Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Reduction of DNMT3a and RORA in the nucleus accumbens plays a causal role in post-traumatic stress disorder-like behavior: reversal by combinatorial epigenetic therapy

Abstract

Post-traumatic stress disorder (PTSD) is an incapacitating trauma-related disorder, with no reliable therapy. Although PTSD has been associated with epigenetic alterations in peripheral white blood cells, it is unknown where such changes occur in the brain, and whether they play a causal role in PTSD. Using an animal PTSD model, we show distinct DNA methylation profiles of PTSD susceptibility in the nucleus accumbens (NAc). Data analysis revealed overall hypomethylation of different genomic CG sites in susceptible animals. This was correlated with the reduction in expression levels of the DNA methyltransferase, DNMT3a. Since epigenetic changes in diseases involve different gene pathways, rather than single candidate genes, we next searched for pathways that may be involved in PTSD. Analysis of differentially methylated sites identified enrichment in the RAR activation and LXR/RXR activation pathways that regulate Retinoic Acid Receptor (RAR) Related Orphan Receptor A (RORA) activation. Intra-NAc injection of a lentiviral vector expressing either RORA or DNMT3a reversed PTSD-like behaviors while knockdown of RORA and DNMT3a increased PTSD-like behaviors. To translate our results into a potential pharmacological therapeutic strategy, we tested the effect of systemic treatment with the global methyl donor S-adenosyl methionine (SAM), for supplementing DNA methylation, or retinoic acid, for activating RORA downstream pathways. We found that combined treatment with the methyl donor SAM and retinoic acid reversed PTSD-like behaviors. Thus, our data point to a novel approach to the treatment of PTSD, which is potentially translatable to humans.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Behavioral response in the PTSD model.
Fig. 2: Susceptibility and resilient DNA methylation profile.
Fig. 3: Effect of intra-NAc RORA and DNMT3a overexpression and knockdown on PTSD-like behavior.
Fig. 4: Effect of SAM and retinoic acid treatment on PTSD-like behaviors.

Similar content being viewed by others

References

  1. Puetz TW, Youngstedt SD, Herring MP. Effects of pharmacotherapy on combat-related ptsd, anxiety, and depression: a systematic review and meta-regression analysis. PLoS ONE. 2015;10:e0126529.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Singewald N, Schmuckermair C, Whittle N, Holmes A, Ressler KJ. Pharmacology of cognitive enhancers for exposure-based therapy of fear, anxiety and trauma-related disorders. Pharm Ther. 2014;149:150–90.

    Article  Google Scholar 

  3. Szyf M. Epigenetics, a key for unlocking complex CNS disorders? Therapeutic implications. Eur Neuropsychopharmacol. 2015;25:682–702.

    Article  CAS  PubMed  Google Scholar 

  4. Szyf M. The genome- and system-wide response of DNA methylation to early life adversity and its implication on mental health. Can J Psychiatry 2013;58:697–704.

    Article  PubMed  Google Scholar 

  5. Razin A, Riggs AD. DNA methylation and gene function. Science. 1980;210:604–10.

    Article  CAS  PubMed  Google Scholar 

  6. Uddin M, Aiello AE, Wildman DE, Koenen KC, Pawelec G, de Los Santos R, et al. Epigenetic and immune function profiles associated with posttraumatic stress disorder. Proc Natl Acad Sci USA. 2010;107:9470–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mehta D, Klengel T, Conneely KN, Smith AK, Altmann A, Pace TW, et al. Childhood maltreatment is associated with distinct genomic and epigenetic profiles in posttraumatic stress disorder. Proc Natl Acad Sci USA. 2013;110:8302–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zannas AS, Provencal N, Binder EB. Epigenetics of posttraumatic stress disorder: current evidence, challenges, and future directions. Biol Psychiatry. 2015;78:1–9.

    Article  Google Scholar 

  9. Klengel T, Mehta D, Anacker C, Rex-Haffner M, Pruessner JC, Pariante CM, et al. Allele-specific FKBP5 DNA demethylation mediates gene-childhood trauma interactions. Nat Neurosci. 2013;16:33–41.

    Article  CAS  PubMed  Google Scholar 

  10. Chang SC, Koenen KC, Galea S, Aiello AE, Soliven R, Wildman DE, et al. Molecular variation at the SLC6A3 locus predicts lifetime risk of PTSD in the Detroit Neighborhood Health Study. PLoS ONE. 2012;7:e39184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Elliott E, Manashirov S, Zwang R, Gil S, Tsoory M, Shemesh Y, et al. Dnmt3a in the medial prefrontal cortex regulates anxiety-like behavior in adult mice. J Neurosci. 2016;36:730–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Murgatroyd C, Patchev AV, Wu Y, Micale V, Bockmühl Y, Fischer D, et al. Dynamic DNA methylation programs persistent adverse effects of early-life stress. Nat Neurosci. 2009;12:1559–66.

