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Abstract
Bipolar disorder is a severe and chronic psychiatric disease resulting from a combination of genetic and environmental risk
factors. Here, we identified a significant higher mutation rate in a gene encoding the calcium-dependent activator protein for
secretion (CADPS) in 132 individuals with bipolar disorder, when compared to 184 unaffected controls or to 21,070 non-
psychiatric and non-Finnish European subjects from the Exome Aggregation Consortium. We found that most of these
variants resulted either in a lower abundance or a partial impairment in one of the basic functions of CADPS in regulating
neuronal exocytosis, synaptic plasticity and vesicular transporter-dependent uptake of catecholamines. Heterozygous mutant
mice for Cadps+/− revealed that a decreased level of CADPS leads to manic-like behaviours, changes in BDNF level and a
hypersensitivity to stress. This was consistent with more childhood trauma reported in families with mutation in CADPS, and
more specifically in mutated individuals. Furthermore, hyperactivity observed in mutant animals was rescued by the mood-
stabilizing drug lithium. Overall, our results suggest that dysfunction in calcium-dependent vesicular exocytosis may
increase the sensitivity to environmental stressors enhancing the risk of developing bipolar disorder.

Introduction

Bipolar disorder (BD) is a chronic psychiatric mood dis-
order with a lifetime cumulative risk of 4.4% in the world-
wide population [1]. Twin and family studies have
demonstrated a genetic component of BD with an estimated
heritability ranging between 60% and 80% [2]. These
results are supported by many genome-wide linkage
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analyses that identified a vulnerability locus for BD on
chromosome 3p14-p21 [3, 4], mainly in the early-onset
form of the disease [5]. Recent large-scale genome-wide
association studies further suggested several candidate
genes in this region [6–11].

Some studies have linked BD to perturbations in mole-
cular mechanisms that regulate neurotransmitter release
[12–15]. Neurotransmitter release is achieved by a physical
attachment of synaptic vesicles to the presynaptic plasma
membrane and membrane fusion is triggered by action
potential-dependent influx of Ca2+ ions into the presynaptic
nerve terminal. Growing evidence suggests a major role of
presynaptic Ca2+ and Ca2+ channels in the onset of BD
[9, 12, 16]. In this study, we explored the role of a new
candidate gene on chromosome 3p14, which encodes the
Ca2+-dependent activator protein for secretion (CADPS).
CADPS is a member of the CADPS protein family that
comprises two isoforms, namely CADPS and CADPS2
[17]. CADPS proteins are essentially involved in priming
secretory vesicles in neurons and neuroendocrine cells
[18–21]. In addition, CADPS and CADPS2 have also been
suggested to play a role in the loading of catecholamines
into dense core vesicles [21–23]. CADPS2 dysfunction has
been linked to several psychiatric diseases, including autism
spectrum disorder and schizophrenia, and is located in a BD
susceptibility locus [24–26]. In contrast, no mutation has
been identified yet in CADPS. However, the observation
that CADPS is the most dominantly expressed isoform in
the brain and directly interacts with proteins of the neuronal
soluble N-ethylmaleimide sensitive factor–associated pro-
tein receptor (SNARE) complex [27], which have been
widely associated with psychiatric disorder vulnerability
[13, 14, 28, 29], makes this gene an interesting candidate for
vulnerability to psychiatric disorders.

Here we report that common and rare genetic variants in
CADPS are more frequently observed in individuals with
early-onset BD than in control populations. We explored
the consequences of missense variants identified in patients
on the multiple functions of the protein and showed that
most of these variants affect CADPS functions and neuro-
transmission. In addition, we showed that down-regulation
of CADPS in mice results in manic-like behaviours and a
higher sensitivity to stress, and hyperactivity was
reduced with lithium. We finally showed that patients with
mutations in CADPS reported more childhood trauma
than unmutated family members or than other patients
with BD.

Materials and methods

See Supplementary Information for details. Methods are
briefly descried as follows.

Subjects

This study combines data from a previously published
cohort [9, 30] of 452 individuals with BD (189 males and
263 females) and 1636 control individuals (696 males and
940 females) of French origin for genotyping analyses and
child trauma assessment [31, 32] from whom 132 indivi-
duals with early-onset BD (56 males and 76 females) have
been included in sequencing analyses (see Supplementary
Materials and Methods for details). In addition, 184 unaf-
fected controls (105 males and 79 females) with neither
personal nor family history of psychiatric disorder or sui-
cidal behaviour have been collected for sequencing
analyses.

