Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Rare variants implicate NMDA receptor signaling and cerebellar gene networks in risk for bipolar disorder

Abstract

Bipolar disorder is an often-severe mental health condition characterized by alternation between extreme mood states of mania and depression. Despite strong heritability and the recent identification of 64 common variant risk loci of small effect, pathophysiological mechanisms remain unknown. Here, we analyzed genome sequences from 41 multiply-affected pedigrees and identified variants in 741 genes with nominally significant linkage or association with bipolar disorder. These 741 genes overlapped known risk genes for neurodevelopmental disorders and clustered within gene networks enriched for synaptic and nuclear functions. The top variant in this analysis – prioritized by statistical association, predicted deleteriousness, and network centrality – was a missense variant in the gene encoding D-amino acid oxidase (DAOG131V). Heterologous expression of DAOG131V in human cells resulted in decreased DAO protein abundance and enzymatic activity. In a knock-in mouse model of DAOG131, DaoG130V/+, we similarly found decreased DAO protein abundance in hindbrain regions, as well as enhanced stress susceptibility and blunted behavioral responses to pharmacological inhibition of N-methyl-D-aspartate receptors (NMDARs). RNA sequencing of cerebellar tissue revealed that DaoG130V resulted in decreased expression of two gene networks that are enriched for synaptic functions and for genes expressed, respectively, in Purkinje neurons or granule neurons. These gene networks were also down-regulated in the cerebellum of patients with bipolar disorder compared to healthy controls and were enriched for additional rare variants associated with bipolar disorder risk. These findings implicate dysregulation of NMDAR signaling and of gene expression in cerebellar neurons in bipolar disorder pathophysiology and provide insight into its genetic architecture.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Discovery and prioritization of functional rare variants associated with bipolar disorder.
Fig. 2: Effects of DAOG131V on expression and activity of the DAO protein.
Fig. 3: Behavioral characterization of DaoG130V/+ vs. Dao+/+ mice.
Fig. 4: DaoG130V/+ blunts hyperlocomotor response to the NMDAR antagonist MK-801.
Fig. 5: Differentially expressed gene networks in the cerebellum of DaoG130V/+ mice and of humans with bipolar disorder and schizophrenia.

Similar content being viewed by others

Data availability

Genome sequences have been deposited in the BIGPOWER database and are available upon request to Dr. Jared Roach (jedroach@uw.edu). RNA-seq data have been deposited in the Neuroscience Multi-Omic Archive (http://data.nemoarchive.org/other/grant/sament/sament/dao_rnaseq/). The DaoG130V/+ mouse line has been made available through the Mutant Mouse Resource and Research Centers (RRID:MMRRC_067164-UCD). All other data are available in the main text or the supplementary materials.

References

  1. Merikangas KR, Low NCP. The epidemiology of mood disorders. Curr Psychiatry Rep. 2004;6:411–21.

    PubMed  Google Scholar 

  2. Mullins N, Forstner AJ, O’Connell KS, Coombes B, Coleman JRI, Qiao Z, et al. Genome-wide association study of more than 40,000 bipolar disorder cases provides new insights into the underlying biology. Nat Genet. 2021;53:817–29.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Georgi B, Craig D, Kember RL, Liu W, Lindquist I, Nasser S, et al. Genomic view of bipolar disorder revealed by whole genome sequencing in a genetic isolate. PLoS Genet. 2014;10:e1004229.

    PubMed  PubMed Central  Google Scholar 

  4. Ament SA, Szelinger S, Glusman G, Ashworth J, Hou L, Akula N, et al. Rare variants in neuronal excitability genes influence risk for bipolar disorder. Proc Natl Acad Sci USA 2015;112:3576–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Goes FS, Pirooznia M, Parla JS, Kramer M, Ghiban E, Mavruk S, et al. Exome Sequencing of Familial Bipolar Disorder. JAMA Psychiatry. 2016;73:590–7.

