Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Environmental enrichment rescues survival and function of adult-born neurons following early life stress

Abstract

Adverse experiences early in life are associated with the development of psychiatric illnesses. The hippocampus is likely to play pivotal role in generating these effects: it undergoes significant development during childhood and is extremely reactive to stress. In rodent models, stress in the pre-pubertal period impairs adult hippocampal neurogenesis (AHN) and behaviours which rely on this process. In normal adult animals, environmental enrichment (EE) is a potent promoter of AHN and hippocampal function. Whether exposure to EE during adolescence can restore normal hippocampal function and AHN following pre-pubertal stress (PPS) is unknown. We investigated EE as a treatment for reduced AHN and hippocampal function following PPS in a rodent model. Stress was administered between post-natal days (PND) 25–27, EE from PND 35 to early adulthood, when behavioural testing and assessment of AHN took place. PPS enhanced fear reactions to a conditioned stimulus (CS) following a trace fear protocol and reduced the survival of 4-week-old adult-born neurons throughout the adult hippocampus. Furthermore, we show that fewer adult-born neurons were active during recall of the CS stimulus following PPS. All effects were reversed by EE. Our results demonstrate lasting effects of PPS on the hippocampus and highlight the utility of EE during adolescence for restoring normal hippocampal function. EE during adolescence is a promising method of enhancing impaired hippocampal function resulting from early life stress, and due to multiple benefits (low cost, few side effects, widespread availability) should be more thoroughly explored as a treatment option in human sufferers of childhood adversity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Freezing behavior on the training day.
Fig. 2: Context and CS recall.
Fig. 3: Survival and activity of adult-born neurons.
Fig. 4: Correlation between freezing behavior and adult-born neurons.

Similar content being viewed by others

References

  1. Teicher MH, Samson JA, Anderson CM, Ohashi K. The effects of childhood maltreatment on brain structure, function and connectivity. Nat Rev Neurosci. 2016;17:652–6.

    Article  CAS  PubMed  Google Scholar 

  2. de Kloet ER, Joels M, Holsboer F. Stress and the brain: from adaptation to disease. Nat Rev Neurosci. 2005;6:463–75.

    Article  PubMed  CAS  Google Scholar 

  3. Calem M, Bromis K, McGuire P, Morgan C, Kempton MJ. Meta-analysis of associations between childhood adversity and hippocampus and amygdala volume in non-clinical and general population samples. Neuroimage Clin. 2017;14:471–9.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Paquola C, Bennett MR, Lagopoulos J. Understanding heterogeneity in grey matter research of adults with childhood maltreatment—a meta-analysis and review. Neurosci Biobehav Rev. 2016;69:299–312.

    Article  PubMed  Google Scholar 

  5. Lambert HK, Sheridan MA, Sambrook KA, Rosen ML, Askren MK, McLaughlin KA. Hippocampal contribution to context encoding across development is disrupted following early-life adversity. J Neurosci. 2017;37:1925–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bolton JL, Molet J, Ivy A, Baram TZ. New insights into early-life stress and behavioural outcomes. Curr Opin Behav Sci. 2017;14:133–9.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Brydges NM, Wood ER, Holmes MC, Hall J. Prepubertal stress and hippocampal function: sex-specific effects. Hippocampus. 2014;24:684–92.

    Article  PubMed  Google Scholar 

  8. Brydges NM, Moon A, Rule L, Watkin H, Thomas KL, Hall J. Sex specific effects of prepubertal stress on hippocampal neurogenesis and behaviour. Transl Psychiatry. 2018;8. https://doi.org/10.1038/s41398-018-0322-4.

  9. Brydges NM, Seckl J, Torrance HS, Holmes MC, Evans KL, Hall J. Juvenile stress produces long-lasting changes in hippocampal DISC1, GSK3 beta and NRG1 expression. Mol Psychiatry. 2014;19:854–5.

    Article  CAS  PubMed  Google Scholar 

  10. Tiwari A, Gonzalez A. Biological alterations affecting risk of adult psychopathology following childhood trauma: a review of sex differences. Clin Psychol Rev. 2018;66:69–79.