    Article  CAS  PubMed  Google Scholar 

  13. Koshibu K, Gräff J, Mansuy IM. Nuclear protein phosphatase-1: an epigenetic regulator of fear memory and amygdala long-term potentiation. Neuroscience. 2011;173:30–6.

    Article  CAS  PubMed  Google Scholar 

  14. Maddox SA, Kilaru V, Shin J, Jovanovic T, Almli LM, Dias BG, et al. Estrogen-dependent association of HDAC4 with fear in female mice and women with PTSD. Mol Psychiatry. 2018;23:658–65.

    Article  CAS  PubMed  Google Scholar 

  15. Vialou V, Feng J, Robison AJ, Nestler EJ. Epigenetic mechanisms of depression and antidepressant action. Annu Rev Pharmacol Toxicol 2013;53:59–87.

    Article  CAS  PubMed  Google Scholar 

  16. Elharrar E, Warhaftig G, Issler O, Sztainberg Y, Dikshtein Y, Zahut R, et al. Overexpression of corticotropin-releasing factor receptor type 2 in the bed nucleus of stria terminalis improves posttraumatic stress disorder-like symptoms in a model of incubation of fear. Biol Psychiatry. 2013;74:827–36.

    Article  CAS  PubMed  Google Scholar 

  17. Kesner Y, Zohar J, Merenlender A, Gispan I, Shalit F, Yadid G. WFS1 gene as a putative biomarker for development of post-traumatic syndrome in an animal model. Mol Psychiatry. 2009;14:86–94.

    Article  CAS  PubMed  Google Scholar 

  18. Ozer EJ, Best SR, Lipsey TL, Weiss DS. Predictors of posttraumatic stress disorder and symptoms in adults: a meta-analysis. Psychol Bull. 2003;129:52–73.

    Article  PubMed  Google Scholar 

  19. Domschke K. Patho-genetics of posttraumatic stress disorder. Psychiatr Danub. 2012;24:267–73.

    CAS  PubMed  Google Scholar 

  20. Giannoni-Pastor A, Eiroa-Orosa FJ, Guila S, Kinori F, Arguello JM, Casas M. Prevalence and predictors of posttraumatic stress symptomatology among burn survivors: a systematic review and meta-analysis. J. Burn Care Res. 2016;37:79–89.

  21. Herman JP, Guillonneau D, Dantzer R, Scatton B, Semerdjian-Rouquier L, Le, et al. Differential effects of inescapable footshocks and of stimuli previously paired with inescapable footshocks on dopamine turnover in cortical and limbic areas of the rat. Life Sci. 1982;30:2207–14.

    Article  CAS  PubMed  Google Scholar 

  22. Albrechet-Souza L, Carvalho MC, Brandao ML. D1-like receptors in the nucleus accumbens shell regulate the expression of contextual fear conditioning and activity of the anterior cingulate cortex in rats. Int J Neuropsychopharmacol. 2012;16:1045–57.

  23. Trainor BC. Stress responses and the mesolimbic dopamine system: social contexts and sex differences. Horm Behav 2011;60:457–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Elman I, Ariely D, Mazar N, Aharon I, Lasko NB, Macklin ML, et al. Probing reward function in post-traumatic stress disorder with beautiful facial images. Psychiatry Res. 2005;135:179–83.

    Article  PubMed  Google Scholar 

  25. Annett LE, McGregor A, Robbins TW. The effects of ibotenic acid lesions of the nucleus accumbens on spatial learning and extinction in the rat. Behav Brain Res. 1989;31:231–42.

    Article  CAS  PubMed  Google Scholar 

  26. Schacter GB, Yang CR, Innis NK, Mogenson GJ. The role of the hippocampal-nucleus accumbens pathway in radial-arm maze performance. Brain Res. 1989;494:339–49.

    Article  CAS  PubMed  Google Scholar 

  27. Holtzman-Assif O, Laurent V, Westbrook RF. Blockade of dopamine activity in the nucleus accumbens impairs learning extinction of conditioned fear. Learn Mem. 2010;17:71–75.

    Article  PubMed  Google Scholar 

  28. Kalebasi N, Kuelen E, Schnyder U, Schumacher S, Mueller-Pfeiffer C, Wilhelm FH et al. Blunted responses to reward in remitted post-traumatic stress disorder. Brain Behav. 2015. https://doi.org/10.1002/brb3.357.

