Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Transcription factor 4 controls positioning of cortical projection neurons through regulation of cell adhesion

Abstract

The establishment of neural circuits depends on precise neuronal positioning in the cortex, which occurs via a tightly coordinated process of neuronal differentiation, migration, and terminal localization. Deficits in this process have been implicated in several psychiatric disorders. Here, we show that the transcription factor Tcf4 controls neuronal positioning during brain development. Tcf4-deficient neurons become mispositioned in clusters when their migration to the cortical plate is complete. We reveal that Tcf4 regulates the expression of cell adhesion molecules to control neuronal positioning. Furthermore, through in vivo extracellular electrophysiology, we show that neuronal functions are disrupted after the loss of Tcf4. TCF4 mutations are strongly associated with schizophrenia and cause Pitt-Hopkins syndrome, which is characterized by severe intellectual disability. Thus, our results not only reveal the importance of neuronal positioning in brain development but also provide new insights into the potential mechanisms underlying neurological defects linked to TCF4 mutations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Tcf4 is required for neuronal positioning.
Fig. 2: Tcf4-deficient neurons migrate to the cortical plate.
Fig. 3: Abnormal positioning of Tcf4-deficient neurons.
Fig. 4: Neurons become clustered upon the loss of Tcf4.
Fig. 5: Tcf4 acts through Fn1 to regulate neuronal positioning.
Fig. 6: Disruption of the neuronal function upon the loss of Tcf4.

Similar content being viewed by others

References

  1. Kriegstein A, Noctor S, Martinez-Cerdeno V. Patterns of neural stem and progenitor cell division may underlie evolutionary cortical expansion. Nat Rev Neurosci. 2006;7:883–90.

    Article  CAS  PubMed  Google Scholar 

  2. Ambrozkiewicz MC, Schwark M, Kishimoto-Suga M, Borisova E, Hori K, Salazar-Lázaro A, et al. Polarity acquisition in cortical neurons is driven by synergistic action of Sox9-regulated Wwp1 and Wwp2 E3 ubiquitin ligases and intronic miR-140. Neuron. 2018;100:1097–.e15.

    Article  CAS  PubMed  Google Scholar 

  3. Cooper JA. Molecules and mechanisms that regulate multipolar migration in the intermediate zone. Front Cell Neurosci. 2014;8:386.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Nadarajah B, Brunstrom JE, Grutzendler J, Wong RO, Pearlman AL. Two modes of radial migration in early development of the cerebral cortex. Nat Neurosci. 2001;4:143–50.

    Article  CAS  PubMed  Google Scholar 

  5. Kriegstein A, Alvarez-Buylla A. The glial nature of embryonic and adult neural stem cells. Annu Rev Neurosci. 2009;32:149–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Taverna E, Götz M, Huttner WB. The cell biology of neurogenesis: toward an understanding of the development and evolution of the neocortex. Annu Rev Cell Dev Biol. 2014;30:465–502.

    Article  CAS  PubMed  Google Scholar 

  7. Rakic P. Evolution of the neocortex: a perspective from developmental biology. Nat Rev Neurosci. 2009;10:724–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Romero DM, Bahi-Buisson N, Francis F. Genetics and mechanisms leading to human cortical malformations. Semin Cell Dev Biol. 2018;76:33–75.

    Article  CAS  PubMed  Google Scholar 

  9. Valiente M, Marin O. Neuronal migration mechanisms in development and disease. Curr Opin Neurobiol. 2010;20:68–78.

    Article  CAS  PubMed  Google Scholar 

  10. Kawauchi T. Cellullar insights into cerebral cortical development: focusing on the locomotion mode of neuronal migration. Front Cell Neurosci. 2015;9:394.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Cooper JA. Cell biology in neuroscience: mechanisms of cell migration in the nervous system. J Cell Biol. 2013;202:725–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sekine K, Kawauchi T, Kubo K, Honda T, Herz J, Hattori M, et al. Reelin controls neuronal positioning by promoting cell-matrix adhesion via inside-out activation of integrin α5β1. Neuron. 2012;76:353–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kawauchi T, Sekine K, Shikanai M, Chihama K, Tomita K, Kubo K, et al. Rab GTPases-dependent endocytic pathways regulate neuronal migration and maturation through N-cadherin trafficking. Neuron. 2010;67:588–602.