    Article  PubMed  Google Scholar 

  11. van Erp TGM, Hibar DP, Rasmussen JM, Glahn DC, Pearlson GD, Andreassen OA, et al. Subcortical brain volume abnormalities in 2028 individuals with schizophrenia and 2540 healthy controls via the ENIGMA consortium. Mol Psychiatry. 2016;21:547–53.

    Article  PubMed  Google Scholar 

  12. Samuels BA, Leonardo ED, Hen R. Hippocampal subfields and major depressive disorder. Biol Psychiatry. 2015;77:210–1.

    Article  PubMed Central  Google Scholar 

  13. Yun S, Reynolds RP, Masiulis I, Eisch AJ. Re-evaluating the link between neuropsychiatric disorders and dysregulated adult neurogenesis. Nat Med. 2016;22:1239–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Anacker C, Hen R. Adult hippocampal neurogenesis and cognitive flexibility—linking memory and mood. Nat Rev Neurosci. 2017;18:335–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ming GL, Song HJ. Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron. 2011;70:687–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kang EC, Wen ZX, Song HJ, Christian KM, Ming GL. Adult neurogenesis and psychiatric disorders. Cold Spring Harb Perspect Biol. 2016;8:1–27.

    Article  Google Scholar 

  17. Toda T, Parylak SL, Linker SB, Gage FH. The role of adult hippocampal neurogenesis in brain health and disease. Mol Psychiatry. 2019;24:67–87.

    Article  CAS  PubMed  Google Scholar 

  18. Allen KM, Fung SJ, Weickert CS. Cell proliferation is reduced in the hippocampus in schizophrenia. Aust N Z J Psychiatry. 2016;50:473–80.

    Article  PubMed  Google Scholar 

  19. Boldrini M, Hen R, Underwood MD, Rosoklija GB, Dwork AJ, Mann JJ, et al. Hippocampal angiogenesis and progenitor cell proliferation are increased with antidepressant use in major depression. Biol Psychiatry. 2012;72:562–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Murray CJL, Vos T, Lozano R. Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010 (vol 380, pg 2197, 2012). Lancet. 2014;384:582.

    Google Scholar 

  21. Sahay A, Hen R. Adult hippocampal neurogenesis in depression. Nat Neurosci. 2007;10:1110–5.

    Article  CAS  PubMed  Google Scholar 

  22. Kempermann G. Environmental enrichment, new neurons and the neurobiology of individuality. Nat Rev Neurosci. 2019;20:235–45.

    Article  CAS  PubMed  Google Scholar 

  23. Ilin Y, Richter-Levin G. Enriched environment experience overcomes learning deficits and depressive-like behavior induced by juvenile stress. Plos ONE. 2009;4:e4329.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Morley-Fletcher S, Rea M, Maccari S, Laviola G. Environmental enrichment during adolescence reverses the effects of prenatal stress on play behaviour and HPA axis reactivity in rats. Eur J Neurosci. 2003;18:3367–74.

    Article  PubMed  Google Scholar 

  25. Zubedat S, Aga-Mizrachi S, Cymerblit-Sabba A, Ritter A, Nachmani M, Avital A. Methylphenidate and environmental enrichment ameliorate the deleterious effects of prenatal stress on attention functioning. Stress. 2015;18:280–8.

    Article  CAS  PubMed  Google Scholar 

  26. Francis DD, Diorio J, Plotsky PM, Meaney MJ. Environmental enrichment reverses the effects of maternal separation on stress reactivity. J Neurosci. 2002;22:7840–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Vivinetto AL, Suarez MM, Rivarola MA. Neurobiological effects of neonatal maternal separation and post-weaning environmental enrichment. Behav Brain Res. 2013;240:110–8.

    Article  PubMed  Google Scholar 

  28. Ardi Z, Richter-Levin A, Xu L, Cao X, Volkmer H, Stork O, et al. The role of the GABAA receptor alpha 1 subunit in the ventral hippocampus in stress resilience. Sci Rep. 2019;9:13513.

