Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Gastrin-releasing peptide regulates fear learning under stressed conditions via activation of the amygdalostriatal transition area

Abstract

The amygdala, a critical brain region responsible for emotional behavior, is crucially involved in the regulation of the effects of stress on emotional behavior. In the mammalian forebrain, gastrin-releasing peptide (GRP), a 27-amino-acid mammalian neuropeptide, which is a homolog of the 14-amino-acid amidated amphibian peptide bombesin, is highly expressed in the amygdala. The levels of GRP are markedly increased in the amygdala after acute stress; therefore, it is known as a stress-activated modulator. To determine the role of GRP in emotional behavior under stress, we conducted some behavioral and biochemical experiments with GRP-knockout (KO) mice. GRP-KO mice exhibited a longer freezing response than wild-type (WT) littermates in both contextual and auditory fear (also known as threat) conditioning tests only when they were subjected to acute restraint stress 20 min before the conditioning. To identify the critical neural circuits associated with the regulation of emotional memory by GRP, we conducted Arc/Arg3.1-reporter mapping in the amygdala with an Arc-Venus reporter transgenic mouse line. In the amygdalostriatal transition area (AST) and the lateral side of the basal nuclei, fear conditioning after restraint stress increased neuronal activity significantly in WT mice, and GRP KO was found to negate this potentiation only in the AST. These results indicate that the GRP-activated neurons in the AST are likely to suppress excessive fear expression through the regulation of downstream circuits related to fear learning following acute stress.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Contextual and auditory fear learning in GRP-KO mice with or without prior stress.
Fig. 2: Neuronal activity in the amygdaloid complex examined using Arc-Venus mice.
Fig. 3: Analysis of Venus fluorescence intensities with Arc-Venus mice using bubble charts.
Fig. 4: Analysis of Venus-positive neurons in the AST.
Fig. 5: Characteristics of AST neurons.

Similar content being viewed by others

References

  1. Goligorsky MS. The concept of cellular “fight-or-flight” reaction to stress. Am J Physiol Ren Physiol. 2001;280:F551–61.

    Article  CAS  Google Scholar 

  2. Deppermann S, Storchak H, Fallgatter AJ, Ehlis AC. Stress-induced neuroplasticity: (mal)adaptation to adverse life events in patients with PTSD−a critical overview. Neuroscience. 2014;283:166–77.

    Article  CAS  PubMed  Google Scholar 

  3. Grillon C, Duncko R, Covington MF, Kopperman L, Kling MA. Acute stress potentiates anxiety in humans. Biol Psychiatry. 2007;62:1183–86.

    Article  PubMed  Google Scholar 

  4. Shin LM, Liberzon I. The neurocircuitry of fear, stress, and anxiety disorders. Neuropsychopharmacology 2010;35:169–91.

    Article  PubMed  Google Scholar 

  5. Cisler JM, Olatunji BO, Feldner MT, Forsyth JP. Emotion regulation and the anxiety disorders: an integrative review. J Psychopathol Behav Assess. 2010;32:68–82.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Duvarci S, Pare D. Amygdala Microcircuits Controlling Learned Fear. Neuron 2014;82:966–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. LeDoux JE. Emotion circuits in the brain. Annu Rev Nneurosci. 2000;23:155–84.

    Article  CAS  Google Scholar 

  8. Nanda SA, Qi C, Roseboom PH, Kalin NH. Predator stress induces behavioral inhibition and amygdala somatostatin receptor 2 gene expression. Genes Brain Behav. 2008;7:639–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kolber BJ, Roberts MS, Howell MP, Wozniak DF, Sands MS, Muglia LJ. Central amygdala glucocorticoid receptor action promotes fear-associated CRH activation and conditioning. Proc Natl Acad Sci USA. 2008;105:12004–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang XY, Zhao M, Ghitza UE, Li YQ, Lu L. Stress impairs reconsolidation of drug memory via glucocorticoid receptors in the basolateral amygdala. J Neurosci. 2008;28:5602–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Morilak DA, Barrera G, Echevarria DJ, Garcia AS, Hernandez A, Ma S, et al. Role of brain norepinephrine in the behavioral response to stress. Prog Neuropsychopharmacol Biol Psychiatry. 2005;29:1214–24.

    Article  CAS  PubMed  Google Scholar 

  12. Johnson LR, Hou M, Prager EM, Ledoux JE. Regulation of the Fear Network by Mediators of Stress: Norepinephrine Alters the Balance between Cortical and Subcortical Afferent Excitation of the Lateral Amygdala. Front Behav Neurosci. 2011;5:23.

