Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Natural disaster stress during pregnancy is linked to reprogramming of the placenta transcriptome in relation to anxiety and stress hormones in young offspring

Abstract

Prenatal stress can lead to long-term adverse effects that increase the risk of anxiety and other emotional disorders in offspring. The in utero underpinnings contributing to such phenotypes remain unknown. We profiled the transcriptome of placental specimens from women who lived through Hurricane Sandy during pregnancy compared to those pregnant during non-Sandy conditions. Following birth, longitudinal assessments were conducted in their offspring during childhood (~3–4 years old) to measure steroid hormones (in hair) and behavioral and emotional problems. This revealed a significant link between prenatal Sandy stress (PNSS) and child HPA dysfunction, evident by altered cortisol, dehydroepiandrosterone (DHEA), and cortisol:DHEA levels. In addition, PNSS was associated with significantly increased anxiety and aggression. These findings coincided with significant reorganization of the placental transcriptome via vascular, immune, and endocrine gene pathways. Interestingly, many of the most prominently altered genes were known to be uniquely expressed in syncytiotrophoblast (STB)-subtype of placental cells and harbored glucocorticoid response elements in promoter regions. Finally, several vascular development- and immune-related placental gene sets were found to mediate the relationship between PNSS and childhood phenotypes. Overall, these findings suggest that natural disaster-related stress during pregnancy reprograms the placental molecular signature, potentially driving long-lasting changes in stress regulation and emotional health. Further examination of placental mechanisms may elucidate the environment’s contribution to subsequent risk for anxiety disorders later in life.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Prenatal Sandy stress (PNSS) is associated with robust differential gene expression across critical functional pathways in placenta.
Fig. 2: PNSS(+) is associated with reduced expression of trophoblast-subtype-specific genes and targets of glucocorticoid signaling.
Fig. 3: Placental genes related to immune activation and vascular development mediate the relationship between PNSS(+) and offspring HPA/neurobehavioral phenotypes.

Similar content being viewed by others

Data availability

The RNA-sequencing datasets generated and analyzed in the current study were submitted to the NCBI Sequencing Read Archive with accession code: PRJNA719417.

References

  1. Graignic-Philippe R, Dayan J, Chokron S, Jacquet AY, Tordjman S. Effects of prenatal stress on fetal and child development: a critical literature review. Neurosci Biobehav Rev. 2014;43:137–62.

    Article  CAS  PubMed  Google Scholar 

  2. Li H, Bowen A, Bowen R, Balbuena L, Feng C, Bally J, et al. Mood instability during pregnancy and postpartum: a systematic review. Arch Women’s Ment Health. 2020;23:29–41.

    Article  Google Scholar 

  3. Dunkel Schetter C. Psychological science on pregnancy: stress processes, biopsychosocial models, and emerging research issues. Annu Rev Psychol. 2011;62:531–58.

    Article  PubMed  Google Scholar 

  4. Kim DR, Bale TL, Epperson CN. Prenatal programming of mental illness: current understanding of relationship and mechanisms. Curr Psychiatry Rep. 2015;17:5.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Van den Bergh BRH, van den Heuvel MI, Lahti M, Braeken M, de Rooij SR, Entringer S, et al. Prenatal developmental origins of behavior and mental health: The influence of maternal stress in pregnancy. Neurosci Biobehav Rev. 2017;117:26–64.

    Article  PubMed  Google Scholar 

  6. Coussons-Read ME. Effects of prenatal stress on pregnancy and human development: mechanisms and pathways. Obstet Med. 2013;6:52–7.

    Article  PubMed  PubMed Central  Google Scholar 

  7. McLean MA, Cobham VE, Simcock G, Elgbeili G, Kildea S, King S. The role of prenatal maternal stress in the development of childhood anxiety symptomatology: the QF2011 Queensland Flood Study. Dev Psychopathol. 2018;30:995–1007.

    Article  PubMed  Google Scholar 

  8. Yong Ping E, Laplante DP, Elgbeili G, Jones SL, Brunet A, King S. Disaster-related prenatal maternal stress predicts HPA reactivity and psychopathology in adolescent offspring: project Ice Storm. Psychoneuroendocrinology. 2020;117:104697.

    Article  CAS  PubMed  Google Scholar 

  9. Nomura Y, Davey K, Pehme PM, Finik J, Glover V, Zhang W, et al. Influence of in utero exposure to maternal depression and natural disaster-related stress on infant temperament at 6 months: The children of Superstorm Sandy. Infant Ment Health J. 2019;40:204–16.