The research ethics board of the Pitié-Salpêtrière Hos-
pital approved protocols and procedures and written
informed consent was obtained from all subjects prior to
participation in the study.

Mice

All experiments were conducted in accordance with the
European Community Council Directive (86/609/EEC)
regarding the housing, care, and experimental procedures
on mice.

Deletion of Cadps in mice have been generated by
homologous recombination and maintained on C57BL/6 J
background [21]. Cadps+/− heterozygous mice and their
wild type littermates were weaned at 4 weeks and housed
two to six per cage by sex and litter regardless of the
genotype under standard conditions, with food and water
available ad libitum.

Genetic analyses in humans

Genotyping data and copy number variations have been
detected using HumanHap550 BeadArrays (Illumina, San
Diego, CA, U.S.A.) and analysed using the PLINK software
v1.07 [33] as previously described [30]. The CADPS coding
region and exon-intron boundaries were sequenced by
Sanger’s method on a 16-Capillary ABI PRISM 3130xl
genetic analyser as previously described [14]. All primers
and PCR conditions are available on request.

Vesicular exocytosis in PC12 cells

Two million of PC-12 cells were electroporated with the
plasmids containing wild type and mutant CADPS DNA
using Amaxa® Cell Line Nucleofector™ Kit V and
Nucleofector™ device according to manufacturer’s protocol
(Lonza, Basel, Switzerland). The day after, cells were
incubated with 20 µM of Fluorescent False Neuro-
transmitter 511 (FFN511) [34] diluted in 100 µl of Krebs-
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Ringer buffer: 10 mM HEPES, 140 mM NaCl, 5 mM KCl,
1.5 mM MgCl2, 2 mM CaCl2, 14.3 mM NaHCO3, 5 mM
Glucose, 0.1 mM EGTA, for 1 h at room temperature. Cells
were washed three times and exocytosis was triggered
with the addition of Krebs-Ringer buffer supplemented with
60 mM KCl, 80 mM NaCl and 1 mM EGTA. Supernatants
were collected after 1 min exocytosis and read at 501 nm
with Infinite® 200 PRO microplate reader (Tecan, Männe-
dorf, Switzerland). The transfection efficiency was
checked for each experiment by quantifying the fluores-
cence level of the enhanced green fluorescent protein
(eGFP) at 504 nm.

Vesicular monoamine uptake assays in CHO cell
lines

Chinese Hamster Ovary (CHO) cell lines, constitutively
expressing the Slc18a1 gene, encoding the vesicular
monoamine transporter VMAT1 (CHOVMAT1), were
provided by Prof. Ahnert-Hilger (Charité Center, Berlin,
Germany) and cultured as described [22]. Cells were
transfected with wild type and mutant CADPS DNA using
Lipofectamine™ 2000 (Thermo Fisher Scientific) according
to manufacturer’s instruction. Twenty-four hours after
transfection, the transfection efficiency was checked with
the fluorescence of the eGFP and one million cells were
permeabilized with streptolysin O [35]. Serotonin uptake
was measured using 5-Hydroxy-tryptamine,[H3]-tri-
fluoroacetate (PerkinElmer, Waltham, MA, USA) and
liquid scintillation counting by a Packard 1600TR Tri-Carb
Liquid Scintillation Analyzer (Perkin Elmer) as described
[22].

Electrophysiological recording of autaptic
hippocampal neurons

Autaptic hippocampal neurons were prepared from hip-
pocampal neuroblasts of e18 CADPS/CADPS2-double
knockout (DKO) embryos, as described previously [19].
Cells were whole-cell voltage clamped at −70 mV under
control of a Multiclamp 700B amplifier (Molecular
Devices, Sunnyvale, CA, U.S.A.). All analyses were
performed using AxoGraph 4.1 (Axon Instruments Inc.,
Foster City, CA, U.S.A.). The readily-releasable pool
(RRP) size was determined by a 6 s application of the
external saline solution made hypertonic by the addition
of 0.5 M sucrose. Recordings of mEPSCs were performed
in the presence of 300 nM tetrodotoxin (TTX). EPSCs
were evoked by depolarizing the cell from −70 to 0 mV
for 2 ms. The effect of high-frequency stimulation on the
amplitude of EPSCs was measured by applying depolar-
isations at frequencies of 2, 5, 10 and 40 Hz for
100 stimuli.