    Article  PubMed  PubMed Central  Google Scholar 

  13. McCall JG, Al-Hasani R, Siuda ER, Hong DY, Norris AJ, Ford CP, et al. CRH Engagement of the Locus Coeruleus Noradrenergic System Mediates Stress-Induced Anxiety. Neuron 2015;87:605–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Inoue R, Abdou K, Hayashi-Tanaka A, Muramatsu SI, Mino K, Inokuchi K, et al. Glucocorticoid receptor-mediated amygdalar metaplasticity underlies adaptive modulation of fear memory by stress. eLife 2018;7:e34135.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Gutierrez-Mariscal M, Sanchez E, Rebolledo-Solleiro D, Garcia-Vazquez AI, Cote-Velez A, Acasuso-Rivero C, et al. The acute response of the amygdalar TRH system to psychogenic stressors varies dependent on the paradigm and circadian condition. Brain Res. 2012;1452:73–84.

    Article  CAS  PubMed  Google Scholar 

  16. Ischia J, Patel O, Shulkes A, Baldwin GS. Gastrin-releasing peptide: different forms, different functions. BioFactors 2009;35:69–75.

    Article  CAS  PubMed  Google Scholar 

  17. McDonald TJ, Jornvall H, Nilsson G, Vagne M, Ghatei M, Bloom SR, et al. Characterization of a gastrin releasing peptide from porcine non-antral gastric tissue. Biochem Biophys Res Commun. 1979;90:227–33.

    Article  CAS  PubMed  Google Scholar 

  18. Jensen RT, Battey JF, Spindel ER, Benya RV. International Union of Pharmacology. LXVIII. Mammalian bombesin receptors: nomenclature, distribution, pharmacology, signaling, and functions in normal and disease states. Pharm Rev. 2008;60:1–42.

    Article  CAS  PubMed  Google Scholar 

  19. Chaperon F, Fendt M, Kelly PH, Lingenhoehl K, Mosbacher J, Olpe HR, et al. Gastrin-releasing peptide signaling plays a limited and subtle role in amygdala physiology and aversive memory. PLoS ONE. 2012;7:e34963.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kamichi S, Wada E, Aoki S, Sekiguchi M, Kimura I, Wada K. Immunohistochemical localization of gastrin-releasing peptide receptor in the mouse brain. Brain Res. 2005;1032:162–70.

    Article  CAS  PubMed  Google Scholar 

  21. Hermes ML, Kolaj M, Coderre EM, Renaud LP. Gastrin-releasing peptide acts via postsynaptic BB2 receptors to modulate inward rectifier K+ and TRPV1-like conductances in rat paraventricular thalamic neurons. J Physiol. 2013;591:1823–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gamble KL, Kudo T, Colwell CS, McMahon DG. Gastrin-releasing peptide modulates fast delayed rectifier potassium current in Per1-expressing SCN neurons. J Biol Rhythms. 2011;26:99–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. van den Pol AN, Yao Y, Fu LY, Foo K, Huang H, Coppari R, et al. Neuromedin B and gastrin-releasing peptide excite arcuate nucleus neuropeptide Y neurons in a novel transgenic mouse expressing strong Renilla green fluorescent protein in NPY neurons. J Neurosci. 2009;29:4622–39.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Lee K, Dixon AK, Gonzalez I, Stevens EB, McNulty S, Oles R, et al. Bombesin-like peptides depolarize rat hippocampal interneurones through interaction with subtype 2 bombesin receptors. J Pysiol. 1999;518:791–802.

    CAS  Google Scholar 

  25. Wada E, Way J, Lebacq-Verheyden AM, Battey JF. Neuromedin B and gastrin-releasing peptide mRNAs are differentially distributed in the rat nervous system. J Neurosci. 1990;10:2917–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sun YG, Chen ZF. A gastrin-releasing peptide receptor mediates the itch sensation in the spinal cord. Nature 2007;448:700–3.

    Article  CAS  PubMed  Google Scholar 

  27. Li P, Janczewski WA, Yackle K, Kam K, Pagliardini S, Krasnow MA, et al. The peptidergic control circuit for sighing. Nature 2016;530:293–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shumyatsky GP, Tsvetkov E, Malleret G, Vronskaya S, Hatton M, Hampton L, et al. Identification of a signaling network in lateral nucleus of amygdala important for inhibiting memory specifically related to learned fear. Cell 2002;111:905–18.