    PubMed  PubMed Central  Google Scholar 

  10. Kratimenos P, Penn AA. Placental programming of neuropsychiatric disease. Pediatr Res. 2019;86:157–64.

    Article  PubMed  Google Scholar 

  11. Bronson SL, Bale TL. The placenta as a mediator of stress effects on neurodevelopmental reprogramming. Neuropsychopharmacology. 2016;41:207–18.

    Article  PubMed  Google Scholar 

  12. St-Pierre J, Laplante DP, Elgbeili G, Dawson PA, Kildea S, King S, et al. Natural disaster-related prenatal maternal stress is associated with alterations in placental glucocorticoid system: the QF2011 Queensland Flood Study. Psychoneuroendocrinology. 2018;94:38–48.

    Article  CAS  PubMed  Google Scholar 

  13. Zhang W, Li Q, Deyssenroth M, Lambertini L, Finik J, Ham J, et al. Timing of prenatal exposure to trauma and altered placental expressions of hypothalamic-pituitary-adrenal axis genes and genes driving neurodevelopment. J Neuroendocrinol. 2018;30:e12581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang W, Ham J, Li Q, Deyssenroth MA, Lambertini L, Huang Y, et al. Moderate prenatal stress may buffer the impact of Superstorm Sandy on placental genes: stress in pregnancy (SIP) study. PLoS ONE. 2020;15:e0226605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Finik J, Nomura Y. Cohort profile: stress in pregnancy (SIP) study. Int J Epidemiol. 2017;46:1388–k.

    PubMed  PubMed Central  Google Scholar 

  16. Manenschijn L, Koper JW, Lamberts SW, van Rossum EF. Evaluation of a method to measure long term cortisol levels. Steroids. 2011;76:1032–6.

    Article  CAS  PubMed  Google Scholar 

  17. Sauve B, Koren G, Walsh G, Tokmakejian S, Van Uum SH. Measurement of cortisol in human hair as a biomarker of systemic exposure. Clin Invest Med. 2007;30:E183–91.

    Article  CAS  PubMed  Google Scholar 

  18. Stalder T, Kirschbaum C. Analysis of cortisol in hair–state of the art and future directions. Brain Behav Immun. 2012;26:1019–29.

    Article  CAS  PubMed  Google Scholar 

  19. Reynolds CR, Kamphaus RW. BASC-2: Behavior Assessment System for Children. 2nd ed. Circle Pines, MN: American Guidance Service; 2004.

    Google Scholar 

  20. Bradstreet LE, Juechter JI, Kamphaus RW, Kerns CM, Robins DL. Using the BASC-2 parent rating scales to screen for autism spectrum disorder in toddlers and preschool-aged children. J Abnorm Child Psychol. 2017;45:359–70.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Norris F, Kaniasty K, Scheer D. Use of mental health services among victims of crime: frequency, correlates, and subsequent recovery. J Consulting Clin Psychol. 1990;58:538–47.

    Article  CAS  Google Scholar 

  22. Spielberger CD. State-trait anxiety inventory: bibliography. 2nd ed. Palo Alto, CA: Consulting Psychologists Press; 1989.

    Google Scholar 

  23. Murray DCJ. Screening for depression during pregnancy with the Edinburgh Depression Scale (EPDS). J Reprod Infant Psychol. 1990;8:99–107.

    Article  Google Scholar 

  24. Andrews S. FastQC: a quality control tool for high throughput sequence data. 2010.

  25. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21.

    CAS  PubMed  Google Scholar 

  26. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.

    PubMed  PubMed Central  Google Scholar 

  27. Kuleshov MV, Jones MR, Rouillard AD, Fernandez NF, Duan Q, Wang Z, et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. 2016;44:W90–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pique-Regi R, Romero R, Tarca AL, Sendler ED, Xu Y, Garcia-Flores V, et al. Single cell transcriptional signatures of the human placenta in term and preterm parturition. Elife. 2019;8:e52004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Togher KL, Togher KL, O’Keeffe MM, O’Keeffe MM, Khashan AS, Khashan AS, et al. Epigenetic regulation of the placental HSD11B2 barrier and its role as a critical regulator of fetal development. Epigenetics. 2014;9:816–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhu Q, Pan P, Chen X, Wang Y, Zhang S, Mo J, et al. Human placental 3beta-hydroxysteroid dehydrogenase/steroid Delta5,4-isomerase 1: identity, regulation and environmental inhibitors. Toxicology. 2019;425:152253.

    Article  CAS  PubMed  Google Scholar 

  31. Liao S, Vickers MH, Stanley JL, Baker PN, Perry JK. Human placental growth hormone variant in pathological pregnancies. Endocrinology. 2018;159:2186–98.