  29. Nawijn L, van Zuiden M, Frijling JL, Koch SBJ, Veltman DJ, Olff M. Reward functioning in PTSD: A systematic review exploring the mechanisms underlying anhedonia. Neurosci Biobehav Rev 2015;51:189–204.

    Article  PubMed  Google Scholar 

  30. Frewen PA, Dean JA, Lanius RA. Assessment of anhedonia in psychological trauma: development of the Hedonic deficit and interference scale. Eur J Psychotraumatol. 2012. https://doi.org/10.3402/ejpt.v3i0.8585.

  31. Zhu X, Helpman L, Papini S, Schneier F, Markowitz JC, Van Meter PE, et al. Altered resting state functional connectivity of fear and reward circuitry in comorbid PTSD and major depression. Depress Anxiety. 2017;34:641–50.

    Article  PubMed  Google Scholar 

  32. Nestler EJ, Carlezon WA. The mesolimbic dopamine reward circuit in depression. Biol Psychiatry. 2006;59:1151–9.

    Article  CAS  PubMed  Google Scholar 

  33. Wise RA. Dopamine and reward: the anhedonia hypothesis 30 years on. Neurotox Res. 2008;14:169–83.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Carlezon WA, Thomas MJ. Biological substrates of reward and aversion: a nucleus accumbens activity hypothesis. Neuropharmacology. 2009;56:122–32.

    Article  CAS  PubMed  Google Scholar 

  35. Floresco SB. Dissociable roles for the nucleus accumbens core and shell in regulating set shifting. J Neurosci. 2006;26:2449–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Reading PJ, Dunnett SB. The effects of excitotoxic lesions of the nucleus accumbens on a matching to position task. Behav Brain Res. 1991;46:17–29.

    Article  CAS  PubMed  Google Scholar 

  37. Wendler E, Gaspar JCC, Ferreira TL, Barbiero JK, Andreatini R, Vital MABF, et al. The roles of the nucleus accumbens core, dorsomedial striatum, and dorsolateral striatum in learning: performance and extinction of Pavlovian fear-conditioned responses and instrumental avoidance responses. Neurobiol Learn Mem. 2013;109:27–36.

    Article  PubMed  Google Scholar 

  38. Kurumiya S, Nakajima S. Dopamine D1 receptors in the nucleus accumbens: involvement in the reinforcing effect of tegmental stimulation. Brain Res. 1988;448:1–6.

    Article  CAS  PubMed  Google Scholar 

  39. Pezze MA, Feldon J. Mesolimbic dopaminergic pathways in fear conditioning. Prog Neurobiol 2004;74:301–20.

    Article  CAS  PubMed  Google Scholar 

  40. Wadenberg ML, Ericson E, Magnusson O, Ahlenius S. Suppression of conditioned avoidance behavior by the local application of (-)sulpiride into the ventral, but not the dorsal, striatum of the rat. Biol Psychiatry. 1990;28:297–307.

    Article  CAS  PubMed  Google Scholar 

  41. Klanker M, Feenstra M, Denys D. Dopaminergic control of cognitive flexibility in humans and animals. Front Neurosci. 2013;7:201.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Aupperle RL, Melrose AJ, Stein MB, Paulus MP. Executive function and PTSD: disengaging from trauma. Neuropharmacology. 2012;62:686–94.

    Article  CAS  PubMed  Google Scholar 

  43. Pineles SL, Shipherd JC, Welch LP, Yovel I. The role of attentional biases in PTSD: Is it interference or facilitation? Behav Res Ther. 2007;45:1903–13.

    Article  PubMed  Google Scholar 

  44. Pineles SL, Shipherd JC, Mostoufi SM, Abramovitz SM, Yovel I. Attentional biases in PTSD: More evidence for interference. Behav Res Ther. 2009;47:1050–7.

    Article  PubMed  Google Scholar 

  45. Brog JS, Salyapongse A, Deutch AY, Zahm DS. The patterns of afferent innervation of the core and shell in the “Accumbens” part of the rat ventral striatum: Immunohistochemical detection of retrogradely transported fluoro‐gold. J Comp Neurol. 1993;338:255–78.

    Article  CAS  PubMed  Google Scholar 

  46. Reynolds SM. Specificity in the projections of prefrontal and insular cortex to ventral striatopallidum and the extended amygdala. J Neurosci. 2005;25:11757–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Piao C, Deng X, Wang X, Yuan Y, Liu Z, Liang J. Altered function in medial prefrontal cortex and nucleus accumbens links to stress-induced behavioral inflexibility. Behav Brain Res. 2017;317:16–26.