    Article  CAS  PubMed  Google Scholar 

  29. Merali Z, McIntosh J, Kent P, Michaud D, Anisman H. Aversive and appetitive events evoke the release of corticotropin-releasing hormone and bombesin-like peptides at the central nucleus of the amygdala. J Neurosci. 1998;18:4758–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Merali Z, Anisman H, James JS, Kent P, Schulkin J. Effects of corticosterone on corticotrophin-releasing hormone and gastrin-releasing peptide release in response to an aversive stimulus in two regions of the forebrain (central nucleus of the amygdala and prefrontal cortex). Eur J Neurosci. 2008;28:165–72.

    Article  PubMed  Google Scholar 

  31. Merali Z, Hayley S, Kent P, McIntosh J, Bedard T, Anisman H. Impact of repeated stressor exposure on the release of corticotropin-releasing hormone, arginine-vasopressin and bombesin-like peptides at the anterior pituitary. Behav Brain Res. 2009;198:105–12.

    Article  CAS  PubMed  Google Scholar 

  32. Krettek JE, Price JL. A description of the amygdaloid complex in the rat and cat with observations on intra-amygdaloid axonal connections. J Comp Neurol. 1978;178:255–80.

    Article  CAS  PubMed  Google Scholar 

  33. Smith Y, Pare D. Intra-amygdaloid projections of the lateral nucleus in the cat: PHA-L anterograde labeling combined with postembedding GABA and glutamate immunocytochemistry. J Comp Neurol. 1994;342:232–48.

    Article  CAS  PubMed  Google Scholar 

  34. Pitkanen A, Savander V, LeDoux JE. Organization of intra-amygdaloid circuitries in the rat: an emerging framework for understanding functions of the amygdala. Trends Neurosci. 1997;20:517–23.

    Article  CAS  PubMed  Google Scholar 

  35. Pare D, Duvarci S. Amygdala microcircuits mediating fear expression and extinction. Curr Opin Neurobiol. 2012;22:717–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Jolkkonen E, Pikkarainen M, Kemppainen S, Pitkanen A. Interconnectivity between the amygdaloid complex and the amygdalostriatal transition area: a PHA-L study in rat. J Comp Neurol. 2001;431:39–58.

    Article  CAS  PubMed  Google Scholar 

  37. Wang C, Kang-Park MH, Wilson WA, Moore SD. Properties of the pathways from the lateral amygdal nucleus to basolateral nucleus and amygdalostriatal transition area. J Neurophysiol. 2002;87:2593–601.

    Article  PubMed  Google Scholar 

  38. Leitermann RJ, Rostkowski AB, Urban JH. Neuropeptide Y input to the rat basolateral amygdala complex and modulation by conditioned fear. J Comp Neurol. 2016;524:2418–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mikuni T, Uesaka N, Okuno H, Hirai H, Deisseroth K, Bito H, et al. Arc/Arg3.1 is a postsynaptic mediator of activity-dependent synapse elimination in the developing cerebellum. Neuron. 2013;78:1024–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ohnishi T, Kiyama Y, Arima-Yoshida F, Kadota M, Ichikawa T, Yamada K, et al. Cooperation of LIM domain-binding 2 with EGR transcription factors to regulate gene expression networks relevant to mental disorders. EMBO Mol Med. 2021;13:e12574.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Susaki EA, Tainaka K, Perrin D, Kishino F, Tawara T, Watanabe TM, et al. Whole-brain imaging with single-cell resolution using chemical cocktails and computational analysis. Cell 2014;157:726–39.

    Article  CAS  PubMed  Google Scholar 

  42. Carpenter AE, Jones TR, Lamprecht MR, Clarke C, Kang IH, Friman O, et al. CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol. 2006;7:R100.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Kiyama Y, Manabe T, Sakimura K, Kawakami F, Mori H, Mishina M. Increased thresholds for long-term potentiation and contextual learning in mice lacking the NMDA-type glutamate receptor ε1 subunit. J Neurosci. 1998;18:6704–12. 44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Erb S, Funk D, Le AD. Cocaine pre-exposure enhances CRF-induced expression of c-fos mRNA in the central nucleus of the amygdala: an effect that parallels the effects of cocaine pre-exposure on CRF-induced locomotor activity. Neurosci Lett. 2005;383:209–14.