Statistical analyses

The data that support the findings of this study are available
from the corresponding author upon reasonable request.
Data are presented as mean ± standard error of the mean or
as median ± range. Statistical testing was performed using
Prism 6 software (GraphPad Software Inc., La Jolla, CA, U.
S.A.). Condition comparisons included parametric tests
(Student t test / ANOVA) and non-parametric tests
(Mann–Whitney U test / Kruskal–Wallis test), according to
normality of distribution, tested using the Shapiro–Wilk
method or Kolmogorov–Smirnov test for electro-
physiological data. All statistical tests were two-sided.
Differences were considered significant for p < 0.05.

Results

CADPS is associated with early-onset bipolar
disorder

CADPS is a large gene spanning 477,044 bp on chromo-
some 3p14. In order to determine whether common poly-
morphisms in this gene might explain genetic linkages
frequently reported on 3p14, we genotyped 176 haplotype-
tagging single nucleotide polymorphisms (ht-SNPs) in 452
individuals with BD and 1636 controls. The biggest dif-
ference in allele frequencies between patients and controls
was observed for rs35462732 (χ2= 8.84, p= 0.003)
(Fig. 1a). This SNP has not been genotyped by the Psy-
chiatric Genomic Consortium (PGC) Bipolar Disorder
Group [9] and no information on allele frequency was
available for it. However, 4 SNPs (rs9872498, rs1238394,
rs833638 and rs17651503) in CADPS showed a difference
in allele frequencies with a p < 0.01 between the 7481
individuals with BD and the 9250 control individuals of the
PGC study. These SNPs were located 100 kbp downstream
to rs35462732 (lowest p value for rs833838, p= 0.004).
Genetic linkages identified in this region were specific for
patients with early-onset BD [5]. We then restricted our
sample to 203 patients with an age at onset lower than 22
and showed that the difference in allele frequencies for
rs35462732 was even larger (χ2= 11.05, p= 0.0009, OR=
1.80, 95% CI [1.27;2.55]) (Fig. 1a).

Missense variants in CADPS are more frequent in
individuals with BD than in unaffected controls

The odds ratio of rs35462732 was not able to explain the
multiple genetic linkages previously reported in this
region. We thus assumed that rare functional variants in
this gene may contribute to increase BD vulnerability. As
our linkage and association studies showed a stronger
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signal for early-onset BD, we sequenced the 31 coding
exons as well as regulatory regions of the 3 RefSeq iso-
forms of CADPS (NM_003716.3, NM_183393.2 and
NM_183394.2) in a subgroup of 132 patients with early-
onset BD. We identified six missense and four synon-
ymous variants (Supplementary Table 1). One of the
missense variants (p.N1017I) has been found twice in

patients and twice in controls and should be considered as
a polymorphism not associated with the disorder. Note
that one of the two patients, who carried the p.N1017I
variant had another missense variant on the same allele (p.
L482I) (Fig. 1b). In order to focus on variants that might
be causative for the disorder, we then selected only rare
variants with a minor allele frequency lower than 0.001 in
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the Exome Aggregation Consortium (ExAC) database
(http://exac.broadinstitute.org/) for further analyses. In
the six families in which rare variants were identified,
100% of individuals with a missense variant in CADPS
had a mood disorder, whereas this frequency decreased to
20% in unmutated subjects (Fisher’s exact test, OR=
+ ∞ , 95% CI [2.00;+∞], p= 0.005) (Fig. 1c). Only three
missense variants were found in 184 unaffected controls,
including p.N1017I. Moreover, the missense variant fre-
quency was three times higher in patients than in controls
(Fisher’s exact test, OR= 3.53, 95% CI [0.57;37.32], p=
0.13) as well as in the non-psychiatric and non-Finnish
European population from the ExAC database (Fisher’s
exact test, OR= 3.38, 95% CI [1.08;8.11], p= 0.02)
(Supplementary Fig. S1). In contrast, no difference was
observed for synonymous variants between these three