    Article  CAS  PubMed  Google Scholar 

  14. Del Toro D, Ruff T, Cederfjäll E, Villalba A, Seyit-Bremer G, Borrell V, et al. Regulation of cerebral cortex folding by controlling neuronal migration via FLRT adhesion molecules. Cell. 2017;169:621–.e16.

    Article  PubMed  Google Scholar 

  15. Franco SJ, Martinez-Garay I, Gil-Sanz C, Harkins-Perry SR, Muller U. Reelin regulates cadherin function via Dab1/Rap1 to control neuronal migration and lamination in the neocortex. Neuron. 2011;69:482–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jossin Y, Cooper JA. Reelin, Rap1 and N-cadherin orient the migration of multipolar neurons in the developing neocortex. Nat Neurosci. 2011;14:697–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jung M, Häberle BM, Tschaikowsky T, Wittmann MT, Balta EA, Stadler VC, et al. Analysis of the expression pattern of the schizophrenia-risk and intellectual disability gene TCF4 in the developing and adult brain suggests a role in development and plasticity of cortical and hippocampal neurons. Mol Autism. 2018;9:20.

    Article  PubMed  PubMed Central  Google Scholar 

  18. de Pontual L, Mathieu Y, Golzio C, Rio M, Malan V, Boddaert N, et al. Mutational, functional, and expression studies of the TCF4 gene in Pitt–Hopkins syndrome. Hum Mutat. 2009;30:669–76.

    Article  PubMed  Google Scholar 

  19. Sweatt JD. Pitt–Hopkins Syndrome: intellectual disability due to loss of TCF4-regulated gene transcription. Exp Mol Med. 2013;45:e21.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Forrest MP, Hill MJ, Quantock AJ, Martin-Rendon E, Blake DJ. The emerging roles of TCF4 in disease and development. Trends Mol Med. 2014;20:322–31.

    Article  CAS  PubMed  Google Scholar 

  21. Forrest MP, Hill MJ, Kavanagh DH, Tansey KE, Waite AJ, Blake DJ. The Psychiatric Risk Gene Transcription Factor 4 (TCF4) regulates neurodevelopmental pathways associated with schizophrenia, autism, and intellectual disability. Schizophr Bull. 2018;44:1100–10.

    Article  PubMed  Google Scholar 

  22. Blake DJ, Forrest M, Chapman RM, Tinsley CL, O’Donovan MC, Owen MJ. TCF4, schizophrenia, and Pitt-Hopkins Syndrome. Schizophr Bull. 2010;36:443–7.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Thaxton C, Kloth AD, Clark EP, Moy SS, Chitwood RA, Philpot BD. Common pathophysiology in multiple mouse models of Pitt-Hopkins Syndrome. J Neurosci. 2018;38:918–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang Y, Lu Z, Zhang Y, Cai Y, Yun D, Tang T, et al. Transcription factor 4 safeguards hippocampal dentate gyrus development by regulating neural progenitor migration. Cereb Cortex. 2020;30:3102–15.

    Article  PubMed  Google Scholar 

  25. Gorski JA, Talley T, Qiu M, Puelles L, Rubenstein JL, Jones KR. Cortical excitatory neurons and glia, but not GABAergic neurons, are produced in the Emx1-expressing lineage. J Neurosci. 2002;22:6309–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Joshi PS, Molyneaux BJ, Feng L, Xie X, Macklis JD, Gan L. Bhlhb5 regulates the postmitotic acquisition of area identities in layers II-V of the developing neocortex. Neuron. 2008;60:258–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dominguez MH, Ayoub AE, Rakic P. POU-III transcription factors (Brn1, Brn2, and Oct6) influence neurogenesis, molecular identity, and migratory destination of upper-layer cells of the cerebral cortex. Cereb Cortex. 2013;23:2632–43.