    Article  PubMed  Google Scholar 

  48. Pennartz CMA, Groenewegen HJ, Lopes da Silva FH. The nucleus accumbens as a complex of functionally distinct neuronal ensembles: an integration of behavioural, electrophysiological and anatomical data. Prog Neurobiol. 1994;42:719–61.

  49. Floresco SB, Blaha CD, Yang CR, Phillips AG. Modulation of hippocampal and amygdalar-evoked activity of nucleus accumbens neurons by dopamine: cellular mechanisms of input selection. J Neurosci. 2001;21:2851–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Matsui T. Transcriptional regulation of a Purkinje cell-specific gene through a functional interaction between ROR alpha and RAR. Genes Cells. 1997;2:263–72.

    Article  CAS  PubMed  Google Scholar 

  51. Tini M, Fraser RA, Giguere V. Functional interactions between retinoic acid receptor-related orphan nuclear receptor (ROR alpha) and the retinoic acid receptors in the regulation of the gamma F-crystallin promoter. J Biol Chem. 1995;270:20156–61.

    Article  CAS  PubMed  Google Scholar 

  52. Logue MW, Baldwin C, Guffanti G, Melista E, Wolf EJ, Reardon AF, et al. A genome-wide association study of post-traumatic stress disorder identifies the retinoid-related orphan receptor alpha (RORA) gene as a significant risk locus. Mol Psychiatry. 2013;8:937–42.

    Article  Google Scholar 

  53. Akalin A, Kormaksson M, Li S, Garrett-Bakelman FE, Figueroa ME, Melnick A, et al. methylKit: a comprehensive R package for the analysis of genome-wide DNA methylation profiles. Genome Biol. 2012;13:R87.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Feng J, Zhou Y, Campbell SL, Le T, Li E, Sweatt JD, et al. Dnmt1 and Dnmt3a maintain DNA methylation and regulate synaptic function in adult forebrain neurons. Nat Neurosci. 2010;13:423–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Feder A, Nestler EJ, Charney DS. Psychobiology and molecular genetics of resilience. Nat Rev Neurosci. 2009;10:446–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Marlene-Oscar-Berman KB. Hypothesizing that putative dopaminergic, melatonin, benzodiazepine reward circuitry receptor(s) activator provides sleep induction benefits. J Sleep Disord Ther. 2014;03:1.

    Article  Google Scholar 

  57. Tyagi E, Agrawal R, Zhuang Y, Abad C, Waschek JA, Gomez-Pinilla F. Vulnerability imposed by diet and brain trauma for anxiety-like phenotype: implications for post-traumatic stress disorders. PLoS ONE. 2013;8:3.

    Article  Google Scholar 

  58. Bam M, Yang X, Zhou J, Ginsberg JP, Leyden Q, Nagarkatti PS, et al. Evidence for epigenetic regulation of pro-inflammatory cytokines, interleukin-12 and interferon gamma, in peripheral blood mononuclear cells from PTSD patients. J Neuroimmune Pharm. 2016;11:168–81.

    Article  Google Scholar 

  59. Toth M, Gresack JE, Hauger RL, Halberstadt AL, Risbrough VB. The role of PKC signaling in CRF-induced modulation of startle. Psychopharmacology. 2013;229:579–89.

    Article  CAS  PubMed  Google Scholar 

  60. Cao-Lei L, Massart R, Suderman MJ, Machnes Z, Elgbeili G, Laplante DP, et al. DNA methylation signatures triggered by prenatal maternal stress exposure to a natural disaster: project ice storm. PLoS ONE. 2014;9:e107653.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Boukhtouche F, Vodjdani G, Jarvis CI, Bakouche J, Staels B, Mallet J, et al. Human retinoic acid receptor-related orphan receptor?? Overexpression protects neurones against oxidative stress-induced apoptosis. J Neurochem. 2006;96:1778–89.

    Article  CAS  PubMed  Google Scholar 

  62. Doulazmi M, Frédéric F, Capone F, Becker-André M, Delhaye-Bouchaud N, Mariani J. A comparative study of Purkinje cells in two RORalpha gene mutant mice: staggerer and RORalpha(-/-). Brain Res Dev Brain Res. 2001;127:165–74.

  63. Jarvis CI, Staels B, Brugg B, Lemaigre-Dubreuil Y, Tedgui A, Mariani J. Age-related phenotypes in the staggerer mouse expand the RORalpha nuclear receptor’s role beyond the cerebellum. Mol Cell Endocrinol. 2002;186:1–5.