populations (Supplementary Fig. S1). We looked for copy
number variations in the 452 patients with BD. Although,
any insertion or deletion were found in CADPS using
DNA chip screening, a deletion was identified by seren-
dipity using real-time PCR. This amplification was used
as control to validate another deletion identified in GRIP1
in one female with late-onset BD. The GRIP1 deletion
was not confirmed, but further exploration around the
CADPS region confirmed a 9kbp-deletion, removing the
exon 2 (p.I148_E185del). As exon 2 is composed of 114
nucleotides, this deletion resulted in a protein shortened
of 38 amino acids in the dynactin-binding domain,
which has been shown to be necessary for a proper
localisation of CADPS2 in neurons [26]. No similar
deletion was reported in the Database for Genomic Var-
iants (http://dgv.tcag.ca/) or in the Genome Aggregation
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Database of Structural Variants v2.1 (https://gnomad.broa
dinstitute.org).

Two missense variants in CADPS identified in
individuals with BD affect the protein level

In silico analysis of the genetic variants identified in patients
with early-onset BD suggested that five out of the six
missense variants were predicted to have a damaging impact
on the protein function by at least two programs (Supple-
mentary Table 1). In order to determine whether these
variants affect the cellular stability of CADPS, we trans-
fected either the wild type or mutant CADPS in multiple cell
lines. Quantification of the protein level in COS-7 cells was
performed by western blot analysis and showed a 40% and
33% decrease in protein expression level for p.R195L and
p.S399L, respectively (Fig. 2a, b). This was confirmed both
in CHO and PC12 cells with a similar reduction of the
protein level, whereas no difference in RNA level was
observed for these variants (Supplementary Fig. S2). We
checked the protein stability using 100 µg/ml of cyclohex-
imide for 24 h on COS cells transiently transfected with
mutated and non-mutated CADPS and measured the protein
level over time. This showed a 3-fold faster degradation of
the protein with the p.S399L mutation (Fig. 2c).

CADPS variants exhibit normal activity in vitro but
affect CADPS functions ex vivo

Multiple functions have been shown for CADPS in vesi-
cular exocytosis mechanisms. Missense variants in CADPS
were previously found to decrease the Ca2+-triggered
exocytosis in a permeable cell assay [36–39]. Thus, we
assessed activity in this assay of human CADPS proteins
with patients’ mutations in HEK293 cells. All proteins
tested exhibited activities similar to those of the wild type
protein (Supplementary Fig. S3). Although in vitro
experiments did not show significant difference between
wild type and mutant proteins, we transiently transfected
neuroendocrine PC12 cells in order to determine whether
the genetic variants identified in individuals with BD may
affect directly or indirectly the neurotransmitter release,
using FFN511 (Fig. 3a, b). We showed a 50% increase in
vesicular exocytosis when wild type CADPS was expres-
sed in PC12 cells as compared with empty vector (paired
Student t test, t= 11.88, df= 25, p < 0.0001, Fig. 3c).
Interestingly, we showed that the FFN511 release was
totally impaired when CADPS lacked exon 2 (paired Stu-
dent t test, t= 5.03, df= 7, p= 0.001) or when CADPS
carried the p.N1017I (paired Student t test, t= 5.50, df= 5,
p= 0.003). Release was also abolished when the 2
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mutations p.L482I and p.N1017I were present (paired
Student t test, t= 6.39, df= 5, p= 0.001, not shown), as
observed in one individual with BD.

As no significant difference was observed for other
variants, we checked whether those might affect other
functions of CADPS. Indeed, former studies demonstrated
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that CADPS was also able to promote vesicular monoamine
uptake and storage in cell lines and brain [21–23]. We thus
transiently transfected CHOVMAT1 cell lines with wild
type and mutant forms of CADPS and measured serotonin
uptake in vitro. We observed a 50% increase of serotonin
uptake when CHOVMAT1 cells were transfected with wild
type CADPS when compared with empty vector expressing
cells (unpaired Student t test, t= 4.26, df= 24, p= 0.0003;
Fig. 3d), thereby confirming the ability for CADPS to
potentiate the vesicular monoamine uptake in vitro. Two
mutations, p.R195L and p.L482I, impaired the ability of
CADPS to promote uptake (unpaired Student t test, t=
2.95, df= 20, p= 0.008 and t= 2.81, df= 24, p= 0.01 for
p.R195L and p.L482I, respectively; Fig. 3d). For the p.
R195L mutant, loss of function in this assay might be
attributed to decreased protein level (see Fig. 2b).