    PubMed  PubMed Central  Google Scholar 

  6. Cruceanu C, Schmouth JF, Torres-Platas SG, Lopez JP, Ambalavanan A, Darcq E, et al. Rare susceptibility variants for bipolar disorder suggest a role for G protein-coupled receptors. Mol Psychiatry. 2018;23:2050–6.

    CAS  PubMed  Google Scholar 

  7. Toma C, Shaw AD, Allcock RJN, Heath A, Pierce KD, Mitchell PB, et al. An examination of multiple classes of rare variants in extended families with bipolar disorder. Transl Psychiatry. 2018;8:65.

  8. Jia X, Goes FS, Locke AE, Palmer D, Wang W, Cohen-Woods S, et al. Investigating rare pathogenic/likely pathogenic exonic variation in bipolar disorder. Mol Psychiatry. 2021;26:5239–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Palmer DS, Howrigan DP, Chapman SB, Adolfsson R, Bass N, Blackwood D, et al. Exome sequencing in bipolar disorder reveals shared risk gene AKAP11 with schizophrenia. MedRxiv. 2021:2021.03.09.21252930.

  10. Nakajima K, Miranda A, Craig DW, Shekhtman T, Kmoch S, Bleyer A, et al. Ntrk1 mutation co-segregating with bipolar disorder and inherited kidney disease in a multiplex family causes defects in neuronal growth and depression-like behavior in mice. Transl Psychiatry. 2020;10:407.

  11. Badner JA, Koller D, Foroud T, Edenberg H, Nurnberger JI, Zandi PP, et al. Genome-wide linkage analysis of 972 bipolar pedigrees using single-nucleotide polymorphisms. Mol Psychiatry. 2012;17:818–26.

    CAS  PubMed  Google Scholar 

  12. Glusman G, Caballero J, Mauldin DE, Hood L, Roach JC. Kaviar: an accessible system for testing SNV novelty. Bioinformatics 2011;27:3216–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GRS, Thormann A, et al. The Ensembl variant effect predictor. Genome Biol. 2016;17:122.

  14. Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM, Handsaker RE, et al. An integrated map of genetic variation from 1,092 human genomes. Nature 2012;491:56–65.

    PubMed  Google Scholar 

  15. Kircher M, Witten DM, Jain P, O’Roak BJ, Cooper GM, Shendure J. A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet. 2014;46:310–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Kang HM, Sul JH, Service SK, Zaitlen NA, Kong S-Y, Freimer NB, et al. Variance component model to account for sample structure in genome-wide association studies. Nat Genet. 2010;42:348–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Roach JC, Glusman G, Smit AFA, Huff CD, Hubley R, Shannon PT, et al. Analysis of genetic inheritance in a family quartet by whole-genome sequencing. Science 2010;328:636–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Stittrich A-B, Lehman A, Bodian DL, Ashworth J, Zong Z, Li H, et al. Mutations in NOTCH1 Cause Adams-Oliver syndrome. Am J Hum Genet. 2014;95:275–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Warde-Farley D, Donaldson SL, Comes O, Zuberi K, Badrawi R, Chao P, et al. The GeneMANIA prediction server: Biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res. 2010;38:W214–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Csardi G, Nepusz T. The igraph software package for complex network research. InterJournal, Complex Syst. 2006. 2006.

  21. Kelly ST leiden: R implementation of the Leiden algorithm. R package version 0.3.7. 2020.

  22. Fleishman SJ, Leaver-Fay A, Corn JE, Strauch E-M, Khare SD, Koga N, et al. RosettaScripts: A scripting language interface to the Rosetta macromolecular modeling suite. PLoS One. 2011;6:e20161.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, et al. The protein data bank, 1999–. Int. Tables Crystallogr. Vol. F Crystallogr. Biol. Macromol., Springer; 2006.675–84.

  24. Kawazoe T, Tsuge H, Imagawa T, Aki K, Kuramitsu S, Fukui K. Structural basis of D-DOPA oxidation by D-amino acid oxidase: alternative pathway for dopamine biosynthesis. Biochem Biophys Res Commun. 2007;355:385–91.