    Article  CAS  PubMed  Google Scholar 

  64. Amstadter AB, Sumner JA, Acierno R, Ruggiero KJ, Koenen KC, Kilpatrick DG, et al. Support for association of RORA variant and post traumatic stress symptoms in a population-based study of hurricane exposed adults. Mol Psychiatry 2013;18:1148–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sharma A, Gerbarg P, Bottiglieri T, Massoumi L, Carpenter LL, Lavretsky H et al. S-adenosylmethionine (SAMe) for neuropsychiatric disorders: a clinician-oriented review of research. J Clin Psychiatry. 2017;78:656–67.

  66. Bottiglieri T, Godfrey P, Flynn T, Carney MWP, Toone BK, Reynolds EH. Cerebrospinal fluid S-adenosylmethionine-in depression and dementia: effects of treatment with parenteral and oral S-adenosylmethionine. J Neurol Neurosurg Psychiatry. 1990;53:1096–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Castagna A, Grazie CLE, Accordini A, Giulidori P, Cavalli G, Bottiglieri T, et al. Cerebrospinal fluid s-adenosylmethionine (same) and glutathione concentrations in hiv infection effect of parenteral treatment with same. Neurology. 1995;45:1678–83.

    Article  CAS  PubMed  Google Scholar 

  68. Yu NK, Baek SH, Kaang BK. DNA methylation-mediated control of learning and memory. Mol Brain. 2011. https://doi.org/10.1186/1756-6606-4-5.

  69. Szyf M, McGowan P, Meaney MJ. The social environment and the epigenome. Environ Mol Mutagen. 2008;49:46–60.

    Article  CAS  PubMed  Google Scholar 

  70. Detich N, Hamm S, Just G, Knox JD, Szyf M. The methyl donor S-adenosylmethionine inhibits active demethylation of DNA. A candidate novel mechanism for the pharmacological effects of S-adenosylmethionine. J Biol Chem. 2003;278:20812–20.

    Article  CAS  PubMed  Google Scholar 

  71. Caudill MA, Wang JC, Melnyk S, Pogribny IP, Jernigan S, Collins MD, et al. Biochemical and molecular action of nutrients intracellular S-adenosylhomocysteine concentrations predict global DNA hypomethylation in tissues of methyl-deficient cystathionine N/L-synthase heterozygous mice 1. J Nutr. 2001;131:2811–8.

    Article  CAS  PubMed  Google Scholar 

  72. Lane MA, Bailey SJ. Role of retinoid signalling in the adult brain. Prog Neurobiol. 2005;75:275–93.

  73. O’Reilly K, Bailey SJ, Lane MA. Retinoid-mediated regulation of mood: Possible cellular mechanisms. Exp Biol Med 2008;233:251–8.

    Article  Google Scholar 

  74. Mey J, McCaffery P. Retinoic acid signaling in the nervous system of adult vertebrates. Neuroscientist 2004;10:409–21.

    Article  CAS  PubMed  Google Scholar 

  75. Calkin AC, Tontonoz P. Liver X receptor signaling pathways and atherosclerosis. Arterioscler Thromb Vasc Biol. 2010;30:1513–8.

    Article  CAS  PubMed  Google Scholar 

  76. Zelcer N, Khanlou N, Clare R, Jiang Q, Reed-Geaghan EG, Landreth GE, et al. Attenuation of neuroinflammation and Alzheimer’s disease pathology by liver x receptors. Proc Natl Acad Sci USA. 2007;104:10601–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Malek G, Lad EM. Emerging roles for nuclear receptors in the pathogenesis of age-related macular degeneration. Cell Mol Life Sci. 2014;71:4617–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Figueiredo T, Melo US, Pessoa ALS, Nobrega PR, Kitajima JP, Rusch H, et al. A homozygous loss-of-function mutation in inositol monophosphatase 1 (IMPA1) causes severe intellectual disability. Mol Psychiatry. 2016;21:1125–9.

    Article  CAS  PubMed  Google Scholar 

  79. Baple EL, Maroofian R, Chioza BA, Izadi M, Cross HE, Al-Turki S, et al. Mutations in KPTN cause macrocephaly, neurodevelopmental delay, and seizures. Am J Hum Genet. 2014;94:87–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Murad H. A pilot study on cultural stress anxiety syndrome, its implications on aging, gene expression and treatment strategies. J Gerontol Geriatr Med. 2017;3:13.

    Google Scholar 

  81. Kulikov AV, Tikhonova MA, Kulikova EA, Volcho KP, Khomenko TM, Salakhutdinov NF, et al. A new synthetic varacin analogue, 8-(trifluoromethyl)-1,2,3,4,5- benzopentathiepin-6-amine hydrochloride (TC-2153), decreased hereditary catalepsy and increased the BDNF gene expression in the hippocampus in mice. Psychopharmacology. 2012;221:469–78.