  29. Hueston CM, Cryan JF, Nolan YM. Stress and adolescent hippocampal neurogenesis: diet and exercise as cognitive modulators. Transl Psychiatry. 2017;7. https://doi.org/10.1038/tp.2017.48.

  30. Dresler M, Sandberg A, Ohla K, Bublitz C, Trenado C, Mroczko-Wasowicz A, et al. Non pharmacological cognitive enhancement. Neuropharmacology. 2013;64:529–43.

    Article  CAS  PubMed  Google Scholar 

  31. McDonald MW, Hayward KS, Rosbergen ICM, Jeffers MS, Corbett D. Is environmental enrichment ready for clinical application in human post-stroke rehabilitation? Front Behav Neurosci. 2018;12. https://doi.org/10.3389/fnbeh.2018.00135.

  32. Brydges NM. Pre-pubertal stress and brain development in rodents. Curr Opin Behav Sci. 2016;7:8–14.

    Article  Google Scholar 

  33. Jacobson-Pick S, Richter-Levin G. Differential impact of juvenile stress and corticosterone in juvenility and in adulthood, in male and female rats. Behav Brain Res. 2010;214:268–76.

    Article  CAS  PubMed  Google Scholar 

  34. Kempermann G, Gast D, Kronenberg G, Yamaguchi M, Gage FH. Early determination and long-term persistence of adult-generated new neurons in the hippocampus of mice. Development. 2003;130:391–9.

    Article  CAS  PubMed  Google Scholar 

  35. Brown JP, Couillard-Despres S, Cooper-Kuhn CM, Winkler J, Aigner L, Kuhn HG. Transient expression of doublecortin during adult neurogenesis. J Comp Neurol. 2003;467:1–10.

    Article  CAS  PubMed  Google Scholar 

  36. Ambrogini P, Lattanzi D, Ciuffoli S, Agostini D, Bertini L, Stocchi V, et al. Morpho-functional characterization of neuronal cells at different stages of maturation in granule cell layer of adult rat dentate gyrus. Brain Res. 2004;1017:21–31.

    Article  CAS  PubMed  Google Scholar 

  37. Detert JA, Kampa ND, Moyer JR. Differential effects of training intertrial interval on acquisition of trace and long-delay fear conditioning in rats. Behav Neurosci. 2008;122:1318–27.

    Article  PubMed  Google Scholar 

  38. Paxinos G, Watson, C. The Rat Brain in Stereotaxic Coordinates. 6th edn. New York, USA: Elsevier Academic Press; 2007.

  39. Noori HR, Fornal CA. The appropriateness of unbiased optical fractionators to assess cell proliferation in the adult hippocampus. Front Neurosci. 2011;5. https://doi.org/10.3389/fnins.2011.00140.

  40. Kim EJ, Pellman B, Kim JJ. Stress effects on the hippocampus: a critical review. Learn Mem. 2015;22:411–6.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Riem MME, Alink LRA, Out D, Van Ijzendoorn MH, Bakermans-Kranenburg MJ. Beating the brain about abuse: empirical and meta-analytic studies of the association between maltreatment and hippocampal volume across childhood and adolescence. Dev Psychopathol. 2015;27:507–20.

    Article  PubMed  Google Scholar 

  42. Bremner JD, Vythilingam M, Vermetten E, Southwick SM, McGlashan T, Staib LH, et al. Neural correlates of declarative memory for emotionally valenced words in women with posttraumatic stress disorder related to early childhood sexual abuse. Biol Psychiatry. 2003;53:879–89.

    Article  PubMed  Google Scholar 

  43. van Rooij SJH, Stevens JS, Ely TD, Fani N, Smith AK, Kerley KA, et al. Childhood trauma and COMT genotype interact to increase hippocampal activation in resilient individuals. Front Psychiatry. 2016;7. https://doi.org/10.3389/fpsyt.2016.00156.