    CAS  PubMed  Google Scholar 

  25. Sparey T, Abeywickrema P, Almond S, Brandon N, Byrne N, Campbell A, et al. The discovery of fused pyrrole carboxylic acids as novel, potent D-amino acid oxidase (DAO) inhibitors. Bioorg Med Chem Lett. 2008;18:3386–91.

    CAS  PubMed  Google Scholar 

  26. Duplantier AJ, Becker SL, Bohanon MJ, Borzilleri KA, Chrunyk BA, Downs JT, et al. Discovery, SAR, and pharmacokinetics of a novel 3-hydroxyquinolin-2(1H)-one series of potent D-amino acid oxidase (DAAO) inhibitors. J Med Chem. 2009;52:3576–85.

    CAS  PubMed  Google Scholar 

  27. Hondo T, Warizaya M, Niimi T, Namatame I, Yamaguchi T, Nakanishi K, et al. 4-Hydroxypyridazin-3(2H)-one derivatives as novel D-amino acid oxidase inhibitors. J Med Chem. 2013;56:3582–92.

    CAS  PubMed  Google Scholar 

  28. Hopkins SC, Heffernan MLR, Saraswat LD, Bowen CA, Melnick L, Hardy LW, et al. Structural, kinetic, and pharmacodynamic mechanisms of D-amino acid oxidase inhibition by small molecules. J Med Chem. 2013;56:3710–24.

    CAS  PubMed  Google Scholar 

  29. Ashworth J, Bernard B, Reynolds S, Plaisier CL, Shmulevich I, Baliga NS. Structure-based predictions broadly link transcription factor mutations to gene expression changes in cancers. Nucleic Acids Res. 2014;42:12973–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 2001;25:402–8.

    CAS  PubMed  Google Scholar 

  31. Jagannath V, Brotzakis ZF, Parrinello M, Walitza S, Grünblatt E. Controversial effects of D-amino acid oxidase activator (DAOA)/G72 on D-amino acid oxidase (DAO) activity in human neuronal, astrocyte and kidney cell lines: the N-methyl D-aspartate (NMDA) receptor hypofunction point of view. Front Mol Neurosci. 2017;10:342.

    PubMed  PubMed Central  Google Scholar 

  32. Sacchi S, Bernasconi M, Martineau M, Mothet J-P, Ruzzene M, Pilone MS, et al. pLG72 modulates intracellular D-serine levels through its interaction with D-amino acid oxidase: effect on schizophrenia susceptibility. J Biol Chem. 2008;283:22244–56.

    CAS  PubMed  Google Scholar 

  33. Crawley JN, Paylor R. A proposed test battery and constellations of specific behavioral paradigms to investigate the behavioral phenotypes of transgenic and knockout mice. Horm Behav. 1997;31:197–211.

    CAS  PubMed  Google Scholar 

  34. Cryan JF, Mombereau C. In search of a depressed mouse: Utility of models for studying depression-related behavior in genetically modified mice. Mol Psychiatry. 2004;9:326–57.

    CAS  PubMed  Google Scholar 

  35. Neely CLC, Pedemonte KA, Boggs KN, Flinn JM. Nest building behavior as an early indicator of behavioral deficits in mice. JoVE. 2019:e60139.

  36. Deacon RMJ. Assessing nest building in mice. Nat Protoc. 2006;1:1117.

    PubMed  Google Scholar 

  37. Seibenhener ML, Wooten MC. Use of the open field maze to measure locomotor and anxiety-like behavior in mice. JoVE. 2015:e52434.

  38. Walf AA, Frye CA. The use of the elevated plus maze as an assay of anxiety-related behavior in rodents. Nat Protoc. 2007;2:322–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Porsolt RD, Le Pichon M, Jalfre M. Depression: a new animal model sensitive to antidepressant treatments. Nature 1977;266:730–2.

