Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Neuron-derived extracellular vesicles enriched from plasma show altered size and miRNA cargo as a function of antidepressant drug response

Abstract

Previous work has demonstrated that microRNAs (miRNAs) change as a function of antidepressant treatment (ADT) response. However, it is unclear how representative these peripherally detected miRNA changes are to those occurring in the brain. This study aimed to use peripherally extracted neuron-derived extracellular vesicles (NDEV) to circumvent these limitations and investigate neuronal miRNA changes associated with antidepressant response. Samples were collected at two time points (baseline and after 8 weeks of follow-up) from depressed patients who responded (N = 20) and did not respond (N = 20) to escitalopram treatment, as well as controls (N = 20). Total extracellular vesicles (EVs) were extracted from plasma, and then further enriched for NDEV by immunoprecipitation with L1CAM. EVs and NDEVs were characterized, and NDEV miRNA cargo was extracted and sequenced. Subsequently, studies in cell lines and postmortem tissue were conducted. Characterization of NDEVs revealed that they were smaller than other EVs isolated from plasma (p < 0.0001), had brain-specific neuronal markers, and contained miRNAs enriched for brain functions (p < 0.0001) Furthermore, NDEVs from depressed patients were smaller than controls (p < 0.05), and NDEV size increased with ADT response (p < 0.01). Finally, changes in NDEV cargo, specifically changes in miR-21-5p, miR-30d-5p, and miR-486-5p together (p < 0.01), were associated with ADT response. Targets of these three miRNAs were altered in brain tissue from depressed individuals (p < 0.05). Together, this study indicates that changes in peripherally isolated NDEV can act as both a clinically accessible and informative biomarker of ADT response specifically through size and cargo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Discovery cohort and methods.
Fig. 2: NDEV vesicle and cargo characterization.
Fig. 3: NDEV size was altered following ADT and response.
Fig. 4: NDEV miRNA cargo was altered in response to ADT, with some cargo predicting response.

Similar content being viewed by others

References

  1. WHO. Depression. 2020. Available from: https://www.who.int/news-room/fact-sheets/detail/depression.

  2. Rush AJ, Trivedi MH, Wisniewski SR, Nierenberg AA, Stewart JW, Warden D, et al. Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: a STAR* D report. Am J Psychiatry. 2006;163:1905–17.

    Article  Google Scholar 

  3. Belzeaux R, Lin R, Turecki G. Potential use of MicroRNA for monitoring therapeutic response to antidepressants. CNS Drugs. 2017;31:253–62.

    Article  CAS  Google Scholar 

  4. Lopez JP, Fiori LM, Cruceanu C, Lin R, Labonte B, Cates HM, et al. MicroRNAs 146a/b-5 and 425-3p and 24-3p are markers of antidepressant response and regulate MAPK/Wnt-system genes. Nat Commun. 2017;8:15497.

    Article  CAS  Google Scholar 

  5. Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9:654.

    Article  CAS  Google Scholar 

  6. Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJ. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol. 2011;29:341–5.

    Article  CAS  Google Scholar 

  7. Saeedi S, Israel S, Nagy C, Turecki G. The emerging role of exosomes in mental disorders. Transl Psychiatry. 2019;9:122.

    Article  Google Scholar 

  8. Gallo A, Tandon M, Alevizos I, Illei GG. The majority of microRNAs detectable in serum and saliva is concentrated in exosomes. PLoS ONE. 2012;7:e30679.

    Article  CAS  Google Scholar 

  9. Taylor DD, Gercel-Taylor C. MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol. 2008;110:13–21.

    Article  CAS  Google Scholar 

  10. Goetzl EJ, Mustapic M, Kapogiannis D, Eitan E, Lobach IV, Goetzl L, et al. Cargo proteins of plasma astrocyte-derived exosomes in Alzheimer’s disease. FASEB J. 2016;30:3853–9.

    Article  CAS  Google Scholar 

  11. Mustapic M, Eitan E, Werner JK, Berkowitz ST, Lazaropoulos MP, Tran J, et al. Plasma extracellular vesicles enriched for neuronal origin: a potential window into brain pathologic processes. Front Neurosci. 2017;11:278.