    Article  CAS  PubMed  Google Scholar 

  32. Gude NM, Roberts CT, Kalionis B, King RG. Growth and function of the normal human placenta. Thromb Res. 2004;114:397–407.

    Article  CAS  PubMed  Google Scholar 

  33. Delorme-Axford E, Donker RB, Mouillet JF, Chu T, Bayer A, Ouyang Y, et al. Human placental trophoblasts confer viral resistance to recipient cells. Proc Natl Acad Sci USA. 2013;110:12048–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Robbins JR, Skrzypczynska KM, Zeldovich VB, Kapidzic M, Bakardjiev AI. Placental syncytiotrophoblast constitutes a major barrier to vertical transmission of Listeria monocytogenes. PLoS Pathog. 2010;6:e1000732.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Ander SE, Diamond MS, Coyne CB. Immune responses at the maternal-fetal interface. Sci Immunol. 2019;4:eaat6114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Huppertz B. The anatomy of the normal placenta. J Clin Pathol. 2008;61:1296–302.

    Article  CAS  PubMed  Google Scholar 

  37. Capron LE, Ramchandani PG, Glover V. Maternal prenatal stress and placental gene expression of NR3C1 and HSD11B2: The effects of maternal ethnicity. Psychoneuroendocrinology. 2018;87:166–72.

    Article  CAS  PubMed  Google Scholar 

  38. Hompes T, Izzi B, Gellens E, Morreels M, Fieuws S, Pexsters A, et al. Investigating the influence of maternal cortisol and emotional state during pregnancy on the DNA methylation status of the glucocorticoid receptor gene (NR3C1) promoter region in cord blood. J Psychiatr Res. 2013;47:880–91.

    Article  PubMed  Google Scholar 

  39. Oberlander TF, Weinberg J, Papsdorf M, Grunau R, Misri S, Devlin AM. Prenatal exposure to maternal depression, neonatal methylation of human glucocorticoid receptor gene (NR3C1) and infant cortisol stress responses. Epigenetics. 2008;3:97–106.

    Article  PubMed  Google Scholar 

  40. Kamin HS, Kertes DA. Cortisol and DHEA in development and psychopathology. Horm Behav. 2017;89:69–85.

    Article  CAS  PubMed  Google Scholar 

  41. Grillon C, Pine DS, Baas JM, Lawley M, Ellis V, Charney DS. Cortisol and DHEA-S are associated with startle potentiation during aversive conditioning in humans. Psychopharmacology. 2006;186:434–41.

    Article  CAS  PubMed  Google Scholar 

  42. Fava M, Rosenbaum JF, MacLaughlin RA, Tesar GE, Pollack MH, Cohen LS, et al. Dehydroepiandrosterone-sulfate/cortisol ratio in panic disorder. Psychiatry Res. 1989;28:345–50.

    Article  CAS  PubMed  Google Scholar 

  43. Seckl JR, Meaney MJ. Glucocorticoid programming. Ann NY Acad Sci. 2004;1032:63–84.

    Article  CAS  PubMed  Google Scholar 

  44. Weinstock M. The potential influence of maternal stress hormones on development and mental health of the offspring. Brain Behav Immun. 2005;19:296–308.

    Article  CAS  PubMed  Google Scholar 

  45. Thayer ZM, Wilson MA, Kim AW, Jaeggi AV. Impact of prenatal stress on offspring glucocorticoid levels: a phylogenetic meta-analysis across 14 vertebrate species. Sci Rep. 2018;8:4942.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Send TS, Bardtke S, Gilles M, Wolf IAC, Sutterlin MW, Wudy SA, et al. Prenatal maternal stress is associated with lower cortisol and cortisone levels in the first morning urine of 45-month-old children. Psychoneuroendocrinology. 2019;103:219–24.

    Article  CAS  PubMed  Google Scholar 

  47. Redman CW, Staff AC. Preeclampsia, biomarkers, syncytiotrophoblast stress, and placental capacity. Am J Obstet Gynecol. 2015;213:S9 e1.

    Article  CAS  Google Scholar 

  48. Han C, Han L, Huang P, Chen Y, Wang Y, Xue F. Syncytiotrophoblast-derived extracellular vesicles in pathophysiology of preeclampsia. Front Physiol. 2019;10:1236.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Ishihara N, Matsuo H, Murakoshi H, Laoag-Fernandez JB, Samoto T, Maruo T. Increased apoptosis in the syncytiotrophoblast in human term placentas complicated by either preeclampsia or intrauterine growth retardation. Am J Obstet Gynecol. 2002;186:158–66.