    CAS  PubMed  Google Scholar 

  40. Can A, Dao DT, Arad M, Terrillion CE, Piantadosi SC, Gould TD. The mouse forced swim test. JoVE. 2012:e3638.

  41. Gould TD, O’Donnell KC, Picchini AM, Dow ER, Chen G, Manji HK. Generation and behavioral characterization of β-catenin forebrain-specific conditional knock-out mice. Behav Brain Res. 2008;189:117–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Chartoff EH, Heusner CL, Palmiter RD. Dopamine is not required for the hyperlocomotor response to NMDA receptor antagonists. Neuropsychopharmacology 2005;30:1324–33.

    CAS  PubMed  Google Scholar 

  43. Terrillion CE, Dao DT, Cachope R, Lobo MK, Puche AC, Cheer JF, et al. Reduced levels of C acna1c attenuate mesolimbic dopamine system function. Genes, Brain Behav. 2017;16:495–505.

    CAS  PubMed  Google Scholar 

  44. Wu J, Zou H, Strong JA, Yu J, Zhou X, Xie Q, et al. Bimodal effects of MK-801 on locomotion and stereotypy in C57BL/6 mice. Psychopharmacol (Berl). 2005;177:256–63.

    CAS  Google Scholar 

  45. Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol. 2016;34:525–7.

    CAS  PubMed  Google Scholar 

  46. Robinson MD, McCarthy DJ, Smyth GK. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010;26:139–40.

    CAS  PubMed  Google Scholar 

  47. Chen C, Cheng L, Grennan K, Pibiri F, Zhang C, Badner JA, et al. Two gene co-expression modules differentiate psychotics and controls. Mol Psychiatry. 2013;18:1308–14.

    CAS  PubMed  Google Scholar 

  48. Smyth GKG. Limma: linear models for microarray data. Bioinforma. Comput. Biol. Solut. Using R Bioconductor, New York: Springer-Verlag; 2005.397–420.

  49. Langfelder P, Horvath S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinforma. 2008;9:559.

    Google Scholar 

  50. Wu D, Lim E, Vaillant F, Asselin-Labat ML, Visvader JE, Smyth GK. ROAST: Rotation gene set tests for complex microarray experiments. Bioinformatics 2010;26:2176–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4:44–57.

    CAS  PubMed  Google Scholar 

  52. Kozareva V, Martin C, Osorno T, Rudolph S, Guo C, Vanderburg C, et al. A transcriptomic atlas of mouse cerebellar cortex comprehensively defines cell types. Nature 2021;598:214–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Butler A, Hoffman P, Smibert P, Papalexi E, Satija R. Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol. 2018;36:411–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alföldi J, Wang Q, et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 2020;581:434–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Wright CF, Fitzgerald TW, Jones WD, Clayton S, McRae JF, Van Kogelenberg M, et al. Genetic diagnosis of developmental disorders in the DDD study: A scalable analysis of genome-wide research data. Lancet 2015;385:1305–14.

    PubMed  PubMed Central  Google Scholar 

  56. Genovese G, Fromer M, Stahl EA, Ruderfer DM, Chambert K, Landén M, et al. Increased burden of ultra-rare protein-altering variants among 4,877 individuals with schizophrenia. Nat Neurosci. 2016;19:1433–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Satterstrom FK, Kosmicki JA, Wang J, Breen MS, De Rubeis S, An JY, et al. Large-Scale Exome Sequencing Study Implicates Both Developmental and Functional Changes in the Neurobiology of Autism. Cell 2020;180:568–.e23.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Singh T, Poterba T, Curtis D, Akil H, Al-Eissa M, Barchas JD, et al. Rare coding variants in ten genes confer substantial risk for schizophrenia. Nature. https://doi.org/10.1038/s41586-022-04556-w 2022.

  59. O’Dushlaine C, Rossin L, Lee PH, Duncan L, Parikshak NN, Newhouse S, et al. Psychiatric genome-wide association study analyses implicate neuronal, immune and histone pathways. Nat Neurosci. 2015;18:199–209.

    Google Scholar 

  60. Park HK, Shishido Y, Ichise-Shishido S, Kawazoe T, Ono K, Iwana S, et al. Potential role for astroglial D-amino acid oxidase in extracellular D-serine metabolism and cytotoxicity. J Biochem. 2006;139:295–304.