    Article  CAS  PubMed  Google Scholar 

  82. Samal BB, Waites CK, Almeida-Suhett C, Li Z, Marini AM, Samal NR, et al. Acute response of the hippocampal transcriptome following mild traumatic brain injury after controlled cortical impact in the rat. J Mol Neurosci. 2015;57:282–303.

    Article  CAS  PubMed  Google Scholar 

  83. Goulding DR, Nikolova VD, Mishra L, Zhuo L, Kimata K, McBride SJ, et al. Inter-α-inhibitor deficiency in the mouse is associated with alterations in anxiety-like behavior, exploration and social approach. Genes Brain Behav. 2019;18:e12505.

    Article  PubMed  Google Scholar 

  84. Wahle T, Thal DR, Sastre M, Rentmeister A, Bogdanovic N, Famulok M, et al. GGA1 is expressed in the human brain and affects the generation of amyloid β-peptide. J Neurosci. 2006;26:12838–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. dela Peña I, dela Peña IJ, de la Peña JB, Kim HJ, Shin CY, Han DH, et al. Methylphenidate and atomoxetine-responsive prefrontal cortical genetic overlaps in “impulsive” SHR/NCrl and Wistar rats. Behav Genet. 2017;47:564–80.

    Article  PubMed  Google Scholar 

  86. Sarachana T, Hu VW. Genome-wide identification of transcriptional targets of RORA reveals direct regulation of multiple genes associated with autism spectrum disorder. Mol Autism. 2013;4:14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Niewiadomska-Cimicka A, Krzyżosiak A, Ye T, Podleśny-Drabiniok A, Dembélé D, Dollé P, et al. Genome-wide analysis of RARβ transcriptional targets in mouse striatum links retinoic acid signaling with Huntington’s disease and other neurodegenerative disorders. Mol Neurobiol. 2017;54:3859–78.

    Article  CAS  PubMed  Google Scholar 

  88. Zhang Y, Kong F, Crofton EJ, Dragosljvich SN, Sinha M, Li D, et al. Transcriptomics of environmental enrichment reveals a role for retinoic acid signaling in addiction. Front Mol Neurosci. 2016;9:119.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Çoban N, Güleç Ç, Selçuk BÖ, Erginel-Ünaltuna N. Role of simvastatin and RORα activity in the macrophage apoptotic pathway. Anatol J Cardiol. 2017;17:362–6.

    PubMed  PubMed Central  Google Scholar 

  90. Carter CJ. The fox and the rabbits—environmental variables and population genetics (1) replication problems in association studies and the untapped power of GWAS (2) vitamin A deficiency, herpes simplex reactivation and other causes of Alzheimer’s disease. ISRN Neurol. 2011;2011:1–29.

    Article  Google Scholar 

  91. Crumbley C, Wang Y, Kojetin DJ, Burris TP. Characterization of the core mammalian clock component, NPAS2, as a REV-ERBα/RORα target gene. J Biol Chem. 2010;285:35386–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Acquaah-Mensah GK, Agu N, Khan T, Gardner A. A regulatory role for the insulin-and BDNF-Linked RORA in the hippocampus: implications for Alzheimer’s disease. J Alzheimer’s Dis. 2015;44:827–38.

    Article  CAS  Google Scholar 

  93. Fu M, Sato Y, Lyons-Warren A, Zhang B, Kane MA, Napoli JL, et al. Vitamin A facilitates enteric nervous system precursor migration by reducing Pten accumulation. Development. 2010;137:631–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Su D, Gudas LJ. Gene expression profiling elucidates a specific role for RARγ in the retinoic acid-induced differentiation of F9 teratocarcinoma stem cells. Biochem Pharm. 2008;75:1129–60.

    Article  CAS  PubMed  Google Scholar 

  95. Jetten AM. Retinoid-related orphan receptors (RORs): critical roles in development, immunity, circadian rhythm, and cellular metabolism. Nucl Recept Signal. 2009;7:e003.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Wernicke C, Hellmann J, Finckh U, Rommelspacher H. Chronic ethanol exposure changes dopamine D2 receptor splicing during retinoic acid-induced differentiation of human Sh-Sy5y cells. Pharmacol Rep. 2010;62:649–63.

  97. Balmer JE, Blomhoff R. Gene expression regulation by retinoic acid. 2002;43:1773–808.

  98. Min JA, Lee HJ, Lee SH, Park YM, Kang SG, Park YG, et al. RORA polymorphism interacts with childhood maltreatment in determining anxiety sensitivity by sex: a preliminary study in healthy young adults. Clin Psychopharmacol Neurosci. 2017;15:402–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Gilman TL, DaMert JP, Meduri JD, Jasnow AM. Grin1 deletion in CRF neurons sex-dependently enhances fear, sociability, and social stress responsivity. Psychoneuroendocrinology. 2015;58:33–45.

