Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Allosteric modulation of AMPA receptors counteracts Tau-related excitotoxic synaptic signaling and memory deficits in stress- and Aβ-evoked hippocampal pathology

Abstract

Despite considerable progress in the understanding of its neuropathology, Alzheimer’s disease (AD) remains a complex disorder with no effective treatment that counteracts the memory deficits and the underlying synaptic malfunction triggered by the accumulation of amyloid beta (Aβ) and Tau protein. Mounting evidence supports a precipitating role for chronic environmental stress and glutamatergic excitotoxicity in AD, suggesting that targeting of glutamate receptor signaling may be a promising approach against both stress and AD pathologies. In light of the limited cognitive benefit of the direct antagonism of NMDA receptors in AD, we here focus on an alternative way to modify glutamatergic signaling through positive allosteric modulation of AMPA receptors, by the use of a PAM-AMPA compound. Using non-transgenic animal model of Aβ oligomer injection as well as the combined stress and Aβ i.c.v. infusion, we demonstrate that positive allosteric modulation of AMPA receptors by PAM-AMPA treatment reverted memory, but not mood, deficits. Furthermore, PAM-AMPA treatment reverted stress/Aβ-driven synaptic missorting of Tau and associated Fyn/GluN2B-driven excitotoxic synaptic signaling accompanied by recovery of neurotransmitter levels in the hippocampus. Our findings suggest that positive allosteric modulation of AMPA receptors restores synaptic integrity and cognitive performance in stress- and Aβ-evoked hippocampal pathology. As the prevalence of AD is increasing at an alarming rate, novel therapeutic targeting of glutamatergic signaling should be further explored against the early stages of AD synaptic malfunction with the goal of attenuating further synaptic damage before it becomes irreversible.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Allosteric modulation of AMPA receptors by PAM-AMPA compound blocked the cognitive deficits induced by Aβ injection in the hippocampus.
Fig. 2: Prolong modulation of AMPA receptors attenuated the hippocampal-dependent memory impairment of stress/Aβ-exposed animals.
Fig. 3: Modulation of AMPA receptors did not improve the anxious and depressive-like behavior of stress/Aβ-treated animals.
Fig. 4: Prolong modulation of AMPA receptors attenuated stress/Aβ-driven Tau-related excitotoxic synaptic signaling and neurotransmitter reduction.

Similar content being viewed by others

References

  1. Goedert M, Spillantini MG. A century of Alzheimer’s disease. Science. 2006;314:777–81.

    CAS  PubMed  Google Scholar 

  2. Duyckaerts C, Delatour B, Potier MC. Classification and basic pathology of Alzheimer disease. Acta Neuropathol. 2009;118:5–36.

    CAS  PubMed  Google Scholar 

  3. Serrano-Pozo A, Frosch MP, Masliah E, Hyman BT. Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med. 2011;1:1–23.

    Google Scholar 

  4. Koffie RM, Meyer-Luehmann M, Hashimoto T, Adams KW, Mielke ML, Garcia-Alloza M, et al. Oligomeric amyloid beta associates with postsynaptic densities and correlates with excitatory synapse loss near senile plaques. Proc Natl Acad Sci USA. 2009;106:4012–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Sperling R, Mormino E, Johnson K. The evolution of preclinical Alzheimer’s disease: Implications for prevention trials. Neuron. 2014;84:608–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Scheff SW, Price DA, Schmitt FA, Mufson EJ. Hippocampal synaptic loss in early Alzheimer’s disease and mild cognitive impairment. Neurobiol Aging. 2006;27:1372–84.

    CAS  PubMed  Google Scholar 

  7. Kang HJ, Voleti B, Hajszan T, Rajkowska G, Stockmeier CA, Licznerski P, et al. Decreased expression of synapse-related genes and loss of synapses in major depressive disorder. Nat Med. 2012;18:1413–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Popoli M, Yan Z, McEwen B, Sanacora G. The stressed synapse: the impact of stress and glucocorticoids on glutamate transmission. Nat Rev Neurosci. 2011;13:22–37.

    PubMed  PubMed Central  Google Scholar 

  9. Sotiropoulos I, Cerqueira JJ, Catania C, Takashima A, Sousa N, Almeida OFX. Stress and glucocorticoid footprints in the brain—the path from depression to Alzheimer’s disease. Neurosci Biobehav Rev. 2008;32:1161–73.

    CAS  PubMed  Google Scholar 

  10. Elgh E, Lindqvist Astot A, Fagerlund M, Eriksson S, Olsson T, Näsman B. Cognitive dysfunction, hippocampal atrophy and glucocorticoid feedback in Alzheimer’s disease. Biol Psychiatry. 2006;59:155–61.