    CAS  PubMed  Google Scholar 

  61. Oliet SHR, Mothet JP. Regulation of N-methyl-d-aspartate receptors by astrocytic d-serine. Neuroscience 2009;158:275–83.

    CAS  PubMed  Google Scholar 

  62. Farrell MS, Werge T, Sklar P, Owen MJ, Ophoff RA, O’donovan MC, et al. Evaluating historical candidate genes for schizophrenia. Mol Psychiatry. 2015;20:555–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Hashimoto A, Yoshikawa M, Niwa A, Konno R. Mice lacking D-amino acid oxidase activity display marked attenuation of stereotypy and ataxia induced by MK-801. Brain Res. 2005;1033:210–5.

    CAS  PubMed  Google Scholar 

  64. Yamanaka M, Miyoshi Y, Ohide H, Hamase K, Konno R. D-Amino acids in the brain and mutant rodents lacking D-amino-acid oxidase activity. Amino Acids. 2012;43:1811–21.

    CAS  PubMed  Google Scholar 

  65. Zhang M, Ballard ME, Basso AM, Bratcher N, Browman KE, Curzon P, et al. Behavioral characterization of a mutant mouse strain lacking d-amino acid oxidase activity. Behav Brain Res. 2011;217:81–87.

    CAS  PubMed  Google Scholar 

  66. Almond SL, Fradley RL, Armstrong EJ, Heavens RB, Rutter AR, Newman RJ, et al. Behavioral and biochemical characterization of a mutant mouse strain lacking d-amino acid oxidase activity and its implications for schizophrenia. Mol Cell Neurosci. 2006;32:324–34.

    CAS  PubMed  Google Scholar 

  67. Chumakov I, Blumenfeld M, Guerassimenko O, Cavarec L, Palicio M, Abderrahim H, et al. Genetic and physiological data implicating the new human gene G72 and the gene for D-amino acid oxidase in schizophrenia. Proc Natl Acad Sci USA. 2002;99:13675–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Shi J, Gershon ES, Liu C. Genetic associations with schizophrenia: meta-analyses of 12 candidate genes. Schizophr Res. 2008;104:96–107.

    PubMed  PubMed Central  Google Scholar 

  69. Liu Y-L, Wang S-C, Hwu H-G, Fann CS-J, Yang U-C, Yang W-C, et al. Haplotypes of the D-Amino Acid oxidase gene are significantly associated with schizophrenia and its neurocognitive deficits. PLoS One. 2016;11:e0150435.

  70. Prata D, Breen G, Osborne S, Munro J, St Clair D, Collier D. Association of DAO and G72(DAOA)/G30 genes with bipolar affective disorder. Am J Med Genet B Neuropsychiatr Genet. 2008;147B:914–7.

    PubMed  Google Scholar 

  71. Bass NJ, Datta SR, McQuillin A, Puri V, Choudhury K, Thirumalai S, et, 74 al. Evidence for the association of the DAOA (G72) gene with schizophrenia and bipolar disorder but not for the association of the DAO gene with schizophrenia. Behav Brain Funct. 2009;5:28.

  72. Jönsson EG, Saetre P, Vares M, Andreou D, Larsson K, Timm S, et al. DTNBP1, NRG1, DAOA, DAO and GRM3 polymorphisms and schizophrenia: An association study. Neuropsychobiology 2009;59:142–50.

    PubMed  Google Scholar 

  73. Leaver-Fay A, Tyka M, Lewis SM, Lange OF, Thompson J, Jacak R, et al. ROSETTA3: an object-oriented software suite for the simulation and design of macromolecules. Methods Enzymol. 2011;487:545–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Molla G Competitive inhibitors unveil structure/function relationships in human D-amino acid oxidase. Front Mol Biosci. 2017;4:80.

  75. Brandish PE, Chiu CS, Schneeweis J, Brandon NJ, Leech CL, Kornienko O, et al. A cell-based ultra-high-throughput screening assay for identifying inhibitors of D-amino acid oxidase. J Biomol Screen. 2006;11:481–7.

