Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News
  • Published:

Reinstatement of synaptic plasticity in the aging brain through specific dopamine transporter inhibition

Abstract

Aging-related neurological deficits negatively impact mental health, productivity, and social interactions leading to a pronounced socioeconomic burden. Since declining brain dopamine signaling during aging is associated with the onset of neurological impairments, we produced a selective dopamine transporter (DAT) inhibitor to restore endogenous dopamine levels and improve cognitive function. We describe the synthesis and pharmacological profile of (S,S)-CE-158, a highly specific DAT inhibitor, which increases dopamine levels in brain regions associated with cognition. We find both a potentiation of neurotransmission and coincident restoration of dendritic spines in the dorsal hippocampus, indicative of reinstatement of dopamine-induced synaptic plasticity in aging rodents. Treatment with (S,S)-CE-158 significantly improved behavioral flexibility in scopolamine-compromised animals and increased the number of spontaneously active prefrontal cortical neurons, both in young and aging rodents. In addition, (S,S)-CE-158 restored learning and memory recall in aging rats comparable to their young performance in a hippocampus-dependent hole board test. In sum, we present a well-tolerated, highly selective DAT inhibitor that normalizes the age-related decline in cognitive function at a synaptic level through increased dopamine signaling.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: In silico and in vitro profiling of a novel atypical dopamine reuptake inhibitor.
Fig. 2: In vitro and in vivo pharmacology of (S,S)-CE-158.
Fig. 3: Brain dopamine levels after (S,S)-CE-158 treatment.
Fig. 4: Neuronal activity after (S,S)-CE-158 pretreatment.
Fig. 5: Effect of (S,S)-CE-158 on spine density and morphology in aged rats.
Fig. 6: Enhancing effect of (S,S)-CE-158 on cognitive flexibility.
Fig. 7: Effects of (S,S)-CE-158 on spatial learning and memory in aged rats.
Fig. 8: Effects of (S,S)-CE-158 on spatial reference memory in poorly and intermediately performing aged rats.

References

  1. Inouye SK, Studenski S, Tinetti ME, Kuchel GA. Geriatric syndromes: clinical, research, and policy implications of a core geriatric concept. J Am Geriatrics Soc. 2007;55:780–91.

    Article  Google Scholar 

  2. Chiu CJ, Cheng YY. Utility of geriatric syndrome indicators for predicting subsequent health care utilization in older adults in Taiwan. Int J Environ Res Publ Health. 2019;16:456.

  3. Murman DL. The impact of age on cognition. Semin Hearing. 2015;36:111–21.

    Article  Google Scholar 

  4. Kaasinen V, Rinne JO. Functional imaging studies of dopamine system and cognition in normal aging and Parkinson’s disease. Neurosci Biobehav Rev. 2002;26:785–93.

    Article  CAS  PubMed  Google Scholar 

  5. Dillman AA, Majounie E, Ding J, Gibbs JR, Hernandez D, Arepalli S, et al. Transcriptomic profiling of the human brain reveals that altered synaptic gene expression is associated with chronological aging. Sci Rep. 2017;7:16890.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Karrer TM, Josef AK, Mata R, Morris ED, Samanez-Larkin GR. Reduced dopamine receptors and transporters but not synthesis capacity in normal aging adults: a meta-analysis. Neurobiol Aging. 2017;57:36–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hamilton TJ, Wheatley BM, Sinclair DB, Bachmann M, Larkum ME, Colmers WF. Dopamine modulates synaptic plasticity in dendrites of rat and human dentate granule cells. Proc Natl Acad Sci USA. 2010;107:18185–90.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Chowdhury R, Guitart-Masip M, Lambert C, Dayan P, Huys Q, Duzel E, et al. Dopamine restores reward prediction errors in old age. Nat Neurosci. 2013;16:648–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Neve KA, Seamans JK, Trantham-Davidson H. Dopamine receptor signaling. J Receptor Signal Transduct Res. 2004;24:165–205.