    CAS  PubMed  Google Scholar 

  11. Simard M, Hudon C, van Reekum R. Psychological distress and risk for dementia. Curr Psychiatry Rep. 2009;11:41–7.

    PubMed  Google Scholar 

  12. Green KN, Billings LM, Roozendaal B, McGaugh JL, LaFerla FM. Glucocorticoids increase amyloid-β and Tau pathology in a mouse model of Alzheimer’s Disease. J Neurosci. 2006;26:9047–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Jeong YH, Park CH, Yoo J, Shin KY, Ahn S-M, Kim H-S, et al. Chronic stress accelerates learning and memory impairments and increases amyloid deposition in APPV717I-CT100 transgenic mice, an Alzheimer’s disease model. FASEB J. 2006;20:729–31.

    CAS  PubMed  Google Scholar 

  14. Sotiropoulos I, Catania C, Pinto LG, Silva R, Pollerberg GE, Takashima A, et al. Stress acts cumulatively to precipitate Alzheimer’s disease-like Tau pathology and cognitive deficits. J Neurosci. 2011;31:7840–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Silva JM, Rodrigues S, Sampaio-Marques B, Gomes P, Neves-Carvalho A, Dioli C, et al. Dysregulation of autophagy and stress granule-related proteins in stress-driven Tau pathology. Cell Death Differ. 2019;26:1411–27.

    CAS  PubMed  Google Scholar 

  16. Rudy CC, Hunsberger HC, Weitzner DS, Reed MN. The role of the tripartite glutamatergic synapse in the pathophysiology of Alzheimer’s disease. Aging Dis. 2015;6:131–48.

    PubMed  PubMed Central  Google Scholar 

  17. Henley JM, Wilkinson KA. AMPA receptor trafficking and the mechanisms underlying synaptic plasticity and cognitive aging. Dialogues Clin Neurosci. 2013;15:11–27.

    PubMed  PubMed Central  Google Scholar 

  18. Lesuis SL, Lucassen PJ, Krugers HJ. Early life stress impairs fear memory and synaptic plasticity; a potential role for GluN2B. Neuropharmacol. 2019;149:195–203.

    CAS  Google Scholar 

  19. Jacob CP, Koutsilieri E, Bartl J, Neuen-Jacob E, Arzberger T, Zander N, et al. Alterations in expression of glutamatergic transporters and receptors in sporadic Alzheimer’s disease. JAD. 2007;11:97–116.

    CAS  PubMed  Google Scholar 

  20. Chapman PF, White GL, Jones MW, Cooper-Blacketer D, Marshall VJ, Irizarry M, et al. Impaired synaptic plasticity and learning in aged amyloid precursor protein transgenic mice. Nat Neurosci. 1999;2:271–6.

    CAS  PubMed  Google Scholar 

  21. Hsieh H, Boehm J, Sato C, Iwatsubo T, Tomita T, Sisodia S, et al. AMPAR removal underlies abeta-induced synaptic depression and dendritic spine loss. Neuron. 2006;52:831–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Shankar GM, Bloodgood BL, Townsend M, Walsh DM, Selkoe DJ, Sabatini BL. Natural oligomers of the Alzheimer amyloid-protein induce reversible synapse loss by modulating an NMDA-Type glutamate receptor-dependent signaling pathway. J Neurosci. 2007;27:2866–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Wu H-Y, Hudry E, Hashimoto T, Kuchibhotla K, Rozkalne A, Fan Z, et al. Amyloid beta induces the morphological neurodegenerative triad of spine loss, dendritic simplification, and neuritic dystrophies through calcineurin activation. J Neurosci. 2010;30:2636–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Zempel H, Thies E, Mandelkow E, Mandelkow E-M. A oligomers cause localized Ca2+ elevation, missorting of endogenous Tau into dendrites, Tau phosphorylation, and destruction of microtubules and spines. J Neurosci. 2010;30:11938–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Ittner LM, Ke YD, Delerue F, Bi M, Gladbach A, van Eersel J, et al. Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer’s disease mouse models. Cell. 2010;142:387–97.

    CAS  PubMed  Google Scholar 

  26. Sotiropoulos I, Sousa N. Tau as the converging protein between chronic stress and Alzheimer’s disease synaptic pathology. Neurodegener Dis. 2016;16:22–5.