    Article  CAS  PubMed  Google Scholar 

  45. Felix-Ortiz AC, Beyeler A, Seo C, Leppla CA, Wildes CP, Tye KM. BLA to vHPC inputs modulate anxiety-related behaviors. Neuron 2013;79:658–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Walker DL, Davis M. The role of amygdala glutamate receptors in fear learning, fear-potentiated startle, and extinction. Pharm Biochem Behav. 2002;71:379–92.

    Article  CAS  Google Scholar 

  47. Watabe AM, Ochiai T, Nagase M, Takahashi Y, Sato M, Kato F. Synaptic potentiation in the nociceptive amygdala following fear learning in mice. Mol Brain. 2013;6:11.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Neugebauer V. Amygdala pain mechanisms. Handb Exp Pharm. 2015;227:261–84.

    Article  CAS  Google Scholar 

  49. Bellani M, Baiano M, Brambilla P. Brain anatomy of major depression II. Focus on amygdala. Epidemiol Psychiatr Sci. 2011;20:33–6.

    Article  CAS  PubMed  Google Scholar 

  50. Hughes RN. The value of spontaneous alternation behavior (SAB) as a test of retention in pharmacological investigations of memory. Neurosci Biobehav Rev. 2004;28:497–505.

    Article  CAS  PubMed  Google Scholar 

  51. Nakazawa T, Hashimoto R, Sakoori K, Sugaya Y, Tanimura A, Hashimotodani Y, et al. Emerging roles of ARHGAP33 in intracellular trafficking of TrkB and pathophysiology of neuropsychiatric disorders. Nat Commun. 2016;7:10594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kim JJ, DeCola JP, Landeira-Fernandez J, Fanselow MS. N-methyl-D-aspartate receptor antagonist APV blocks acquisition but not expression of fear conditioning. Behav Neurosci. 1991;105:126–33.

    Article  CAS  PubMed  Google Scholar 

  53. Phillips RG, LeDoux JE. Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behav Neurosci. 1992;106:274–85.

    Article  CAS  PubMed  Google Scholar 

  54. Roesler R, Kent P, Luft T, Schwartsmann G, Merali Z. Gastrin-releasing peptide receptor signaling in the integration of stress and memory. Neurobiol Learn Mem. 2014;112:44–52.

    Article  CAS  PubMed  Google Scholar 

  55. Murkar A, Kent P, Cayer C, James J, Merali Z. Gastrin-releasing peptide attenuates fear memory reconsolidation. Behav Brain Res. 2018;347:255–62.

    Article  CAS  PubMed  Google Scholar 

  56. Ehrlich I, Humeau Y, Grenier F, Ciocchi S, Herry C, Lüthi A. Amygdala inhibitory circuits and the control of fear memory. Neuron 2009;62:757–71.

    Article  CAS  PubMed  Google Scholar 

  57. Garrido MM, Martin S, Ambrosio E, Fuentes JA, Manzanares J. Role of corticotropin-releasing hormone in gastrin-releasing peptide-mediated regulation of corticotropin and corticosterone secretion in male rats. Neuroendocrinology 1998;68:116–22.

    Article  CAS  PubMed  Google Scholar 

  58. Roesler R, Lessa D, Venturella R, Vianna MR, Luft T, Henriques JA, et al. Bombesin/gastrin-releasing peptide receptors in the basolateral amygdala regulate memory consolidation. Eur J Neurosci. 2004;19:1041–45.

    Article  PubMed  Google Scholar 

  59. Mountney C, Anisman H, Merali Z. Effects of gastrin-releasing peptide agonist and antagonist administered to the basolateral nucleus of the amygdala on conditioned fear in the rat. Psychopharmacol (Berl). 2008;200:51–8.

    Article  CAS  Google Scholar 

  60. Mountney C, Sillberg V, Kent P, Anisman H, Merali Z. The role of gastrin-releasing peptide on conditioned fear: differential cortical and amygdaloid responses in the rat. Psychopharmacol (Berl). 2006;189:287–96.

    Article  CAS  Google Scholar 

  61. Morishita Y, Fuentes I, Favate J, Zushida K, Nishi A, Hevi C et al. The gastrin-releasing peptide regulates stress-enhanced fear and dopamine signaling. BioRxiv (2020) https://doi.org/10.1101/2020.12.31.424996.

  62. Cordero M, MerinoJJ, Sandi C. Correlational relationship between shock intensity and corticosterone secretion on the establishment and subsequent expression of contextual fear conditioning. Behav Neurosci. 1998;112:885–91.