Partial truncation of the dynactin-interacting-
domain of CADPS leads to enhanced short-term
synaptic depression

We next assessed the ability of the 7 CADPS cDNA mutants
to reverse the secretory deficits of CADPS/CADPS2 DKO
hippocampal neurons [19]. All mutant cDNA constructs
were able to rescue the dramatic decrease of EPSC ampli-
tudes observed in CADPS/CADPS2 DKO neurons when
expressed via lenti viruses (Fig. 4 and Supplementary
Fig. S4). However, a deeper exploration of these variant
proteins showed physiological differences for two of them
(Fig. 4). The p.I148_E185del mutation resulted in a higher
vesicular release probability (Fig. 4d), as well as an increase
in mEPSC frequency when compared to wild type CADPS
expressing neurons (Fig. 4f). In addition, when applying an

action potential train of stimuli at frequencies of 2, 5, 10 or
40 Hz, expression of CADPSI148_E185del in CADPS/
CADPS2 DKO neurons resulted in stronger depression than
did CADPS expression (Fig. 4g, h). These findings wer-
e consistent with an increased release probability. In con-
trast, expression of the p.S399L mutant cDNA led to a
less pronounced short-term synaptic depression (Fig. 4p, q)
during trains of action potentials at frequencies of 2, 5, 10
or 40 Hz.

A decreased expression of CADPS increase manic-
like behaviours in mice

In vitro and ex vivo analyses showed that most of the
genetic variants identified in individuals with early onset
BD resulted in functional abnormalities of CADPS (Sup-
plementary Table 1), suggesting that mutations in this gene
may result in vesicular exocytosis dysfunction and thus
increase the risk of developing BD. These variants were
mainly loss of function mutations at heterozygous state in
patients. The Cadps homozygous mutant mice (Cadps−/−)
died at birth. We thus conducted behavioural studies on
heterozygous mutant animals (Cadps+/−) and their wild
type littermates. As observed for two mutations (p.R195L
and p.S399L), these animals had a lower expression level of
the protein. In addition, they showed a significant decrease
of the readily releasable pool in chromaffin cells [21]. This
reduction might limit large dense core vesicle priming
reaction and catecholamine secretion in mutant animals. In
order to determine if such alterations affect behavioural
responses, we used a battery of tests to characterize manic
or depressive-like behaviours. During a 9 min period,
Cadps+/− mice covered a significant longer distance in an
open field than wild type littermates (Mann–Whitney U test,
U= 11, p= 0.008; Fig. 5a). Locomotor activity was also
assessed in home cages for three weeks where heterozygous
mice showed similarly a higher activity, mainly during
activity periods, i.e. nights (Mann–Whitney U test, U= 9, p
= 0.01), suggesting that this hyperactivity was not due to
the new environment or to stress generated by moving to the
open field (Fig. 5b). We then assessed whether mutant mice
had depressive-like behaviours using forced swimming test
(FST) and tail suspension test (TST), which are both clas-
sically used to measure resignation-based antidepressive
drug effects. Consistent with hyperactivity, we observed an
increased swimming duration (Mann–Whitney U test, U=
34, p= 0.08) and a longer latency before immobility
(Mann–Whitney U test, U= 7, p= 0.0002) in FST
(Fig. 5c). Although not significant, we observed a smaller
number of immobility episodes during TST
(Mann–Whitney U test, U= 22, p= 0.10; Fig. 5d). No
difference was observed between mutant animals and wild
type littermates for the other tests assessed, including startle

Fig. 4 Cultured neurons expressing CADPSp.I148_E185del or
CADPSp.S399L exhibit altered short-term plasticity characteristics.
a, j Sample traces of action potential (AP)-evoked excitatory post-
synaptic currents (EPSCs) (i) spontaneously occurring miniature
EPSCs (mEPSCs) (ii) and sucrose-evoked EPSCs (iii) recorded in
cultured CADPS-CADPS2 double knock-out hippocampal neurons
(DKO), which expressed indicated CADPS cDNA. b, k Lentiviral
expression of the p.I148_E185del (blue) and the p.S399L mutation
(red) rescued the AP-triggered EPSCs amplitude. No difference has
been observed neither in the readily releasable pool (RRP) charge
measured in presence of 0.5M sucrose solution (c, l), nor in the
median amplitude of spontaneously occurring mEPSCs (e, n) for none
of the mutants. An increased vesicular release probability (d) and an
increased frequency of spontaneously occurring mEPSCs (f) has been
observed for p.I148_E185del but not for p.S399L (m, o). g, p Aver-
aged EPSC responses during a 40 Hz AP train. h, i, q, r Paired-pulse
ratio during trains of APs at indicated frequencies was decreased in p.
I148_E185del (h) but increased in p.S399L (q). No difference was
observed for steady-state EPSC responses for none of the mutants (i,
r). Bars in plots depict median and 5–95 percentile. N= 6 cultures for
each of the two comparisons. *p < 0.05; **p < 0.01; ***p < 0.001. See
also Supplementary Fig. S4.
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reactivity, pre-pulse inhibition, food intake, and sucrose
preference (Supplementary Fig. S5).