    CAS  PubMed  Google Scholar 

  27. Yang C-H, Huang C-C, Hsu K-S. Behavioral stress enhances hippocampal CA1 long-term depression through the blockade of the glutamate uptake. J Neurosci. 2005;25:4288–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Lesuis SL, Kaplick PM, Lucassen PJ, Krugers HJ. Treatment with the glutamate modulator riluzole prevents early life stress-induced cognitive deficits and impairments in synaptic plasticity in APPswe/PS1dE9 mice. Neuropharmacol. 2019;150:175–83.

    CAS  Google Scholar 

  29. Lopes S, Vaz-Silva J, Pinto V, Dalla C, Kokras N, Bedenk B, et al. Tau protein is essential for stress-induced brain pathology. Proc Nat Acad Sci USA. 2016;113:E3755–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Pinheiro S, Silva J, Mota C, Vaz-Silva J, Veloso A, Pinto V, et al. Tau mislocation in glucocorticoid-triggered hippocampal pathology. Mol Neurobiol. 2016;53:4745–53.

    CAS  PubMed  Google Scholar 

  31. Prediger RDS, Franco JL, Pandolfo P, Medeiros R, Duarte FS, Di Giunta G, et al. Differential susceptibility following β-amyloid peptide-(1-40) administration in C57BL/6 and Swiss albino mice: evidence for a dissociation between cognitive deficits and the glutathione system response. Behav. Brain Res. 2007;177:205–13.

    CAS  Google Scholar 

  32. Catania C, Sotiropoulos I, Silva R, Onofri C, Breen KC, Sousa N, et al. The amyloidogenic potential and behavioral correlates of stress. Mol Psychiatry. 2009;14:95–105.

    CAS  PubMed  Google Scholar 

  33. Graziano A, Petrosini L, Bartoletti A. Automatic recognition of explorative strategies in the Morris water maze. J Neurosci Methods. 2003;130:33–44.

    PubMed  Google Scholar 

  34. Hoover BR, Reed MN, Su J, Penrod RD, Kotilinek LA, Grant MK, et al. Tau mislocalization to dendritic spines mediates synaptic dysfunction independently of neurodegeneration. Neuron. 2010;68:1067–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Salter MW, Kalia LV. Src kinases: a hub for NMDA receptor regulation. Nat Rev Neurosci. 2004;5:317–28.

    CAS  PubMed  Google Scholar 

  36. Cummings J, Lee G, Ritter A, Zhong K. Alzheimer’s disease drug development pipeline: 2018. Alzheimers Dement (N. Y). 2018;4:195–214.

    Google Scholar 

  37. Vaz‐Silva J, Gomes P, Jin Q, Zhu M, Zhuravleva V, Quintremil S, et al. Endolysosomal degradation of Tau and its role in glucocorticoid‐driven hippocampal malfunction. EMBO J. 2018;37:e99084.

    PubMed  PubMed Central  Google Scholar 

  38. Sotiropoulos I, Silva JMGM, Kimura T, Rodrigues AJ, Costa PS, Almeida OFX, et al. Female hippocampus vulnerability to environmental stress, a precipitating factor in tau aggregation pathology. J Alzheimers Dis. 2015;43:763–74.

    CAS  PubMed  Google Scholar 

  39. Panza F, Lozupone M, Logroscino G, Imbimbo BP. A critical appraisal of amyloid-β-targeting therapies for Alzheimer disease. Nat Rev Neurol. 2019;15:73–88.

    PubMed  Google Scholar 

  40. Iaccarino HF, Singer AC, Martorell AJ, Rudenko A, Gao F, Gillingham TZ, et al. Gamma frequency entrainment attenuates amyloid load and modifies microglia. Nature. 2016;540:230–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Griñán-Ferré C, Izquierdo V, Otero E, Puigoriol-Illamola D, Corpas R, Sanfeliu C, et al. Environmental enrichment improves cognitive deficits, AD hallmarks and epigenetic alterations presented in 5xFAD mouse model. Front Cell Neurosci Front Cell Neurosci. 2018;12:224.

    PubMed  Google Scholar 

  42. Weiner MW, Sadowsky C, Saxton J, Hofbauer RK, Graham SM, Yun S, et al. Magnetic resonance imaging and neuropsychological results from a trial of memantine in Alzheimer’ s disease. Alzheimer’s Dement. 2011;7:425–35.

    Google Scholar 

  43. Kumar J, Mayer ML. Functional insights from glutamate receptor ion channel structures. Annu Rev Physiol. 2013;75:313–37.