    CAS  PubMed  Google Scholar 

  76. Saunders A, Macosko EZ, Wysoker A, Goldman M, Krienen FM, de Rivera H, et al. Molecular diversity and specializations among the cells of the adult mouse brain. Cell 2018;174:1015–.e16.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Sasabe J, Suzuki M, Imanishi N, Aiso S. Activity of D-amino acid oxidase is widespread in the human central nervous system. Front Synaptic Neurosci. 2014;6:14.

  78. Pritchett D, Hasan S, Tam SKE, Engle SJ, Brandon NJ, Sharp T, et al. d-amino acid oxidase knockout (Dao(-/-)) mice show enhanced short-term memory performance and heightened anxiety, but no sleep or circadian rhythm disruption. Eur J Neurosci. 2015;41:1167–79.

    PubMed  PubMed Central  Google Scholar 

  79. Morikawa A, Hamase K, Inoue T, Konno R, Niwa A, Zaitsu K. Determination of free D-aspartic acid, D-serine and D-alanine in the brain of mutant mice lacking D-amino acid oxidase activity. J Chromatogr B Biomed Sci Appl. 2001;757:119–25.

    CAS  PubMed  Google Scholar 

  80. Juster RP, McEwen BS, Lupien SJ. Allostatic load biomarkers of chronic stress and impact on health and cognition. Neurosci Biobehav Rev. 2010;35:2–16.

    PubMed  Google Scholar 

  81. Post RM, Leverich GS. The role of psychosocial stress in the onset and progression of bipolar disorder and its comorbidities: The need for earlier and alternative modes of therapeutic intervention. Dev Psychopathol. 2006;18:1181–211.

    CAS  PubMed  Google Scholar 

  82. Ebner K, Singewald N. Individual differences in stress susceptibility and stress inhibitory mechanisms. Curr Opin Behav Sci. 2017;14:54–64.

    Google Scholar 

  83. Alloy L, Seligman M. On the cognitive component of learned helplessness and depression. Psychol Learn Motiv. 1979;13:219–76.

    Google Scholar 

  84. Maier SF, Seligman MEP. Learned helplessness at fifty: Insights from neuroscience. 2016;123:349–67.

  85. Baselmans BML, Jansen R, Ip HF, van Dongen J, Abdellaoui A, van de Weijer MP, et al. Multivariate genome-wide analyses of the well-being spectrum. Nat Genet. 2019;51:445–51.

    CAS  PubMed  Google Scholar 

  86. Luciano M, Hagenaars SP, Davies G, Hill WD, Clarke TK, Shirali M, et al. Association analysis in over 329,000 individuals identifies 116 independent variants influencing neuroticism. Nat Genet. 2018;50:6–11.

    CAS  PubMed  Google Scholar 

  87. Atz ME, Rollins B, Vawter MP. NCAM1 association study of bipolar disorder and schizophrenia: Polymorphisms and alternatively spliced isoforms lead to similarities and differences. Psychiatr Genet. 2007;17:55–67.

    PubMed  PubMed Central  Google Scholar 

  88. Lippard ETC, Nemeroff CB. The devastating clinical consequences of child abuse and neglect: Increased disease vulnerability and poor treatment response in mood disorders. Am J Psychiatry. 2020;177:20–36.

    PubMed  Google Scholar 

  89. Gould TD, Gottesman II. Psychiatric endophenotypes and the development of valid animal models. Genes, Brain Behav. 2006;5:113–9.

    CAS  PubMed  Google Scholar 

  90. Lenox RH, Gould TD, Manji HK. Endophenotypes in bipolar disorder. Am J Med Genet - Neuropsychiatr Genet. 2002;114:391–406.

    Google Scholar 

  91. Kakegawa W, Miyoshi Y, Hamase K, Matsuda S, Matsuda K, Kohda K, et al. D-Serine regulates cerebellar LTD and motor coordination through the δ glutamate receptor. Nat Neurosci. 2011;14:603–13.