Mutant mice for Cadps are more sensitive to chronic
and acute stress

It has been widely demonstrated that individuals with BD
are more sensitive to stressful events and more specifically
that early stress can influence the onset and course of the
disorder [40, 41]. Interestingly, functional studies revealed
defects in catecholamine loading or storage in embryonic
chromaffin cells from Cadps−/− adrenal gland. In adult
Cadps+/− mice, these cells showed a reduced exocytosis
and a lower number of morphologically docked granules
[21]. Adrenal glands are part of the hypothalamo-pituitary-
adrenal (HPA) axis, a major part of the neuroendocrine
system that controls reactions to stress and regulates
digestion, mood, anxiety and emotions, sexuality, and
appetite, reminiscent of features of BD. Corticosterone is
produced in the cortex of the adrenal gland where CADPS
is very weakly expressed [42, 43]. However, Cadps+/− mice
showed lower corticosterone plasma levels than wild type
littermates in basal conditions (Mann–Whitney test, U= 7,
p= 0.008; Fig. 5e), suggesting that the absence of CADPS
may have an impact on the HPA axis and stress response. In
order to estimate the impact of stress in Cadps+/− mice, we
measured plasma corticosterone concentration in our animal

model exposed to unpredictable chronic mild stress
(UCMS) for four months as well as in animals exposed to
an acute stress. Whereas no difference in corticosterone
secretion was observed for wild type mice between stressed
and non-stressed animals, Cadps+/− mice showed a sig-
nificant higher corticosterone level when animals were
exposed to UCMS (Mann–Whitney U test, U= 3, p=
0.004; Fig. 5f). For all animals, acute stress increased cor-
ticosterone secretion (Fig. 5g). However, whereas UCMS
slightly decreased the acute stress effect in wild type ani-
mals, we observed a significant increased plasma level of
corticosterone in Cadps+/− mice, when exposed to UCMS
(Mann–Whitney U test, U= 5, p= 0.02), suggesting that
mutations in CADPS may impaired adaptation to stress.

Although few biomarkers have been identified in BD, a
lower level of brain derived neurotrophic factor (BDNF) has
been repeatedly reported in individuals with unipolar or
bipolar depression [44]. Similarly to what is observed in
patients, Cadps+/− mice had a lower BDNF level in hip-
pocampus than wild type littermates, in basal condition
(Mann–Whitney U test, U= 6, p= 0.07; Fig. 5h). We then
measured hippocampal BDNF level in our animal model
after the acute stress. Interestingly, we found that chronic
stress had no impact on hippocampal BDNF expression in
wild type animals, whereas BDNF levels were increased in
UCMS-exposed Cadps+/− mice (Mann–Whitney U test,
U= 11, p= 0.01; Fig. 5i). Note, when comparing
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Fig. 5 Heterozygous mutant mice for CADPS display manic-like
behaviours and a higher sensitivity to stress. Cadps+/− mice showed
an increased locomotor activity in the open field (a), in home cage (b),
and during the forced swim test (c), and a tendency has been observed
in the tail suspension test (d). Cadps+/− mice showed a lower corti-
costerone level in basal condition (e), but are hypersensitive to chronic
(f) and acute stress (g). Animals unexposed (C) and exposed (S) to
unpredictable chronic mild stress are indicated in black and red,
respectively. Unstressed Cadps+/− mice had a lower hippocampal

BDNF level (h). Unpredictable chronic mild stress (red) increased the
BDNF level only in Cadps+/− mice (i), for which the hippocampal
BDNF level was correlated with the plasma level of corticosterone (j).
k Basal locomotor hyperactivity of Cadps+/− mice was rescued by
lithium (Li) when compared with non-treated Cadps+/− animals
(Con.). Data in (a) are presented as mean ± s.e.m. Bars represent
median (b–k) *p < 0.05; **p < 0.01; ***p < 0.001. WT wild type. See
also Supplementary Fig. S5.
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corticosterone and BDNF levels in these mutant animals,
we showed a significant correlation between the two mar-
kers (linear regression, R2= 0.55, F= 12.15, p= 0.006;
Fig. 5j).