  44. Richter A, Kramer B, Diekhof EK, Gruber O. Resilience to adversity is associated with increased activity and connectivity in the VTA and hippocampus. Neuroimage Clin. 2019;23:10. https://doi.org/10.1016/j.nicl.2019.101920.

  45. Derks NAV, Krugers HJ, Hoogenraad CC, Joels M, Sarabdjitsingh RA. Effects of early life stress on rodent hippocampal synaptic plasticity: a systematic review. Curr Opin Behav Sci. 2017;14:155–66.

    Article  Google Scholar 

  46. Mirescu C, Peters JD, Gould E. Early life experience alters response of adult neurogenesis to stress. Nat Neurosci. 2004;7:841–6.

    Article  CAS  PubMed  Google Scholar 

  47. Korosi A, Naninck EFG, Oomen CA, Schouten M, Krugers H, Fitzsimons C, et al. Early-life stress mediated modulation of adult neurogenesis and behavior. Behav Brain Res. 2012;227:400–9.

    Article  CAS  PubMed  Google Scholar 

  48. Ortega-Martinez S. Influences of prenatal and postnatal stress on adult hippocampal neurogenesis: the double neurogenic niche hypothesis. Behav Brain Res. 2015;281:309–17.

    Article  CAS  PubMed  Google Scholar 

  49. Loi M, Koricka S, Lucassen PJ, Joels M. Age- and sex- dependent effects of early life stress on hippocampal neurogenesis. Front Endocrinol. 2014;5:11. https://doi.org/10.3389/fendo.2014.00013.

    Article  Google Scholar 

  50. Oomen CA, Soeters H, Audureau N, Vermunt L, van Hasselt FN, Manders EMM, et al. Severe early life stress hampers spatial learning and neurogenesis, but improves hippocampal synaptic plasticity and emotional learning under high-stress conditions in adulthood. J Neurosci. 2010;30:6635–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lajud N, Torner L. Early life stress and hippocampal neurogenesis in the neonate: sexual dimorphism, long term consequences and possible mediators. Front Mol Neurosci. 2015;8. https://doi.org/10.3389/fnmol.2015.00003.

  52. Maren S. Overtraining does not mitigate contextual fear conditioning deficits produced by neurotoxic lesions of the basolateral amygdala. J Neurosci. 1998;18:3088–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Drew MR, Huckleberry KA. Modulation of aversive memory by adult hippocampal neurogenesis. Neurotherapeutics. 2017;14:646–61.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Burman MA, Starr MJ, Gewirtz JC. Dissociable effects of hippocampus lesions on expression of fear and trace fear conditioning memories in rats. Hippocampus. 2006;16:103–13.

    Article  PubMed  Google Scholar 

  55. Burman MA, Simmons CA, Hughes M, Lei L. Developing and validating trace fear conditioning protocols in C57BL/6 mice. J Neurosci Methods. 2014;222:111–7.

    Article  PubMed  Google Scholar 

  56. Pierson JL, Pullins SE, Quinn JJ. Dorsal hippocampus infusions of CNQX into the dentate gyrus disrupt expression of trace fear conditioning. Hippocampus. 2015;25:779–85.

    Article  CAS  PubMed  Google Scholar 

  57. Clelland CD, Choi M, Romberg C, Clemenson GD, Fragniere A, Tyers P, et al. A functional role for adult hippocampal neurogenesis in spatial pattern separation. Science. 2009;325:210–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kochli DE, Thompson EC, Fricke EA, Postle AF, Quinn JJ. The amygdala is critical for trace, delay, and contextual fear conditioning. Learn Mem. 2015;22:92–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Loi M, Koricka S, Lucassen PJ, Joels M. Age- and sex-dependent effects of early life stress on hippocampal neurogenesis. Front Endocrinol. 2014;5:13.