    Article  PubMed  Google Scholar 

  28. Lodato S, Rouaux C, Quast KB, Jantrachotechatchawan C, Studer M, Hensch TK, et al. Excitatory projection neuron subtypes control the distribution of local inhibitory interneurons in the cerebral cortex. Neuron. 2011;69:763–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Waite A, Brown SC, Blake DJ. The dystrophin-glycoprotein complex in brain development and disease. Trends Neurosci. 2012;35:487–96.

    Article  CAS  PubMed  Google Scholar 

  30. Miyoshi G, Fishell G. Dynamic FoxG1 expression coordinates the integration of multipolar pyramidal neuron precursors into the cortical plate. Neuron. 2012;74:1045–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rannals MD, Hamersky GR, Page SC, Campbell MN, Briley A, Gallo RA, et al. Psychiatric risk gene transcription factor 4 regulates intrinsic excitability of prefrontal neurons via repression of SCN10a and KCNQ1. Neuron. 2016;90:43–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Seiradake E, del Toro D, Nagel D, Cop F, Härtl R, Ruff T, et al. FLRT structure: balancing repulsion and cell adhesion in cortical and vascular development. Neuron. 2014;84:370–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Liu YJ, Le Berre M, Lautenschlaeger F, Maiuri P, Callan-Jones A, Heuzé M, et al. Confinement and low adhesion induce fast amoeboid migration of slow mesenchymal cells. Cell. 2015;160:659–72.

    Article  CAS  PubMed  Google Scholar 

  34. Tachikawa K, Sasaki S, Maeda T, Nakajima K. Identification of molecules preferentially expressed beneath the marginal zone in the developing cerebral cortex. Neurosci Res. 2008;60:135–46.

    Article  CAS  PubMed  Google Scholar 

  35. De la Rossa A, Bellone C, Golding B, Vitali I, Moss J, Toni N, et al. In vivo reprogramming of circuit connectivity in postmitotic neocortical neurons. Nat Neurosci. 2013;16:193–200.

    Article  PubMed  Google Scholar 

  36. Hoy JL, Niell CM. Layer-specific refinement of visual cortex function after eye opening in the awake mouse. J Neurosci. 2015;35:3370–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lanjakornsiripan D, Pior BJ, Kawaguchi D, Furutachi S, Tahara T, Katsuyama Y, et al. Layer-specific morphological and molecular differences in neocortical astrocytes and their dependence on neuronal layers. Nat Commun. 2018;9:1623.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Gordon JA, Stryker MP. Experience-dependent plasticity of binocular responses in the primary visual cortex of the mouse. J Neurosci. 1996;16:3274–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Crowley JC, Katz LC. Ocular dominance development revisited. Curr Opin Neurobiol. 2002;12:104–9.

    Article  CAS  PubMed  Google Scholar 

  40. Cappello S, Böhringer C, Bergami M, Conzelmann K-K, Ghanem A, Tomassy G, et al. A radial glia-specific role of rhoa in double cortex formation. Neuron. 2012;73:911–24.

    Article  CAS  PubMed  Google Scholar 

  41. Tsutsui KI, Witter MP. Entorhinal layer II calbindin-expressing neurons originate widespread telencephalic and intrinsic projections. Front Syst Neurosci. 2019;13:54.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kitamura T, Pignatelli M, Suh J, Kohara K, Yoshiki A, Abe K, et al. Island cells control temporal association memory. Science. 2014;343:896–901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sekine K, Kubo K, Nakajima K. How does Reelin control neuronal migration and layer formation in the developing mammalian neocortex. Neurosci Res. 2014;86:50–58.

    Article  CAS  PubMed  Google Scholar 

  44. Rice DS, Curran T. Role of the reelin signaling pathway in central nervous system development. Annu Rev Neurosci. 2001;24:1005–39.