Lithium rescues the hyperactivity of mutant mice
for Cadps

As lithium is one of the most widely used medication to treat
BD, we tested whether it may rescue the manic-like beha-
viours we reported in Cadps+/− mice. Wild type and mutant
animals were fed with lithium-carbonate containing chow for
three weeks before to measure their activity for 2 h. Although
the total distance was not different between heterozygous
mice fed with lithium and those receiving untreated food
(Mann–Whitney U test, U= 48, p= 0.65), treated animals
showed a significant decrease of the number of rearing when
compared with non-treated animals (Mann–Whitney U test,
U= 23, p= 0.02; Fig. 5k), suggesting that lithium reversed
the baseline hyperactivity of Cadps+/− mice.

Individuals with missense variants in CADPS
reported more childhood trauma

Mutant mice for Cadps suggest that a decrease in the
expression level of this protein would increase sensitivity to
stress. It has been widely reported that individuals with BD
experienced more childhood trauma than unaffected control
population [40]. Here, we used the childhood trauma
questionnaire [31] to assess how childhood traumas were
reported in families with mutations in CADPS as well as in
a group of 355 subjects with BD and 86 unaffected control
individuals. Individuals with BD experienced significantly
more childhood traumas than unaffected individuals
(Mann–Whitney U test, U= 10,723, p= 0.00001; Fig. 6).
Individuals with missense variants in CADPS reported also
more childhood traumas than unaffected controls
(Mann–Whitney U test, U= 23.5, p= 0.009; Fig. 6).
Interestingly, their median score to the childhood trauma
questionnaire (medianCTQ_CADPS= 49) was even higher
than the one of the general population of individuals with
BD (medianCTQ_BD= 39, Mann–Whitney U test, U=
266.5, p= 0.14), whereas no significant difference was not
observed when comparing unmutated subjects of the
families with controls (Mann-Whitney U test, U= 76, p=
0.06) or the general population of individuals with BD
(Mann–Whitney U test, U= 626, p= 0.69; Fig. 6).

Discussion

In the present study, we accumulated evidence that genetic
variants in CADPS may increase the vulnerability to BD.

We first reported that common polymorphisms in CADPS
were more frequent in individuals with BD than in control
population and demonstrated that the difference was even
greater when only patients with an early age at onset were
considered. This association was strengthened by difference
in allele frequencies observed in large populations of indi-
viduals with BD and controls from the PGC [9]. It was also
consistent with previous genetic studies, which reported a
genetic linkage between BD and the 3p14 region, mainly
with early-onset BD [3–5]. Early-onset BD has long been
demonstrated to correspond to a homogeneous subgroup of
patients with a higher genetic component than later forms
[45–50]. Early-onset BD shares a similar aetiology with
late-onset BD with a small effect for common polymorph-
isms and larger effects for very rare variants [51]. By
screening for rare variants in individuals with early-onset
BD, we observed that the missense variant frequency was
three times higher than in control populations, in contrast to
synonymous variants for which no significant difference
was observed. This difference between synonymous and
non-synonymous substitution rates in patients and controls
suggests that most of the rare missense variants may have
functional consequences subjected to purifying selection.
All missense variants identified in individuals with BD were
predicted to alter protein function (Supplementary Table 1).