    CAS  PubMed  Google Scholar 

  44. Lynch G, Gall CM. Ampakines and the threefold path to cognitive enhancement. Trends Neurosci. 2006;29:554–62.

    CAS  PubMed  Google Scholar 

  45. Black MD. Therapeutic potential of positive AMPA modulators and their relationship to AMPA receptor subunits. A review of preclinical data. Psychopharmacol. 2005;4:154–63.

    Google Scholar 

  46. Bernard K, Danober L, Thomas J, Mu C, Cordi A, Desos P, et al. S 18986: A positive allosteric modulator of AMPA-type glutamate receptors pharmacological profile of a novel cognitive enhancer. CNS Neurosc Ther. 2010;16:193–212.

    Google Scholar 

  47. Bretin S, Louis C, Seguin L, Wagner S, Thomas J-Y, Challal S, et al. Pharmacological characterisation of S 47445, a novel positive allosteric modulator of AMPA receptors. PLoS One. 2017;12:e0184429.

    PubMed  PubMed Central  Google Scholar 

  48. Giralt A, Gómez-Climent MÁ, Alcalá R, Bretin S, Bertrand D, María Delgado-García J, et al. The AMPA receptor positive allosteric modulator S 47445 rescues in vivo CA3-CA1 long-term potentiation and structural synaptic changes in old mice. Neuropharmacology. 2017;123:395–409.

    CAS  PubMed  Google Scholar 

  49. Dolan RJ. Emotion, cognition, and behavior. Science. 2002;298:1191–4.

    CAS  PubMed  Google Scholar 

  50. Grossberg GT, Desai AK. Management of Alzheimer’s Disease. J Gerontol A Biol Sci Med Sci. 2003;58:M331–53.

    Google Scholar 

  51. Refojo D, Schweizer M, Kuehne C, Ehrenberg S, Thoeringer C, Vogl AM, et al. Glutamatergic and dopaminergic neurons mediate anxiogenic and anxiolytic effects of CRHR1. Science. 2011;333:1903–7.

    CAS  PubMed  Google Scholar 

  52. Mossello E, Boncinelli M, Caleri V, Cavallini MC, Palermo E, Di Bari M, et al. Is antidepressant treatment associated with reduced cognitive decline in Alzheimer’s Disease? Dement Geriatr Cogn Disord. 2008;25:372–9.

    CAS  PubMed  Google Scholar 

  53. Jaworski T, Lechat B, Demedts D, Gielis L, Devijver H, Borghgraef P, et al. Dendritic degeneration, neurovascular defects, and inflammation precede neuronal loss in a mouse model for tau-mediated neurodegeneration. Am J Pathol. 2011;179:2001–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Decker H, Jürgensen S, Adrover MF, Brito-Moreira J, Bomfim TR, Klein WL, et al. N-methyl-D-aspartate receptors are required for synaptic targeting of Alzheimer’s toxic amyloid-β peptide oligomers. J Neurochem. 2010;115:1520–9.

    CAS  PubMed  Google Scholar 

  55. Miyamoto T, Kim D, Knox JA, Johnson E, Mucke L. Increasing the receptor tyrosine kinase EphB2 prevents amyloid-β-induced depletion of cell surface glutamate receptors by a mechanism that requires the PDZ-binding motif of EphB2 and neuronal activity. J Biol Chem. 2016;291:1719–34. 22

    CAS  PubMed  Google Scholar 

  56. Baglietto‐Vargas D, Prieto GA, Limon A, Forner S, Rodriguez‐Ortiz CJ, Ikemura K, et al. Impaired AMPA signaling and cytoskeletal alterations induce early synaptic dysfunction in a mouse model of Alzheimer’s disease. Aging Cell. 2018;17:e12791.

    PubMed  PubMed Central  Google Scholar 

  57. Tanaka H, Sakaguchi D, Hirano T. Amyloid-β oligomers suppress subunit-specific glutamate receptor increase during LTP. Alzheimer’s Dement. 2019;5:797–808.

    Google Scholar 

  58. Reinders NR, Pao Y, Renner MC, Silva-Matos CM, da, Lodder TR, Malinow R, et al. Amyloid-β effects on synapses and memory require AMPA receptor subunit GluA3. PNAS. 2016;113:E6526–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Berchtold NC, Sabbagh MN, Beach TG, Kim RC, Cribbs DH, Cotman CW. Brain gene expression patterns differentiate mild cognitive impairment from normal aged and Alzheimer disease. Neurobiol Aging. 2014;35:1961–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Tai H-C, Serrano-Pozo A, Hashimoto T, Frosch MP, Spires-Jones TL, Hyman BT. The synaptic accumulation of hyperphosphorylated tau oligomers in Alzheimer disease is associated with dysfunction of the ubiquitin-proteasome system. Am J Pathol. 2012;181:1426–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhou L, McInnes J, Wierda K, Holt M, Herrmann AG, Jackson RJ, et al. Tau association with synaptic vesicles causes presynaptic dysfunction. Nat Commun. 2017;8:1–13.