  12. Cha DJ, Mengel D, Mustapic M, Liu W, Selkoe DJ, Kapogiannis D, et al. miR-212 and miR-132 are downregulated in neurally derived plasma exosomes of Alzheimer’s patients. Front Neurosci. 2019;13:1208.

    Article  Google Scholar 

  13. Goetzl EJ, Abner EL, Jicha GA, Kapogiannis D, Schwartz JB. Declining levels of functionally specialized synaptic proteins in plasma neuronal exosomes with progression of Alzheimer’s disease. FASEB J. 2018;32:888–93.

    Article  CAS  Google Scholar 

  14. Sun B, Dalvi P, Abadjian L, Tang N, Pulliam L. Blood neuron-derived exosomes as biomarkers of cognitive impairment in HIV. AIDS 2017;31:F9–17.

    Article  CAS  Google Scholar 

  15. Nasca C, Dobbin J, Bigio B, Watson K, de Angelis P, Kautz M, et al. Insulin receptor substrate in brain-enriched exosomes in subjects with major depression: on the path of creation of biosignatures of central insulin resistance. Mol Psychiatry. 2020. https://doi.org/10.1038/s41380-020-0804-7. Epub ahead of print. PMID: 32536688.

  16. Mansur RB, Delgado-Peraza F, Subramaniapillai M, Lee Y, Iacobucci M, Rodrigues N, et al. Extracellular vesicle biomarkers reveal inhibition of neuroinflammation by infliximab in association with antidepressant response in adults with bipolar depression. Cells 2020;9:895.

    Article  CAS  Google Scholar 

  17. Jollant F, Perreira F, Fiori LM, Richard-Devantoy S, Lutz PE, Belzeaux R, et al. Neural and molecular correlates of psychological pain during major depression, and its link with suicidal ideas. Prog Neuro-Psychopharmacol Biol Psychiatry. 2020;100:109909.

    Article  CAS  Google Scholar 

  18. Rikkert LG, Nieuwland R, Terstappen LWMM, Coumans FAW. Quality of extracellular vesicle images by transmission electron microscopy is operator and protocol dependent. J Extracell Vesicles. 2019;8:1555419.

    Article  CAS  Google Scholar 

  19. Stoeck A, Keller S, Riedle S, Sanderson MP, Runz S, Le Naour F, et al. A role for exosomes in the constitutive and stimulus-induced ectodomain cleavage of L1 and CD44. Biochem J. 2006;393:609–18.

    Article  CAS  Google Scholar 

  20. Ogawa Y, Taketomi Y, Murakami M, Tsujimoto M, Yanoshita R. Small RNA transcriptomes of two types of exosomes in human whole saliva determined by next generation sequencing. Biol Pharm Bull. 2013;36:66–75.

    Article  CAS  Google Scholar 

  21. Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L. et al. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res. 2009;37 suppl_2:W202–8.

    Article  CAS  Google Scholar 

  22. Zerbino DR, Achuthan P, Akanni W, Amode MR, Barrell D, Bhai J, et al. Ensembl 2018. Nucleic Acids Res. 2017;46:D754–61.

    Article  Google Scholar 

  23. Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 2016;44:W90–7.

    Article  CAS  Google Scholar 

  24. Lachmann A, Torre D, Keenan AB, Jagodnik KM, Lee HJ, Wang L, et al. Massive mining of publicly available RNA-seq data from human and mouse. Nat Commun. 2018;9:1366.

    Article  Google Scholar 

  25. Bandari SK, Purushothaman A, Ramani VC, Brinkley GJ, Chandrashekar DS, Varambally S, et al. Chemotherapy induces secretion of exosomes loaded with heparanase that degrades extracellular matrix and impacts tumor and host cell behavior. Matrix Biol. 2018;65:104–18.

    Article  CAS  Google Scholar 

  26. Hessvik NP, Llorente A. Current knowledge on exosome biogenesis and release. Cell Mol Life Sci. 2018;75:193–208.

    Article  CAS  Google Scholar 

  27. Colombo M, Moita C, van Niel G, Kowal J, Vigneron J, Benaroch P, et al. Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. J Cell Sci. 2013;126:5553–65.