    Article  CAS  Google Scholar 

  10. Eagle DM, Wong JC, Allan ME, Mar AC, Theobald DE, Robbins TW. Contrasting roles for dopamine D1 and D2 receptor subtypes in the dorsomedial striatum but not the nucleus accumbens core during behavioral inhibition in the stop-signal task in rats. J Neurosci. 2011;31:7349–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nikiforuk A, Kalaba P, Ilic M, Korz V, Dragacevic V, Wackerlig J, et al. A novel dopamine transporter inhibitor CE-123 improves cognitive flexibility and maintains impulsivity in healthy male rats. Front Behav Neurosci. 2017;11:222.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Gerrard P, Malcolm R. Mechanisms of modafinil: a review of current research. Neuropsychiatr Dis Treat. 2007;3:349–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Krushkal J, Xiong M, Ferrell R, Sing CF, Turner ST, Boerwinkle E. Linkage and association of adrenergic and dopamine receptor genes in the distal portion of the long arm of chromosome 5 with systolic blood pressure variation. Hum Mol Genet. 1998;7:1379–83.

    Article  CAS  PubMed  Google Scholar 

  14. Bisagno V, Gonzalez B, Urbano FJ. Cognitive enhancers versus addictive psychostimulants: The good and bad side of dopamine on prefrontal cortical circuits. Pharmacol Res. 2016;109:108–18.

    Article  CAS  PubMed  Google Scholar 

  15. Kalaba P, Aher NY, Ilic M, Dragacevic V, Wieder M, Miklosi AG, et al. Heterocyclic analogues of modafinil as novel, atypical dopamine transporter inhibitors. J Med Chem. 2017;60:9330–48.

    Article  CAS  PubMed  Google Scholar 

  16. Kalaba P, Ilic M, Aher NY, Dragacevic V, Wieder M, Zehl M, et al. Structure-activity relationships of novel thiazole-based modafinil analogues acting at monoamine transporters. J Med Chem. 2020;63:391–417.

    Article  CAS  PubMed  Google Scholar 

  17. Sagheddu C, Pintori N, Kalaba P, Dragacevic V, Piras G, Lubec J, et al. Neurophysiological and neurochemical effects of the putative cognitive enhancer (S)-CE-123 on mesocorticolimbic dopamine system. Biomolecules. 2020;10:779.

  18. Underhill SM, Hullihen PD, Chen J, Fenollar-Ferrer C, Rizzo MA, Ingram SL, et al. Amphetamines signal through intracellular TAAR1 receptors coupled to Galpha13 and GalphaS in discrete subcellular domains. Mol Psychiatry. 2021;26:1208–23.

  19. Harraz MM, Malla AP, Semenza ER, Shishikura M, Hwang Y, Kang IG, et al. Cocaine receptor identified as BASP1. https://www.biorxiv.org/content/10.1101/2020.11.23.392787v1. 2020.

  20. Scheller KJ, Williams SJ, Lawrence AJ, Jarrott B, Djouma E. An improved method to prepare an injectable microemulsion of the galanin-receptor 3 selective antagonist, SNAP 37889, using Kolliphor((R)) HS 15. MethodsX. 2014;1:212–216.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Camats-Perna J, Kalaba P, Ebner K, Sartori SB, Vuyyuru H, Aher NY, et al. Differential effects of novel dopamine reuptake inhibitors on interference with long-term social memory in mice. Front Behav Neurosci. 2019;13:63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kahn I, Shohamy D. Intrinsic connectivity between the hippocampus, nucleus accumbens, and ventral tegmental area in humans. Hippocampus. 2013;23:187–92.

    Article  CAS  PubMed  Google Scholar 

  23. Bromberg-Martin ES, Matsumoto M, Hikosaka O. Dopamine in motivational control: rewarding, aversive, and alerting. Neuron. 2010;68:815–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kempadoo KA, Mosharov EV, Choi SJ, Sulzer D, Kandel ER. Dopamine release from the locus coeruleus to the dorsal hippocampus promotes spatial learning and memory. Proc Natl Acad Sci USA. 2016;113:14835–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Takeuchi T, Duszkiewicz AJ, Sonneborn A, Spooner PA, Yamasaki M, Watanabe M, et al. Locus coeruleus and dopaminergic consolidation of everyday memory. Nature. 2016;537:357–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tritsch NX, Sabatini BL. Dopaminergic modulation of synaptic transmission in cortex and striatum. Neuron. 2012;76:33–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lubec J, Smidak R, Malikovic J, Feyissa DD, Korz V, Hoger H, et al. Dentate gyrus peroxiredoxin 6 levels discriminate aged unimpaired from impaired rats in a spatial memory task. Front Aging Neurosci. 2019;11:198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rao Y, Liu ZW, Borok E, Rabenstein RL, Shanabrough M, Lu M, et al. Prolonged wakefulness induces experience-dependent synaptic plasticity in mouse hypocretin/orexin neurons. J Clin Investig. 2007;117:4022–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Citri A, Malenka RC. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology. 2008;33:18–41.