    Article  Google Scholar 

  60. Ming GL, Song HJ. Adult neurogenesis in the mammalian central nervous system. Annu Rev Neurosci. 2005;28:223–50.

    Article  CAS  PubMed  Google Scholar 

  61. van Praag H, Schinder AF, Christie BR, Toni N, Palmer TD, Gage FH. Functional neurogenesis in the adult hippocampus. Nature. 2002;415:1030–4.

    Article  PubMed  CAS  Google Scholar 

  62. Toni N, Schinder AF. Maturation and functional integration of new granule cells into the adult hippocampus. Cold Spring Harb Perspect Biol. 2016;8. https://doi.org/10.1101/cshperspect.a018903.

  63. Gu Y, Arruda-Carvalho M, Wang J, Janoschka SR, Josselyn SA, Frankland PW, et al. Optical controlling reveals time-dependent roles for adult-born dentate granule cells. Nat Neurosci. 2012;15:1700–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Denny CA, Burghardt NS, Schachter DM, Hen R, Drew MR. 4-to 6-week-old adult-born hippocampal neurons influence novelty-evoked exploration and contextual fear conditioning. Hippocampus. 2012;22:1188–201.

    Article  PubMed  Google Scholar 

  65. Menard JL, Champagne DL, Meaney MJP. Variations of maternal care differentially influence ‘fear’ reactivity and regional patterns of cFos immunoreactivity in response to the shock probe burying test. Neuroscience. 2004;129:297–308.

    Article  CAS  PubMed  Google Scholar 

  66. Troakes C, Ingram CD. Anxiety behaviour of the male rat on the elevated plus maze: associated regional increase in c-fos mRNA expression and modulation by early maternal separation. Stress. 2009;12:362–9.

    Article  CAS  PubMed  Google Scholar 

  67. Koehnle TJ, Rinaman L. Early experience alters limbic forebrain Fos responses to a stressful interoceptive stimulus in young adult rats. Physiol Behav. 2010;100:105–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sanders BJ, Anticevic A. Maternal separation enhances neuronal activation and cardiovascular responses to acute stress in borderline hypertensive rats. Behav Brain Res. 2007;183:25–30.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Banqueri M, Mendez M, Arias JL. Why are maternally separated females inflexible? Brain activity pattern of COx and c-Fos. Neurobiol Learn Mem. 2018;155:30–41.

    Article  PubMed  Google Scholar 

  70. Kempermann G, Gage FH. Genetic determinants of adult hippocampal neurogenesis correlate with acquisition, but not probe trial performance, in the water maze task. Eur J Neurosci. 2002;16:129–36.

    Article  CAS  PubMed  Google Scholar 

  71. Creer DJ, Romberg C, Saksida LM, van Praag H, Bussey TJ. Running enhances spatial pattern separation in mice. Proc Natl Acad Sci USA. 2010;107:2367–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lee SW, Clemenson GD, Gage FH. New neurons in an aged brain. Behav Brain Res. 2012;227:497–507.

    Article  PubMed  Google Scholar 

  73. Naninck EFG, Hoeijmakers L, Kakava-Georgiadou N, Meesters A, Lazic SE, Lucassen PJ, et al. Chronic early life stress alters developmental and adult neurogenesis and impairs cognitive function in mice. Hippocampus. 2015;25:309–28.

    Article  CAS  PubMed  Google Scholar 

  74. Frick KM, Stearns NA, Pan J-Y, Berger-Sweeney J. Effects of environmental enrichment on spatial memory and neurochemistry in middle-aged mice. Learn Mem. 2003;10:187–98.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Ohline SM, Abraham WC. Environmental enrichment effects on synaptic and cellular physiology of hippocampal neurons. Neuropharmacology. 2019;145:3–12.

    Article  CAS  PubMed  Google Scholar 

  76. Fox C, Merali Z, Harrison C. Therapeutic and protective effect of environmental enrichment against psychogenic and neurogenic stress. Behav Brain Res. 2006;175:1–8.

    Article  CAS  PubMed  Google Scholar 

  77. Veena J, Srikumar BN, Raju TR, Rao BSS. Exposure to enriched environment restores the survival and differentiation of new born cells in the hippocampus and ameliorates depressive symptoms in chronically stressed rats. Neurosci Lett. 2009;455:178–82.