    Article  CAS  PubMed  Google Scholar 

  100. Pulga A, Porte Y, Morel JL. Changes in C57BL6 mouse hippocampal transcriptome induced by hypergravity mimic acute corticosterone-induced stress. Front Mol Neurosci. 2016;9:153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Garcia JA, Zhang D, Estill SJ, Michnoff C, Rutter J, Reick M, et al. Impaired cued and contextual memory in NPAS2-deficient mice. Science (80-). 2000;288:2226–30.

    Article  CAS  Google Scholar 

  102. Muhie S, Gautam A, Chakraborty N, Hoke A, Meyerhoff J, Hammamieh R, et al. Molecular indicators of stress-induced neuroinflammation in a mouse model simulating features of post-traumatic stress disorder. Transl Psychiatry. 2017;7:e1135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Muhie S, Gautam A, Meyerhoff J, Chakraborty N, Hammamieh R, Jett M. Brain transcriptome profiles in mouse model simulating features of post-traumatic stress disorder. Mol Brain. 2015;8:14.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Li L, Bao Y, He S, Wang G, Guan Y, Ma D, et al. The association between genetic variants in the dopaminergic system and posttraumatic stress disorder: a meta-analysis. Medicine. 2016;95:e3074.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Alvarado S, Rajakumar R, Abouheif E, Szyf M. Epigenetic variation in the Egfr gene generates quantitative variation in a complex trait in ants. Nat Commun. 2015;6:6513.

    Article  CAS  PubMed  Google Scholar 

  106. Massart R, Barnea R, Dikshtein Y, Suderman M, Meir O, Hallett M, et al. Role of DNA methylation in the nucleus accumbens in incubation of cocaine craving. J Neurosci. 2015;35:8042–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Neale BM, Lasky-Su J, Anney R, Franke B, Zhou K, Maller JB, et al. Genome-wide association scan of attention deficit hyperactivity disorder. Am J Med Genet B Neuropsychiatr Genet. 2008;147B:1337–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Le-Niculescu H, Patel SD, Bhat M, Kuczenski R, Faraone SV, Tsuang MT, et al. Convergent functional genomics of genome-wide association data for bipolar disorder: comprehensive identification of candidate genes, pathways and mechanisms. Am J Med Genet B Neuropsychiatr Genet. 2009;150B:155–81.

    Article  CAS  PubMed  Google Scholar 

  109. Nguyen A, Rauch TA, Pfeifer GP, Hu VW. Global methylation profiling of lymphoblastoid cell lines reveals epigenetic contributions to autism spectrum disorders and a novel autism candidate gene, RORA, whose protein product is reduced in autistic brain. FASEB J. 2010;24:3036–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Terracciano A, Tanaka T, Sutin AR, Sanna S, Deiana B, Lai S, et al. Genome-wide association scan of trait depression. Biol Psychiatry. 2010;68:811–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Cao C, Wang L, Cao X, Dong C, Liu P, Luo S, et al. Support for the association between RORA gene polymorphisms and the DSM-5 posttraumatic stress disorder symptoms in male earthquake survivors in China. Asian J Psychiatr. 2017;25:138–41.

    Article  PubMed  Google Scholar 

  112. Lowe SR, Meyers JL, Galea S, Aiello AE, Uddin M, Wildman DE, et al. RORA and posttraumatic stress trajectories: main effects and interactions with childhood physical abuse history. Brain Behav. 2015;5:1–11.

    Article  Google Scholar 

  113. Miller MW, Wolf EJ, Logue MW, Baldwin CT. The retinoid-related orphan receptor alpha (RORA) gene and fear-related psychopathology. J Affect Disord. 2013;151:702–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Jolly S, Journiac N, Vernet-Der Garabedian B, Mariani J. RORalpha, a key to the development and functioning of the brain. Cerebellum. 2012;11:451–2.

  115. Miller MW, Sadeh N. Traumatic stress, oxidative stress and post-Traumatic stress disorder: neurodegeneration and the accelerated-aging hypothesis. Mol Psychiatry 2014;19:1156–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Wolf EJ, Logue MW, Hayes JP, Sadeh N, Schichman SA, Stone A, et al. Accelerated DNA methylation age: associations with PTSD and neural integrity. Psychoneuroendocrinology. 2016;63:155–62.