    CAS  Google Scholar 

  28. Rodgers AB, Morgan CP, Bronson SL, Revello S, Bale TL. Paternal stress exposure alters sperm microRNA content and reprograms offspring HPA stress axis regulation. J Neurosci. 2013;33:9003–12.

    Article  CAS  Google Scholar 

  29. Kim HK, Tyryshkin K, Elmi N, Dharsee M, Evans KR, Good J, et al. Plasma microRNA expression levels and their targeted pathways in patients with major depressive disorder who are responsive to duloxetine treatment. J Psychiatr Res. 2019;110:38–44.

    Article  Google Scholar 

  30. Maness PF, Schachner M. Neural recognition molecules of the immunoglobulin superfamily: signaling transducers of axon guidance and neuronal migration. Nat Neurosci. 2007;10:19–26.

    Article  CAS  Google Scholar 

  31. Wingo TS, Yang J, Fan W, Min Canon S, Gerasimov ES, Lori A, et al. Brain microRNAs associated with late-life depressive symptoms are also associated with cognitive trajectory and dementia. npj Genom Med. 2020;5:6.

    Article  CAS  Google Scholar 

  32. Dwivedi Y. Emerging role of microRNAs in major depressive disorder: diagnosis and therapeutic implications. Dialogues Clin Neurosci. 2014;16:43–61.

    Article  Google Scholar 

  33. Pariante CM, Lightman SL. The HPA axis in major depression: classical theories and new developments. Trends Neurosci. 2008;31:464–8.

    Article  CAS  Google Scholar 

  34. Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, et al. Proteomics. Tissue-based map of the human proteome. Science. 2015;347:1260419.

    Article  Google Scholar 

  35. Tu C, Du T, Shao C, Liu Z, Li L, Shen Y. Evaluating the potential of housekeeping genes, rRNAs, snRNAs, microRNAs and circRNAs as reference genes for the estimation of PMI. Forensic Sci, Med, Pathol. 2018;14:194–201.

    Article  CAS  Google Scholar 

  36. Nagy C, Maheu M, Lopez JP, Vaillancourt K, Cruceanu C, Gross JA, et al. Effects of postmortem interval on biomolecule integrity in the brain. J Neuropathol Exp Neurol. 2015;74:459–69.

    Article  Google Scholar 

Download references

Acknowledgements

GT holds a Canada Research Chair (Tier 1) and is supported by grants from the Canadian Institute of Health Research (CIHR) (FDN148374 and EPN161427 (ERA-NET ERA PerMed)), and by the Fonds de recherche du Québec—Santé (FRQS) through the Quebec Network on Suicide, Mood Disorders, and Related Disorders. CAN-BIND is an Integrated Discovery Program carried out in partnership with, and financial support from, the Ontario Brain Institute, an independent non-profit corporation, funded partially by the Ontario government. The opinions, results and conclusions are those of the authors and no endorsement by the Ontario Brain Institute is intended or should be inferred. Funding support was also provided by a grant from the Ontario Research Fund: Research Excellence (RE-08-027) SD. The Douglas-Bell Canada Brain Bank is supported in part by funding from the Canada First Research Excellence Fund, awarded to McGill University for the Healthy Brains for Healthy Lives initiative, and from the Fonds de recherche du Québec—Santé (FRQS) through the Quebec Network on Suicide, Mood Disorders and Related Disorders. SS is funded by the Canadian Institute of Health Research (CIHR).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: SS, CN, and GT. Methodology: SS, CN, MW, and J-FT. Formal analysis: SS and J-FT. Investigation: SS, CN, MW, PI, LMF, and JY. Writing—original draft: SS, CN, and GT. Writing—review and editing: J-FT, LMF, PI, SR, SHK, JAF, and NM. Resources: SR, SHK, JAF, NM, and GT. Funding acquisition: GT, SR, SHK, JAF, NM.

Corresponding author

Correspondence to Gustavo Turecki.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saeedi, S., Nagy, C., Ibrahim, P. et al. Neuron-derived extracellular vesicles enriched from plasma show altered size and miRNA cargo as a function of antidepressant drug response. Mol Psychiatry 26, 7417–7424 (2021). https://doi.org/10.1038/s41380-021-01255-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-021-01255-2

This article is cited by

Search

Quick links