    Google Scholar 

  62. McInnes J, Wierda K, Snellinx A, Bounti L, Wang Y-C, Stancu I-C, et al. Synaptogyrin-3 mediates presynaptic dysfunction induced by Tau. Neuron. 2018;97:823–835.e8.

    CAS  PubMed  Google Scholar 

  63. Borodovitsyna O, Flamini M, Chandler D. Noradrenergic modulation of cognition in health and disease. Neural Plast. 2017; 6031478. https://doi.org/10.1155/2017/6031478.

  64. Švob Štrac D, Pivac N, Mück-Šeler D. The serotonergic system and cognitive function. Transl Neurosci. 2016;7:35–49.

    PubMed  PubMed Central  Google Scholar 

  65. Zhang L, Ouyang M, Ganellin CR, Thomas SA. The slow afterhyperpolarization: a target of β1-adrenergic signaling in hippocampus-dependent memory retrieval. J Neurosci. 2013;33:5006–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Lai MKP, Tsang SWY, Francis PT, Keene J, Hope T, Esiri MM, et al. Postmortem serotoninergic correlates of cognitive decline in Alzheimer’s disease. Neuroreport. 2002;13:1175–8.

    CAS  PubMed  Google Scholar 

  67. Calabrese F, Savino E, Mocaer E, Bretin S, Racagni G, Riva MA. Upregulation of neurotrophins by S 47445, a novel positive allosteric modulator of AMPA receptors in aged rats. Pharm Res. 2017;121:59–69.

    CAS  Google Scholar 

  68. Giralt A, Gómez-climent MÁ, Alcalá R, Bretin S, Delgado-garcía JM, Pérez-navarro E, et al. The AMPA receptor positive allosteric modulator S 47445 rescues in vivo CA3-CA1 long-term potentiation and structural synaptic changes in old mice. Neuropharmacolgy. 2017;123:395–409.

    CAS  Google Scholar 

  69. Holmes C, Boche D, Wilkinson D, Yadegarfar G, Hopkins V, Bayer A, et al. Long-term effects of abeta42 immunisation in Alzheimer’s disease: follow-up of a randomised, placebo-controlled phase I trial. Lancet. 2008;372:216–23.

    CAS  PubMed  Google Scholar 

  70. Bernard K, Gouttefangeas S, Bretin S, Galtier S, Robert P, Holthoff-Detto V, et al. A 24-week double-blind placebo-controlled study of the efficacy and safety of the AMPA modulator S47445 in patients with mild to moderate Alzheimer’s disease and depressive symptoms. Alzheimers Dement (N. Y). 2019;5:231–40.

    Google Scholar 

Download references

Acknowledgements

We thank Drs Luisa Pinto and Patricia Patricio (BnML & ICVS, School of Medicine, University of Minho, Portugal) for their administrative support. In addition, we would like to thank Dr Osborne F.X. Almeida (Max Planck Institute of Psychiatry, Germany) for his critical and constructive comments and feedback on the paper. This work was funded by the Institut de Recherches Internationales Servier (France). Carina Soares-Cunha is holder of a post-doctoral fellowship from the Programa de Atividades Conjuntas (PAC), through MEDPERSYST project (POCI-01-0145-FEDER-016428), supported by the Portugal 2020 Programme Fund (FEDER) while these studies were also supported by the European Regional Development Fund COMPETE (FCOMP-01-0124-FEDER-037298) as well as the project NORTE-01-0145-FEDER-000013, supported by the Northern Portugal Regional Operational Programme (NORTE 2020), under the Portugal 2020 Partnership Agreement, through the European Regional Development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis Sotiropoulos.

Ethics declarations

Conflict of interest

This study was partly financially supported by the Institut de Recherches Internationales Servier (France) which has no influence on the experimental performance, tissue collection, and analysis as well as data analysis. SB and FA and RB are employees of Institut de Recherches Internationales Servier.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monteiro-Fernandes, D., Silva, J.M., Soares-Cunha, C. et al. Allosteric modulation of AMPA receptors counteracts Tau-related excitotoxic synaptic signaling and memory deficits in stress- and Aβ-evoked hippocampal pathology. Mol Psychiatry 26, 5899–5911 (2021). https://doi.org/10.1038/s41380-020-0794-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-020-0794-5

This article is cited by

Search

Quick links