    Article  PubMed  Google Scholar 

  30. Luscher C, Malenka RC. Drug-evoked synaptic plasticity in addiction: from molecular changes to circuit remodeling. Neuron. 2011;69:650–63.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Creed MC, Luscher C. Drug-evoked synaptic plasticity: beyond metaplasticity. Curr Opin Neurobiol. 2013;23:553–558.

    Article  CAS  PubMed  Google Scholar 

  32. Jones SR, Gainetdinov RR, Jaber M, Giros B, Wightman RM, Caron MG. Profound neuronal plasticity in response to inactivation of the dopamine transporter. Proc Natl Acad Sci USA. 1998;95:4029–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ferreras S, Fernandez G, Danelon V, Pisano MV, Masseroni L, Chapleau CA, et al. Cdk5 is essential for amphetamine to increase dendritic spine density in hippocampal pyramidal neurons. Front Cell Neurosci. 2017;11:372.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ka M, Kook YH, Liao K, Buch S, Kim WY. Transactivation of TrkB by Sigma-1 receptor mediates cocaine-induced changes in dendritic spine density and morphology in hippocampal and cortical neurons. Cell Death Dis. 2016;7:e2414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gipson CD, Kupchik YM, Shen H, Reissner KJ, Thomas CA, Kalivas PW. Relapse induced by cues predicting cocaine depends on rapid, transient synaptic potentiation. Neuron. 2013;77:867–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Dickstein DL, Weaver CM, Luebke JI, Hof PR. Dendritic spine changes associated with normal aging. Neuroscience. 2013;251:21–32.

    Article  CAS  PubMed  Google Scholar 

  37. Kim BG, Dai HN, McAtee M, Vicini S, Bregman BS. Labeling of dendritic spines with the carbocyanine dye DiI for confocal microscopic imaging in lightly fixed cortical slices. J Neurosci Methods. 2007;162:237–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bahar AS, Shirvalkar PR, Shapiro ML. Memory-guided learning: CA1 and CA3 neuronal ensembles differentially encode the commonalities and differences between situations. J Neurosci. 2011;31:12270–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rubin RD, Watson PD, Duff MC, Cohen NJ. The role of the hippocampus in flexible cognition and social behavior. Front Hum Neurosci. 2014;8:742.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Mahmmoud RR, Sase S, Aher YD, Sase A, Groger M, Mokhtar M, et al. Spatial and working memory is linked to spine density and mushroom spines. PLoS ONE. 2015;10:e0139739.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Peters A, Kaiserman-Abramof IR. The small pyramidal neuron of the rat cerebral cortex. The perikaryon, dendrites and spines. Am J Anat. 1970;127:321–55.

    Article  CAS  PubMed  Google Scholar 

  42. Bourne J, Harris KM. Do thin spines learn to be mushroom spines that remember? Curr Opin Neurobiol. 2007;17:381–386.

    Article  CAS  PubMed  Google Scholar 

  43. Harris KM, Jensen FE, Tsao B. Three-dimensional structure of dendritic spines and synapses in rat hippocampus (CA1) at postnatal day 15 and adult ages: implications for the maturation of synaptic physiology and long-term potentiation. J Neurosci. 1992;12:2685–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Birrell JM, Brown VJ. Medial frontal cortex mediates perceptual attentional set shifting in the rat. J Neurosci. 2000;20:4320–4324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. van der Staay FJ, van Nies J, Raaijmakers W. The effects of aging in rats on working and reference memory performance in a spatial holeboard discrimination task. Behav neural Biol. 1990;53:356–70.

    Article  PubMed  Google Scholar 

  46. Barrash J. Age‐related decline in route learning ability. Developmental Neuropsychol. 1994;10:189–201.

    Article  Google Scholar 

  47. Backman L, Lindenberger U, Li SC, Nyberg L. Linking cognitive aging to alterations in dopamine neurotransmitter functioning: recent data and future avenues. Neurosci Biobehav Rev. 2010;34:670–7.