    Article  PubMed  Google Scholar 

  50. O’Donnell KJ, Bugge Jensen A, Freeman L, Khalife N, O’Connor TG, Glover V. Maternal prenatal anxiety and downregulation of placental 11beta-HSD2. Psychoneuroendocrinology. 2012;37:818–26.

    Article  PubMed  CAS  Google Scholar 

  51. Seth S, Lewis AJ, Saffery R, Lappas M, Galbally M. Maternal prenatal mental health and placental 11beta-HSD2 gene expression: initial findings from the mercy pregnancy and emotional wellbeing study. Int J Mol Sci. 2015;16:27482–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hobel CJ, Dunkel-Schetter C, Roesch SC, Castro LC, Arora CP. Maternal plasma corticotropin-releasing hormone associated with stress at 20 weeks’ gestation in pregnancies ending in preterm delivery. Am J Obstet Gynecol. 1999;180:S257–63.

    Article  CAS  PubMed  Google Scholar 

  53. Sandman CA. Prenatal CRH: an integrating signal of fetal distress. Dev Psychopathol. 2018;30:941–52.

    Article  PubMed  Google Scholar 

  54. Robinson BG, Emanuel RL, Frim DM, Majzoub JA. Glucocorticoid stimulates expression of corticotropin-releasing hormone gene in human placenta. Proc Natl Acad Sci USA. 1988;85:5244–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Conradt E, Lester BM, Appleton AA, Armstrong DA, Marsit CJ. The roles of DNA methylation of NR3C1 and 11beta-HSD2 and exposure to maternal mood disorder in utero on newborn neurobehavior. Epigenetics. 2013;8:1321–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Jensen Pena C, Monk C, Champagne FA. Epigenetic effects of prenatal stress on 11beta-hydroxysteroid dehydrogenase-2 in the placenta and fetal brain. PLoS ONE. 2012;7:e39791.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Nugent BM, O’Donnell CM, Epperson CN, Bale TL. Placental H3K27me3 establishes female resilience to prenatal insults. Nat Commun. 2018;9:2555.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Braithwaite EC, Kundakovic M, Ramchandani PG, Murphy SE, Champagne FA. Maternal prenatal depressive symptoms predict infant NR3C1 1F and BDNF IV DNA methylation. Epigenetics. 2015;10:408–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Mulligan CJ, D’Errico NC, Stees J, Hughes DA. Methylation changes at NR3C1 in newborns associate with maternal prenatal stress exposure and newborn birth weight. Epigenetics. 2012;7:853–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Spann MN, Monk C, Scheinost D, Peterson BS. Maternal immune activation during the third trimester is associated with neonatal functional connectivity of the salience network and fetal to toddler behavior. J Neurosci. 2018;38:2877–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hsiao EY, Patterson PH. Activation of the maternal immune system induces endocrine changes in the placenta via IL-6. Brain Behav Immun. 2011;25:604–15.

    Article  CAS  PubMed  Google Scholar 

  62. Bronson SL, Bale TL. Prenatal stress-induced increases in placental inflammation and offspring hyperactivity are male-specific and ameliorated by maternal antiinflammatory treatment. Endocrinology. 2014;155:2635–46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Alaiti MA, Orasanu G, Tugal D, Lu Y, Jain MK. Kruppel-like factors and vascular inflammation: implications for atherosclerosis. Curr Atheroscler Rep. 2012;14:438–49.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Jakubowski M, Szahidewicz-Krupska E, Doroszko A. The human carbonic anhydrase II in platelets: an underestimated field of its activity. Biomed Res Int. 2018;2018:4548353.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Sutherland S, Brunwasser SM. Sex differences in vulnerability to prenatal stress: a review of the recent literature. Curr Psychiatry Rep. 2018;20:102.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We sincerely thank the mothers and their children who have participated in this project. This work was supported by grants MH102729 from the National Institute of Mental Health (NIMH) to YN and DA030359 from the National Institutes of Drug Abuse (NIDA) to YLH, along with ES029212 from the National Institute of Environmental Health Sciences (NIEHS) and HD067611 from the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) to JC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasmin L. Hurd.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nomura, Y., Rompala, G., Pritchett, L. et al. Natural disaster stress during pregnancy is linked to reprogramming of the placenta transcriptome in relation to anxiety and stress hormones in young offspring. Mol Psychiatry 26, 6520–6530 (2021). https://doi.org/10.1038/s41380-021-01123-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-021-01123-z

This article is cited by

Search

Quick links