    Article  CAS  PubMed  Google Scholar 

  117. Schiavone S, Jaquet V, Trabace L, Krause K-H. Severe life stress and oxidative stress in the brain: from animal models to human pathology. Antioxid Redox Signal. 2013;18:1475–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Simmons JM, Quinn KJ. The NIMH Research Domain Criteria (RDoC) Project: implications for genetics research. Mamm Genome. 2014;25:23–31. https://doi.org/10.1007/s00335-013-9476-9.

  119. Delgado MR, Li J, Schiller D, Phelps EA. The role of the striatum in aversive learning and aversive prediction errors. Philos Trans R Soc B Biol Sci. 2008;363:3787–3800.

    Article  Google Scholar 

  120. Jensen J, McIntosh AR, Crawley AP, Mikulis DJ, Remington G, Kapur S. Direct activation of the ventral striatum in anticipation of aversive stimuli. Neuron. 2003;40:1251–7.

    Article  CAS  PubMed  Google Scholar 

  121. Klucken T, Schweckendiek J, Koppe G, Merz CJ, Kagerer S, Walter B, et al. Neural correlates of disgust- and fear-conditioned responses. Neuroscience. 2012;201:209–18.

    Article  CAS  PubMed  Google Scholar 

  122. Phan KL, Taylor SF, Welsh RC, Ho SH, Britton JC, Liberzon I. Neural correlates of individual ratings of emotional salience: a trial-related fMRI study. Neuroimage. 2004;21:768–80.

    Article  PubMed  Google Scholar 

  123. Yehuda R, Bierer LM. The relevance of epigenetics to PTSD: implications for the DSM-V. J Trauma Stress. 2009;22:427–34.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Hariri AR. The neurobiology of individual differences in complex behavioral traits. Annu Rev Neurosci. 2009;32:225–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Admon R, Lubin G, Rosenblatt JD, Stern O, Kahn I, Assaf M, et al. Imbalanced neural responsivity to risk and reward indicates stress vulnerability in humans. Cereb Cortex. 2013;23:28–35.

    Article  PubMed  Google Scholar 

  126. Bremner JD. Neuroimaging in posttraumatic stress disorder and other stress-related disorders. Neuroimaging Clin N. Am 2007;17:523–38.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Bremner JD, Elzinga B, Schmahl C, Vermetten E. Structural and functional plasticity of the human brain in posttraumatic stress disorder. Prog Brain Res. 2008;167:171–86.

  128. Roth TL, Zoladz PR, Sweatt JD, Diamond DM. Epigenetic modification of hippocampal Bdnf DNA in adult rats in an animal model of post-traumatic stress disorder. J Psychiatr Res. 2011;45:919–26.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Heim C, Nemeroff CB. Neurobiology of posttraumatic stress disorder. CNS Spectr. 2009;14:13–24.

    PubMed  Google Scholar 

  130. Karl A, Schaefer M, Malta LS, Dörfel D, Rohleder N, Werner A. A meta-analysis of structural brain abnormalities in PTSD. Neurosci Biobehav Rev 2006;30:1004–31.

    Article  PubMed  Google Scholar 

  131. Doherty TS, Forster A, Roth TL. Erratum: Corrigendum to “Global and gene-specific DNA methylation alterations in the adolescent amygdala and hippocampus in an animal model of caregiver maltreatment” (Behav. Brain Res. (2016) 298(Pt A) (55–61) (S0166432815003575) 10.1016/j.bbr.2015.05.0. Behav Brain Res. 2016;312:431.

  132. Russo SJ, Murrough JW, Han M, Charney DS, Nestler EJ. Neurobiology of resilience. Nat Neurosci. 2012;15:1475–84.

  133. Charney DS. Psychobiological mechanism of resilience and vulnerability: implications for successful adaptation to extreme stress. Am J Psychiatry 2004;161:195–216.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded by a grant from the Canadian Institute of Health Research MOP-42411 to MS and the Israel Academy of Sciences 1612/14 to GY. SAM used in this study was a kind gift of Life Science Laboratories LLC Lakewood NJ USA. We thank Dr. Tamar Sadan for the critical editing of the manuscript. This work was performed in partial fulfillment of the requirements for a Ph.D. degree to GW, The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Moshe Szyf or Gal Yadid.

Ethics declarations

Conflict of interest

The authors have applied for patents for discoveries reported here and licensed the patent to Neuroepitherapeutics Inc.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Warhaftig, G., Zifman, N., Sokolik, C.M. et al. Reduction of DNMT3a and RORA in the nucleus accumbens plays a causal role in post-traumatic stress disorder-like behavior: reversal by combinatorial epigenetic therapy. Mol Psychiatry 26, 7481–7497 (2021). https://doi.org/10.1038/s41380-021-01178-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-021-01178-y

Search

Quick links