    Article  PubMed  Google Scholar 

  48. Rosenberg PB, Lanctot KL, Drye LT, Herrmann N, Scherer RW, Bachman DL, et al. Safety and efficacy of methylphenidate for apathy in Alzheimer’s disease: a randomized, placebo-controlled trial. J Clin Psychiatry. 2013;74:810–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Auriel E, Hausdorff JM, Giladi N. Methylphenidate for the treatment of Parkinson disease and other neurological disorders. Clin Neuropharmacol. 2009;32:75–81.

    Article  CAS  PubMed  Google Scholar 

  50. Sassi KLM, Rocha NP, Colpo GD, John V, Teixeira AL. Amphetamine Use in the Elderly: A Systematic Review of the Literature. Curr Neuropharmacol. 2020;18:126–35.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Reece AS, Norman A, Hulse GK. Acceleration of cardiovascular-biological age by amphetamine exposure is a power function of chronological age. Heart Asia. 2017;9:30–8.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Schmitt KC, Rothman RB, Reith ME. Nonclassical pharmacology of the dopamine transporter: atypical inhibitors, allosteric modulators, and partial substrates. J Pharmacol Exp Ther. 2013;346:2–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Minzenberg MJ, Carter CS. Modafinil: a review of neurochemical actions and effects on cognition. Neuropsychopharmacology. 2008;33:1477–502.

    Article  CAS  PubMed  Google Scholar 

  54. Keighron JD, Quarterman JC, Cao J, DeMarco EM, Coggiano MA, Gleaves A, et al. Effects of (R)-modafinil and modafinil analogues on dopamine dynamics assessed by voltammetry and microdialysis in the mouse nucleus accumbens shell. ACS Chem Neurosci. 2019;10:2012–21.

    Article  CAS  PubMed  Google Scholar 

  55. Desai RI, Kopajtic TA, Koffarnus M, Newman AH, Katz JL. Identification of a dopamine transporter ligand that blocks the stimulant effects of cocaine. J Neurosci. 2005;25:1889–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Tanda G, Newman AH, Ebbs AL, Tronci V, Green JL, Tallarida RJ, et al. Combinations of cocaine with other dopamine uptake inhibitors: assessment of additivity. J Pharmacol Exp Ther. 2009;330:802–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Rush CR, Kelly TH, Hays LR, Baker RW, Wooten AF. Acute behavioral and physiological effects of modafinil in drug abusers. Behav Pharmacol. 2002;13:105–15.

    Article  CAS  PubMed  Google Scholar 

  58. Kampman KM, Lynch KG, Pettinati HM, Spratt K, Wierzbicki MR, Dackis C, et al. A double blind, placebo controlled trial of modafinil for the treatment of cocaine dependence without co-morbid alcohol dependence. Drug Alcohol Depend. 2015;155:105–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhang HY, Bi GH, Yang HJ, He Y, Xue G, Cao J, et al. The novel modafinil analog, JJC8-016, as a potential cocaine abuse pharmacotherapeutic. Neuropsychopharmacology. 2017;42:1871–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Anderson AL, Li SH, Biswas K, McSherry F, Holmes T, Iturriaga E, et al. Modafinil for the treatment of methamphetamine dependence. Drug Alcohol Depend. 2012;120:135–41.

    Article  CAS  PubMed  Google Scholar 

  61. Villeda SA, Plambeck KE, Middeldorp J, Castellano JM, Mosher KI, Luo J, et al. Young blood reverses age-related impairments in cognitive function and synaptic plasticity in mice. Nat Med. 2014;20:659–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Rotolo RA, Kalaba P, Dragacevic V, Presby RE, Neri J, Robertson E, et al. Behavioral and dopamine transporter binding properties of the modafinil analog (S, S)-CE-158: reversal of the motivational effects of tetrabenazine and enhancement of progressive ratio responding. Psychopharmacology. 2020;237:3459–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Rotolo RA, Dragacevic V, Kalaba P, Urban E, Zehl M, Roller A, et al. The novel atypical dopamine uptake inhibitor (S)-CE-123 partially reverses the effort-related effects of the dopamine depleting agent tetrabenazine and increases progressive ratio responding. Front Pharmacol. 2019;10:682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Goetghebeur P, Dias R. Comparison of haloperidol, risperidone, sertindole, and modafinil to reverse an attentional set-shifting impairment following subchronic PCP administration in the rat–a back translational study. Psychopharmacology. 2009;202:287–93.