    Article  CAS  PubMed  Google Scholar 

  78. Olson AK, Eadie BD, Ernst C, Christie BR. Environmental enrichment and voluntary exercise massively increase neurogenesis in the adult hippocampus via dissociable pathways. Hippocampus. 2006;16:250–60.

    Article  CAS  PubMed  Google Scholar 

  79. Clemenson GD, Deng W, Gage FH. Environmental enrichment and neurogenesis: from mice to humans. Curr Opin Behav Sci. 2015;4:56–62.

    Article  Google Scholar 

  80. Barros W, David M, Souza A, Silva M, Matos R. Can the effects of environmental enrichment modulate BDNF expression in hippocampal plasticity? A systematic review of animal studies. Synapse. 2019;73. https://doi.org/10.1002/syn.22103.

  81. Snyder JS. Recalibrating the relevance of adult neurogenesis. Trends Neurosci. 2019;42:164–78.

    Article  CAS  PubMed  Google Scholar 

  82. O’Leary JD, Hoban AE, Murphy A, O’Leary OF, Cryan JF, Nolan YM. Differential effects of adolescent and adult-initiated exercise on cognition and hippocampal neurogenesis. Hippocampus. 2019;29:352–65.

    Article  PubMed  CAS  Google Scholar 

  83. O’Leary JD, Hoban AE, Cryan JF, O’Leary OF, Nolan YM. Differential effects of adolescent and adult-initiated voluntary exercise on context and cued fear conditioning. Neuropharmacology. 2019;145:49–58.

    Article  PubMed  CAS  Google Scholar 

  84. Koe AS, Ashokan A, Mitra R. Short environmental enrichment in adulthood reverses anxiety and basolateral amygdala hypertrophy induced by maternal separation. Transl Psychiatry. 2016;6. https://doi.org/10.1038/tp.2015.217.

  85. Doreste-Mendez R, Rios-Ruiz EJ, Rivera-Lopez LL, Gutierrez A, Torres-Reveron A. Effects of environmental enrichment in maternally separated rats: age and sex-specific outcomes. Front Behav Neurosci. 2019;13. https://doi.org/10.3389/fnbeh.2019.00198.

  86. Cui MH, Yang Y, Yang JL, Zhang JC, Han HL, Ma WP, et al. Enriched environment experience overcomes the memory deficits and depressive-like behavior induced by early life stress. Neurosci Lett. 2006;404:208–12.

    Article  CAS  PubMed  Google Scholar 

  87. Kempermann G, Gage FH, Aigner L, Song HJ, Curtis MA, Thuret S, et al. Human adult neurogenesis: evidence and remaining questions. Cell Stem Cell. 2018;23:25–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Boldrini M, Fulmore CA, Tartt AN, Simeon LR, Pavlova I, Poposka V, et al. Human hippocampal neurogenesis persists throughout aging. Cell Stem Cell. 2018;22:589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kempermann G, Krebs J, Fabel K. The contribution of failing adult hippocampal neurogenesis to psychiatric disorders. Curr Opin Psychiatry. 2008;21:290–5.

    Article  PubMed  Google Scholar 

  90. Ruan LH, Lau BWM, Wang JX, Huang LJ, Zhuge QC, Wang B, et al. Neurogenesis in neurological and psychiatric diseases and brain injury: from bench to bedside. Prog Neurobiol. 2014;115:116–37.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to acknowledge support from the Cardiff University Neuroscience and Mental Health Research Institute and The Jane Hodge Foundation who provided NMB with fellowship funding during this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nichola Marie Brydges.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rule, L., Yang, J., Watkin, H. et al. Environmental enrichment rescues survival and function of adult-born neurons following early life stress. Mol Psychiatry 26, 1898–1908 (2021). https://doi.org/10.1038/s41380-020-0718-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-020-0718-4

This article is cited by

Search

Quick links