webster LC, Watabe AM, Makhinson M, et al. Enhanced long-term potentiation and impaired learning in mice with mutant postsynaptic density-95 protein. Nature. 1998;396:433–9.

    Article  CAS  PubMed  Google Scholar 

  70. Etain B, Dumaine A, Mathieu F, Chevalier F, Henry C, Kahn JP, et al. A SNAP25 promoter variant is associated with early-onset bipolar disorder and a high expression level in brain. Mol Psychiatry. 2010;15:748–55.

    Article  CAS  PubMed  Google Scholar 

  71. Mehta PP, Battenberg E, Wilson MC. SNAP-25 and synaptotagmin involvement in the final Ca2+-dependent triggering of neurotransmitter exocytosis. Proc Natl Acad Sci USA. 1996;93:10471–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Tomasoni R, Repetto D, Morini R, Elia C, Gardoni F, Di Luca M, et al. SNAP-25 regulates spine formation through postsynaptic binding to p140Cap. Nat Commun. 2013;4:1–13.

    Article  CAS  Google Scholar 

  73. Pozzi D, Condliffe S, Bozzi Y, Chikhladze M, Grumelli C, Proux-Gillardeaux V, et al. Activity-dependent phosphorylation of Ser187 is required for SNAP-25-negative modulation of neuronal voltage-gated calcium channels. Proc Natl Acad Sci USA. 2008;105:323–28.

    Article  CAS  PubMed  Google Scholar 

  74. Selak S, Paternain AV, Aller IM, Picó E, Rivera R, Lerma J. A Role for SNAP25 in internalization of kainate receptors and synaptic plasticity. Neuron. 2009;63:357–71.

    Article  CAS  PubMed  Google Scholar 

  75. Lau CG, Takayasu Y, Rodenas-Ruano A, Paternain AV, Lerma J, Bennett MVL, et al. SNAP-25 is a target of protein kinase C phosphorylation critical to NMDA receptor trafficking. J Neurosci. 2010;30:242–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Antonucci F, Corradini I, Morini R, Fossati G, Menna E, Pozzi D, et al. Reduced SNAP-25 alters short-term plasticity at developing glutamatergic synapses. EMBO Rep. 2013;14:645–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kochlamazashvili G, Haucke V. A dual role of SNAP-25 as carrier and guardian of synaptic transmission. EMBO Rep. 2013;14:579–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Yang H, Zhang M, Shi J, Zhou Y, Wan Z, Wang Y, et al. Brain-specific SNAP-25 deletion leads to elevated extracellular glutamate level and schizophrenia-like behavior in mice. Neural Plast. 2017;2017:1–12.

    Article  Google Scholar 

  79. Wiedenmann B, Franke WW. Identification and localization of synaptophysin, an integral membrane glycoprotein of Mr 38,000 characteristic of presynaptic vesicles. Cell. 1985;41:1017–28.

    Article  CAS  PubMed  Google Scholar 

  80. Mcmahon HT, Bolshakov VY, Janz R, Hammer RE, Siegelbaum SA. Südhof TCSynaptophysin, a major synaptic vesicle protein, is not essential for neurotransmitter release. Proc Natl Acad Sci USA. 1996;93:4760–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Eshkind LG, Leube RE. Mice lacking synaptophysin reproduce and form typical synaptic vesicles. Cell Tissue Res. 1995;282:423–33.

    Article  CAS  PubMed  Google Scholar 

  82. Woodbury DJ, Rognlien K. The t-SNARE syntaxin is sufficient for spontaneous fusion of synaptic vesicles to planar membranes. Cell Biol Int. 2000;24:809–18.

    Article  CAS  PubMed  Google Scholar 

  83. Mishima T, Fujiwara T, Kofuji T, Akagawa K. Impairment of catecholamine systems during induction of long-term potentiation at hippocampal ca1 synapses in HPC-1/syntaxin 1A knock-out mice. J Neurosci. 2012;32:381–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Osimo EF, Beck K, Marques TR, Howes OD. Synaptic loss in schizophrenia: a meta-analysis and systematic review of synaptic protein and mRNA measures. Mol Psychiatry. 2019;24:549–61. https://doi.org/10.1038/s41380-018-0041-5

    Article  CAS  PubMed  Google Scholar 

  85. van Berlekom AB, Muflihah CH, Snijders GJLJ, MacGillavry HD, Middeldorp J, Hol EM, et al. Synapse Pathology in Schizophrenia: A Meta-analysis of Postsynaptic Elements in Postmortem Brain Studies. Schizophr Bull. 2020;46:374–86. https://doi.org/10.1093/SCHBUL/SBZ060

    Article  Google Scholar 

  86. Cai Z, Li S, Matuskey D, Nabulsi N, Huang Y. PET imaging of synaptic density: a new tool for investigation of neuropsychiatric diseases. Neurosci Lett. 2019;691:44–50.

    Article  CAS  PubMed  Google Scholar 

  87. Bartholome O, Van Den Ackerveken P, Gil JS, Bonardeaux O, de la B, Leprince P, et al. Puzzling out synaptic vesicle 2 family members functions. Front Mol Neurosci. 2017;10:148.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Bajjalieh SM, Frantz GD, Weimann JM, McConnell SK, Scheller RH. Differential expression of synaptic vesicle protein 2 (SV2) isoforms. J Neurosci. 1994;14:5223–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Finnema SJ, Nabulsi NB, Eid T, Detyniecki K, Lin SF, Chen MK, et al. Imaging synaptic density in the living human brain. Sci Transl Med. 2016;8:1–9.