Controls Bipolar
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Fig. 6 Assessment of childhood trauma in families with mutations
in CADPS, 355 independent patients with BD and 86 unaffected
controls. Patients with BD experienced more childhood trauma
than unaffected controls. Patients with mutation in CADPS experi-
enced more childhood trauma than both unaffected controls and the
general population of patients with BD. In families with CADPS
mutations, mutated subjects have a higher score than unmutated sub-
jects. Data are presented as median ± interquartile range. **p < 0.01;
****p < 0.0001.
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In addition, we have identified the deletion of a full exon in
one patient with BD with a strong impact on the protein
sequence. Due to the limited sensitivity of DNA chips, we
may have overlooked the copy number variant detection in
affected and unaffected individuals. However, such a var-
iation looks rare since no similar deletion has been reported
in public databases. Further experiments confirmed for all
but two variants (p.R959L and p.N205K) functional
alteration of CADPS. Although in vitro experiments
showed that the CADPS mutations identified in individuals
with BD did not appear to affect the protein activity, cellular
studies showed that these mutations may affect either the
amount of the protein (p.R195L and p.S399L), the Ca2+-
dependent exocytosis (p.I148_E185del and p.N1017I) or
the ability of CADPS to promote monoamine uptake (p.
R195L and p.L482I). Results on monoamine uptake and
cellular secretion assays suggest that different domains of
CADPS may regulate distinct functions of the protein, as
previously shown for both CADPS and CADPS2 [26, 36–
38]. Interestingly, the exon 2 deletion (p.I148_E185del)
showed a higher vesicular release probability and a higher
mEPSC frequency than wild type CADPS. This result is
consistent with multiple studies on human induced plur-
ipotent stem cells-derived neurons, which showed that BD
neurons are more spontaneously active than control neurons
[15, 52, 53]. In addition, this mutation showed a stronger
depression of EPSC responses when trains of action
potentials were applied, suggesting that this mutation may
result in an alteration of synaptic plasticity, which has
widely been reported to play a key role in BD pathophy-
siology and therapeutics [54]. More generally, our results
suggest that abnormalities in Ca2+-dependent exocytosis
may increase the risk of developing an early-onset form of
BD and thereby corroborates the previous report of an
association between SNAP25, a direct binding partner of
CADPS [27], and early-onset BD [14]. Numerous genetic
studies have reported calcium signalling as the most asso-
ciated pathway with BD [9, 12, 16], which may have an
impact on the age at onset of the disease [55]. In addition,
calcium signalling is among the most affected pathways in
cellular models of BD [56].

CADPS has been shown to trigger synaptic and large
dense-core vesicle exocytosis [19, 21, 43, 57]. All affected
individuals with missense variants in our study were het-
erozygous for CADPS mutations, which was not surprising
since homozygous mutant mice for Cadps die at birth [21].
Interestingly, two mutations showed a significant lower
protein level in transfected cells. Adult heterozygous mutant
mice for Cadps showed a significant reduction of CADPS
and have a reduction of the readily releasable pool and a
reduction of catecholamine secretion in neuroendocrine
cells [21]. Variations in catecholamine and monoamines
have been widely documented in individuals with BD and

are the target of many antidepressant and antipsychotic
treatments [58]. This mouse model showed both behaviours
and biomarkers that bear resemblance to BD. In addition,
lithium reversed their manic-like behaviours. Interestingly,
mutant mice for CADPS resulted in over-reactivity to acute
stress when animals experienced chronic mild stress. This
model perfectly matches with a two-hits model that has
been proposed for psychoses [59], in which an early stress
interacts with genetic factors to increase the vulnerability to
BD. Then further stressors in adolescence or early adult-
hood trigger the disease in vulnerable subjects. This
hypothesis is supported by the observation that individuals
carrying mutation in CADPS reported more childhood
trauma than other individuals with BD. Interestingly, the
scores observed for mutated individuals in these families
were higher than those observed for unmutated ones.
Although there is no doubt that childhood traumas are more
frequent in families with CADPS mutations, this difference
suggests either that mutated individuals experienced more
childhood trauma than unmutated ones or that they were
more sensitive to trauma and thus scored higher to the
questionnaire. Therefore, a functional mutation in CADPS
may affect the HPA axis, increasing the reactivity to
stressful events. This gene-environment interaction may
thus result in changes in more central physiological pro-
cesses, as reflected by changes in BDNF level in our mouse
model, increasing the sensitivity to a later stressor that
would trigger the disease. Although a gender effect has been
reported to interact with childhood trauma [60, 61], our
sample was too small to consider this parameter in our study
and such analyses would need further investigations in
larger sample.

In summary, our genetic studies suggest that functional
mutations in CADPS may increase the risk of developing
early-onset BD. This risk may result from alteration in
Ca2+-dependent exocytosis mechanisms that would increase
sensitivity to environmental stressors.
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