    Article  CAS  PubMed  Google Scholar 

  63. Marchand AR, Barbelivien A, Seillier A, Herbeaux K, Sarrieau A, Majchrzak M, et al. Contribution of corticosterone to cued versus contextual fear in rats. Behav Brain Res. 2007;183:101–10.

    Article  CAS  PubMed  Google Scholar 

  64. Chau LS, Prakapenka A, Fleming SA, Davis AS, Galvez R. Elevated Arc/Arg 3.1 protein expression in the basolateral amygdala following auditory trace-cued fear conditioning. Neurobiol Learn Mem. 2013;106:127–33.

    Article  CAS  PubMed  Google Scholar 

  65. Ploski JE, Pierre VJ, Smucny J, Park K, Monsey MS, Overeem KA, et al. The activity-regulated cytoskeletal-associated protein (Arc/Arg3.1) is required for memory consolidation of pavlovian fear conditioning in the lateral amygdala. J Neurosci. 2008;28:12383–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Duvarci S, Pare D. Amygdala microcircuits controlling learned fear. Neuron 2014;82:966–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Herry C, Ciocchi S, Senn V, Demmou L, Muller C, Luthi A. Switching on and off fear by distinct neuronal circuits. Nature 2008;454:600–6.

    Article  CAS  PubMed  Google Scholar 

  68. Amano T, Duvarci S, Popa D, Pare D. The fear circuit revisited: contributions of the basal amygdala nuclei to conditioned fear. J Neurosci. 2011;31:15481–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Calandreau L, Desmedt A, Decorte L, Jaffard R. A different recruitment of the lateral and basolateral amygdala promotes contextual or elemental conditioned association in Pavlovian fear conditioning. Learn Mem. 2005;12:383–8.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Tang S, Li H, Lu L, Wang Y, Zhang L, Hu X, et al. Anomalous functional connectivity of amygdala subregional networks in major depressive disorder. Depress Anxiety. 2019;36:712–22.

    Article  PubMed  Google Scholar 

  71. Etkin A, Egner T, Kalisch R. Emotional processing in anterior cingulate and medial prefrontal cortex. Trends Cogn Sci. 2011;15:85–93.

    Article  PubMed  Google Scholar 

  72. Fu CH, Williams SC, Brammer MJ, Suckling J, Kim J, Cleare AJ, et al. Neural responses to happy facial expressions in major depression following antidepressant treatment. Am J Psychiatry. 2007;164:599–607.

    Article  PubMed  Google Scholar 

  73. McDonald AJ, Zaric V. Extrinsic origins of the somatostatin and neuropeptide Y innervation of the rat basolateral amygdala. Neuroscience 2015;294:82–100.

    Article  CAS  PubMed  Google Scholar 

  74. Wolff SB, Grundemann J, Tovote P, Krabbe S, Jacobson GA, Muller C, et al. Amygdala interneuron subtypes control fear learning through disinhibition. Nature 2014;509:453–8.

    Article  CAS  PubMed  Google Scholar 

  75. DeVylder JE, Koyanagi A, Unick J, Oh H, Nam B, Stickley A. Stress Sensitivity and Psychotic Experiences in 39 Low- and Middle-Income Countries. Schizophr Bull. 2016;42:1353–62.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank S. Sato, N. Numata, M. Nagai, Y. Watanabe, and R. Shiojiri for maintaining mouse colonies and R.S. Suzuki for technical assistances. This work was supported by JSPS KAKENHI Grant Number 21200006, 15K01848 and 19K07799 to YK; 18H05127, 19H03328 and 20H05068 to HO; 15H02358, 17K19442, and 17H06312 to HB; 18100003, 23220008, 25116505, 15K14309, 19H03321 and 19H04876 to TM.

Author information

Authors and Affiliations

Authors

Contributions

YK and TM conceived the idea and coordinated the study. IO, TI, HI, and NY generated GRP-KO mice. FG and YK performed the behavioral experiments. HO and HB generated Arc-Venus reporter transgenic mouse. FG, YK, and IO performed histological analysis. MA and TK provided support for paper writing. FG, YK, and TM participated in paper writing.

Corresponding authors

Correspondence to Yuji Kiyama or Toshiya Manabe.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goto, F., Kiyama, Y., Ogawa, I. et al. Gastrin-releasing peptide regulates fear learning under stressed conditions via activation of the amygdalostriatal transition area. Mol Psychiatry 27, 1694–1703 (2022). https://doi.org/10.1038/s41380-021-01408-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-021-01408-3

Search

Quick links