    CAS  PubMed  Google Scholar 

  92. Naur P, Hansen KB, Kristensen AS, Dravid SM, Pickering DS, Olsen L, et al. Ionotropic glutamate-like receptor δ2 binds D-serine and glycine. Proc Natl Acad Sci USA 2007;104:14116–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Gao Z, Van Beugen BJ, De Zeeuw CI. Distributed synergistic Plasticity and cerebellar learning. Nat Rev Neurosci. 2012;13:619–35.

    CAS  PubMed  Google Scholar 

  94. Strata P. The emotional cerebellum. Cerebellum 2015;14:570–7.

    PubMed  Google Scholar 

  95. Sacchetti B, Scelfo B, Tempia F, Strata P. Long-term synaptic changes induced in the cerebellar cortex by fear conditioning. Neuron 2004;42:973–82.

    CAS  PubMed  Google Scholar 

  96. Han JK, Kwon SH, Kim YG, Choi J, Kim JI, Lee YS, et al. Ablation of STAT3 in purkinje cells reorganizes cerebellar synaptic plasticity in long-term fear memory network. Elife 2021;10:1–23.

    Google Scholar 

  97. Phillips JR, Hewedi DH, Eissa AM, Moustafa AA. The cerebellum and psychiatric disorders. Front Public Heal. 2015;3:66.

    Google Scholar 

  98. Wang SSH, Kloth AD, Badura A. The cerebellum, sensitive periods, and autism. Neuron 2014;83:518–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Ding S-L, Royall JJ, Sunkin SM, Ng L, Facer BAC, Lesnar P, et al. Comprehensive cellular-resolution atlas of the adult human brain. J Comp Neurol. 2016;524:3127–481.

    PubMed  PubMed Central  Google Scholar 

  100. Delbello MP, Strakowski SM, Zimmerman ME, Hawkins JM, Sax KW. MRI analysis of the cerebellum in bipolar disorder: A pilot study. Neuropsychopharmacology 1999;21:63–8.

    CAS  PubMed  Google Scholar 

  101. Baldaçara L, Nery-Fernandes F, Rocha M, Quarantini LC, Rocha GGL, Guimarães JL, et al. Is cerebellar volume related to bipolar disorder? J Affect Disord. 2011;135:305–9.

    PubMed  Google Scholar 

  102. Lupo M, Siciliano L, Leggio M. From cerebellar alterations to mood disorders: A systematic review. Neurosci Biobehav Rev. 2019;103:21–28.

    PubMed  Google Scholar 

  103. He Y, Wang Y, Chang TT, Jia Y, Wang J, Zhong S, et al. Abnormal intrinsic cerebro-cerebellar functional connectivity in un-medicated patients with bipolar disorder and major depressive disorder. Psychopharmacol (Berl). 2018;235:3187–3200.

    CAS  Google Scholar 

  104. Wang Y, Zhong S, Chen G, Liu T, Zhao L, Sun Y, et al. Altered cerebellar functional connectivity in remitted bipolar disorder: A resting-state functional magnetic resonance imaging study. Aust N. Zeal J Psychiatry. 2018;52:52.

    Google Scholar 

  105. Maloku E, Covelo IR, Hanbauer I, Guidotti A, Kadriu B, Hu Q, et al. Lower number of cerebellar Purkinje neurons in psychosis is associated with reduced reelin expression. Proc Natl Acad Sci USA 2010;107:4407–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Tran KD, Smutzer GS, Doty RL, Arnold SE. Reduced Purkinje cell size in the cerebellar vermis of elderly patients with schizophrenia. Am J Psychiatry. 1998;155:1288–90.

    CAS  PubMed  Google Scholar 

  107. Skefos J, Cummings C, Enzer K, Holiday J, Weed K, Levy E, et al. Regional alterations in Purkinje cell density in patients with autism. PLoS One. 2014;9:e81255.

  108. Benes FM, Berretta S. GABAergic interneurons: Implications for understanding schizophrenia and bipolar disorder. Neuropsychopharmacology 2001;25:1–27.