    Article  CAS  PubMed  Google Scholar 

  65. Ilic M, Holy M, Jaentsch K, Liechti ME, Lubec G, Baumann MH, et al. Cell-based radiotracer binding and uptake inhibition assays: a comparison of in vitro methods to assess the potency of drugs that target monoamine transporters. Front Pharmacol. 2020;11:673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Niello M, Gradisch R, Loland CJ, Stockner T, Sitte HH. Allosteric modulation of neurotransmitter transporters as a therapeutic strategy. Trends Pharmacol Sci. 2020;41:446–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Pifl C, Reither H, Hornykiewicz O. The profile of mephedrone on human monoamine transporters differs from 3,4-methylenedioxymethamphetamine primarily by lower potency at the vesicular monoamine transporter. Eur J Pharmacol. 2015;755:119–26.

    Article  CAS  PubMed  Google Scholar 

  68. Au-Young SM, Shen H, Yang CR. Medial prefrontal cortical output neurons to the ventral tegmental area (VTA) and their responses to burst-patterned stimulation of the VTA: neuroanatomical and in vivo electrophysiological analyses. Synapse. 1999;34:245–55.

    Article  CAS  PubMed  Google Scholar 

  69. Connors BW, Gutnick MJ. Intrinsic firing patterns of diverse neocortical neurons. Trends Neurosci. 1990;13:99–104.

    Article  CAS  PubMed  Google Scholar 

  70. Secci ME, Mascia P, Sagheddu C, Beggiato S, Melis M, Borelli AC, et al. Astrocytic mechanisms involving kynurenic acid control delta(9)-tetrahydrocannabinol-induced increases in glutamate release in brain reward-processing areas. Mol Neurobiol. 2019;56:3563–75.

    Article  CAS  PubMed  Google Scholar 

  71. Stojanovic T, Benes H, Awad A, Bormann D, Monje FJ. Nicotine abolishes memory-related synaptic strengthening and promotes synaptic depression in the neurogenic dentate gyrus of miR-132/212 knockout mice. Addict Biol. 2020;26:e12905.

  72. Nguyen PV, Kandel ER. Brief theta-burst stimulation induces a transcription-dependent late phase of LTP requiring cAMP in area CA1 of the mouse hippocampus. Learn Mem. 1997;4:230–43.

    Article  CAS  PubMed  Google Scholar 

  73. Nguyen PV, Abel T, Kandel ER. Requirement of a critical period of transcription for induction of a late phase of LTP. Science. 1994;265:1104–1107.

    Article  CAS  PubMed  Google Scholar 

  74. Young JW, Powell SB, Geyer MA, Jeste DV, Risbrough VB. The mouse attentional-set-shifting task: a method for assaying successful cognitive aging? Cogn Affect Behav Neurosci. 2010;10:243–51.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Feyissa DD, Aher YD, Engidawork E, Hoger H, Lubec G, Korz V. Individual differences in male rats in a behavioral test battery: a multivariate statistical approach. Front Behav Neurosci. 2017;11:26.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Kristofova M, Aher YD, Ilic M, Radoman B, Kalaba P, Dragacevic V, et al. A daily single dose of a novel modafinil analogue CE-123 improves memory acquisition and memory retrieval. Behav Brain Res. 2018;343:83–94.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This project was sponsored by Personengesellschaft Barbara Lubec with partial funding by the Austrian Science Fund (FWF: 12433-B26, NS).

Author information

Authors and Affiliations

Authors

Contributions

JL, PK, AMH, DDF, MHK, RRM, OW, AG, CS, MI, VD, ACK, MZ, JW, SBS, KE, SK, AR, NG, MP, NS, JJL, RP, HHS, FJM, TL, EU, VK, JM, and CP performed experiments and analyzed data. GL, JL, and PK designed and supervised the study and wrote the manuscript with input from all co-authors.

Corresponding author

Correspondence to Gert Lubec.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lubec, J., Kalaba, P., Hussein, A.M. et al. Reinstatement of synaptic plasticity in the aging brain through specific dopamine transporter inhibition. Mol Psychiatry 26, 7076–7090 (2021). https://doi.org/10.1038/s41380-021-01214-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-021-01214-x

This article is cited by

Search

Quick links