    Article  CAS  PubMed  Google Scholar 

  45. Hirota Y, Nakajima K. Control of neuronal migration and aggregation by reelin signaling in the developing cerebral cortex. Front Cell Dev Biol. 2017;5:40.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Hong SE, Shugart YY, Huang DT, Shahwan SA, Grant PE, Hourihane JO, et al. Autosomal recessive lissencephaly with cerebellar hypoplasia is associated with human RELN mutations. Nat Genet. 2000;26:93–96.

    Article  CAS  PubMed  Google Scholar 

  47. Zaki M, Shehab M, El-Aleem AA, Abdel-Salam G, Koeller HB, Ilkin Y, et al. Identification of a novel recessive RELN mutation using a homozygous balanced reciprocal translocation. Am J Med Genet A. 2007;143A:939–44.

    Article  CAS  PubMed  Google Scholar 

  48. Pankov R, Yamada KM. Fibronectin at a glance. J Cell Sci. 2002;115:3861–3.

    Article  CAS  PubMed  Google Scholar 

  49. Douezan S, Brochard-Wyart F. Active diffusion-limited aggregation of cells. Soft Matter. 2012;8:784–8.

    Article  CAS  Google Scholar 

  50. Balaskas N, Abbott LF, Jessell TM, Ng D. Positional strategies for connection specificity and synaptic organization in spinal sensory-motor circuits. Neuron. 2019;102:1143–.e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Stoner R, Chow ML, Boyle MP, Sunkin SM, Mouton PR, Roy S, et al. Patches of disorganization in the neocortex of children with autism. N Engl J Med. 2014;370:1209–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tang T, Zhang Y, Wang Y, Cai Z, Lu Z, Li L, et al. HDAC1 and HDAC2 regulate intermediate progenitor positioning to safeguard neocortical development. Neuron. 2019;101:1117–.e5.

    Article  CAS  PubMed  Google Scholar 

  53. Zhang Q, Zhang Y, Wang C, Xu Z, Liang Q, An L, et al. The zinc finger transcription factor Sp9 is required for the development of striatopallidal projection neurons. Cell Rep. 2016;16:1431–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Xiao L, Priest MF, Nasenbeny J, Lu T, Kozorovitskiy Y. Biased oxytocinergic modulation of midbrain dopamine systems. Neuron. 2017;95:368–.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gu Y, Cang J. Binocular matching of thalamocortical and intracortical circuits in the mouse visual cortex. eLife. 2016;5:e22032.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Gu Y, Huang S, Chang MC, Worley P, Kirkwood A, Quinlan EM. Obligatory role for the immediate early gene NARP in critical period plasticity. Neuron. 2013;79:335–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Niell CM, Stryker MP. Highly selective receptive fields in mouse visual cortex. J Neurosci. 2008;28:7520–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank all members of the Xie lab for discussions. We thank Drs. T. Behnish and Y. Jiang for critical reading the manuscript. We thank the IOBS Core facility for expert microscopy. This study was supported by the National Key Research and Development Program of China (grant no. 2018YFA0108000), the National Natural Science Foundation of China (grant nos. 31872763, 31471038, 81828008), Shanghai Municipal Science and Technology Major Project (No.2018SHZDZX01, 19JC1411003) and ZJLab to YX and the National Natural Science Foundation of China (grant nos. 31872764, 81800862), Shanghai Science and Technology Committee (grant no. 19QA1401600) to YG, Shanghai Pujiang Program (19PJ1401800) to LX.

Author information

Authors and Affiliations

Authors

Contributions

YX conceived and designed the project. Yandong Z performed experiments and analyzed the data with help from CZ, WY, LZ, Yilan Z, and TT, GH, NL, QL, and YG performed and analyzed in vivo recording experiments. SH, SC, and LX performed and analyzed in vitro recording experiments. YX performed experiments, analyzed the data, and wrote the manuscript with comments from other authors.

Corresponding author

Correspondence to Yunli Xie.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Cai, Z., Hu, G. et al. Transcription factor 4 controls positioning of cortical projection neurons through regulation of cell adhesion. Mol Psychiatry 26, 6562–6577 (2021). https://doi.org/10.1038/s41380-021-01119-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-021-01119-9

Search

Quick links