    Article  CAS  Google Scholar 

  90. Holmes SE, Scheinost D, Finnema SJ, Naganawa M, Davis MT, DellaGioia N, et al. Lower synaptic density is associated with depression severity and network alterations. Nat Commun. 2019;10:1–10.

    Article  CAS  Google Scholar 

  91. Duric V, Banasr M, Stockmeier CA, Simen AA, Newton SS, Overholser JC, et al. Altered expression of synapse and glutamate related genes in post-mortem hippocampus of depressed subjects. Int J Neuropsychopharmacol. 2013;16:69–82.

    Article  CAS  PubMed  Google Scholar 

  92. Holmes S, Finnema S, Davis M, DellaGioia N, Naganawa M, Nabulsi N, et al. F149. Preliminary Evidence for Altered Synaptic Density and a Possible Role for Accelerated Ageing in Individuals With MDD as Measured With [11C]UCB-J PET. Biol Psychiatry. 2018;83:S296.

    Article  Google Scholar 

  93. Duman RS, Li N, Liu RJ, Duric V, Aghajanian G. Signaling pathways underlying the rapid antidepressant actions of ketamine. Neuropharmacology. 2012;62:35–41.

    Article  CAS  PubMed  Google Scholar 

  94. Berman RM, Cappiello A, Anand A, Oren DA, Heninger GR, Charney DS, et al. Antidepressant effects of ketamine in depressed patients. Biol Psychiatry. 2000;47:351–4.

    Article  CAS  PubMed  Google Scholar 

  95. Zarate CA, Singh JB, Carlson PJ, Brutsche NE, Ameli R, Luckenbaugh DA, et al. A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch Gen Psychiatry. 2006;63:856–64.

    Article  CAS  PubMed  Google Scholar 

  96. Li N, Lee B, Liu RJ, Banasr M, Dwyer JM, Iwata M, et al. mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science. 2010;329:959–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kavalali ET, Monteggia LM. How does ketamine elicit a rapid antidepressant response? Curr Opin Pharmacol. 2015;20:35–39.

    Article  CAS  PubMed  Google Scholar 

  98. Kavalali ET, Monteggia LM Synaptic mechanisms underlying rapid antidepressant action of ketamine. 2012;169:1150–6. 101176/AppiAjp201212040531.

  99. Murrough JW. Ketamine as a novel antidepressant: from synapse to behavior. Clin Pharmacol Ther. 2012;91:303–9.

    Article  CAS  PubMed  Google Scholar 

  100. Luo Y, Yu Y, Zhang M, He H, Fan N. Chronic administration of ketamine induces cognitive deterioration by restraining synaptic signaling. Mol Psychiatry. 2020;2020:1–17.

    Google Scholar 

  101. Sarkar A, Kabbaj M. Sex differences in effects of ketamine on behavior, spine density, and synaptic proteins in socially isolated rats. Biol Psychiatry. 2016;80:448–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Halff EF, Cotel MC, Natesan S, McQuade R, Ottley CJ, Srivastava DP, et al. Effects of chronic exposure to haloperidol, olanzapine or lithium on SV2A and NLGN synaptic puncta in the rat frontal cortex. Behav Brain Res. 2021;405:1–8.

    Article  CAS  Google Scholar 

  103. Onwordi EC, Halff EF, Whitehurst T, Mansur A, Cotel MC, Wells L, et al. Synaptic density marker SV2A is reduced in schizophrenia patients and unaffected by antipsychotics in rats. Nature Communications, 2020;11. https://doi.org/10.1038/s41467-019-14122-0.

Download references

Acknowledgements

We thank Ms. Mariam Al Ahbabi at the National Medical Library, the United Arab Emirates University, for her strategic support in locating all full-text articles and for verifying the non-predatory status of all included papers.

Funding

SS has received grants/research support from NIH R21 (1R21MH119441-01A1) and SAMHSA (6H79FG000470-01M003). The University of Texas Health Science center at Houston (UTHealth) faculty research supplement funds (SS) were utilized for this study. The institution played no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, EL, CD, and SS; data curation and search, EWL, AL, LÖ, and SS; formal analysis, EL, CD, and RS, SS; funding acquisition, SS; investigation, EL, JCS, and SS; methodology, EL, CD, RS, LÖ, and SS; project administration, EL and SS; software, LÖ; supervision, SS; writing, review, and editing, EL, CD, RS, JCM, MF, MS, LÖ, and SS. All authors have read and agreed to the published version of the paper.

Corresponding author

Correspondence to Sudhakar Selvaraj.

Ethics declarations

Competing interests

JCS has received grants/research support from BMS, Forrest, J&J, Merck, Compass pathways, Stanley Medical Research Institute, NIH and has been a speaker for Pfizer and Abbott. SS has received speaking honoraria from Global Medical Education and honoraria from British Medical Journal Publishing Group; own shares at Flow Med Tech. Research support from Compass pathways, Liva Nova and Janssen. All the other authors have no competing interests to disclose.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leung, E., Lau, E.W., Liang, A. et al. Alterations in brain synaptic proteins and mRNAs in mood disorders: a systematic review and meta-analysis of postmortem brain studies. Mol Psychiatry 27, 1362–1372 (2022). https://doi.org/10.1038/s41380-021-01410-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-021-01410-9

Search

Quick links