    CAS  PubMed  Google Scholar 

  109. Fatemi SH, Folsom TD, Rooney RJ, Thuras PD. Expression of GABAA α2-, β1- and ɛ-receptors are altered significantly in the lateral cerebellum of subjects with schizophrenia, major depression and bipolar disorder. Transl Psychiatry. 2013;3:e303–e303.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Bullock WM, Cardon K, Bustillo J, Roberts RC, Perrone-Bizzozero NI. Altered expression of genes involved in GABAergic transmission and neuromodulation of granule cell activity in the cerebellum of schizophrenia patients. Am J Psychiatry. 2008;165:1594–603.

    PubMed  Google Scholar 

  111. Lupo M, Olivito G, Siciliano L, Masciullo M, Molinari M, Cercignani M, et al. Evidence of cerebellar involvement in the onset of a manic state. Front Neurol. 2018;9:774.

  112. Wolf U, Rapoport MJ, Schweizer TA. Evaluating the affective component of the cerebellar cognitive affective syndrome. J Neuropsychiatry Clin Neurosci. 2009;21:245–53.

    PubMed  Google Scholar 

  113. Lauterbach EC. Bipolar disorders, dystonia, and compulsion after dysfunction of the cerebellum, dentatorubrothalamic tract, and substantia nigra. Biol Psychiatry. 1996;40:726–30.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Institute of Mental Health (R01 MH094483 to J.R.K.; R01 MH110437 to P.P.Z.; F31 MH123066 to L.M.R.), the National Institute of General Medical Sciences (T32 GM008181 to L.M.R.), the National Institute of General Medical Sciences Center for Systems Biology (P50 GM076547, Leroy Hood, principal investigator), the Intramural Research Program of the National Institute of Mental Health (F.J.M.), U.S. Department of Veterans Affairs Merit Awards I01BX004062 and 101BX003631 (T.D.G.), the University of Luxembourg–Institute for Systems Biology Strategic Partnership (Leroy Hood, principal investigator), a NARSAD Young Investigator Award from the Brain and Behavior Research Foundation (S.A.A.), and seed funding from the University of Maryland School of Medicine (S.A.A.). Data and biomaterials were collected as part of 11 projects (Study 40) that participated in the NIMH Bipolar Disorder Genetics Initiative (MH59545, MH059534, MH59533, MH59553, MH60068, MH059548, MH59535, MH59567, MH059556, and 1Z01MH002810-01), which was also supported by NIH Grants P50CA89392, from the National Cancer Institute, and 5K02DA021237, from the National Institute of Drug Abuse. We thank the Coriell Institute for providing DNA samples. We thank the staff of the University of Maryland Veterinary Resources and at the Mutant Mouse Resource and Research Center at UC Davis for assistance in maintaining and archiving the DaoG130V/+ knock-in mouse line. We thank the Genomics Resource Center at the University of Maryland School of Medicine for RNA sequencing. Most importantly, we thank the families who have participated in and contributed to these studies.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: NH, SAA. Investigation: NH, LMR, TS, JA, RL, RTO, EMH, JB, PT, JCR, and SAA. Funding acquisition: SAA, JRK, and PPZ. Supervision: DCG, DWC, HWE, ESG, FJM, JIN, PPZ, JRK, JCR, TDG, and SAA. Writing – original draft: NH, LMR, SAA. Writing – review & editing: all authors.

Corresponding author

Correspondence to Seth A. Ament.

Ethics declarations

Competing interests

Dr. Nurnberger is an investigator for Janssen. All other authors declare that they have no competing interests. The contents of this manuscript do not represent the views of the U.S. Department of Veterans Affairs or the United States Government.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasin, N., Riggs, L.M., Shekhtman, T. et al. Rare variants implicate NMDA receptor signaling and cerebellar gene networks in risk for bipolar disorder. Mol Psychiatry 27, 3842–3856 (2022). https://doi.org/10.1038/s41380-022-01609-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-022-01609-4

This article is cited by

Search

Quick links