Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Developmental impaired Akt signaling in the Shank1 and Shank3 double knock-out mice

Abstract

Human mutations and haploinsufficiency of the SHANK family genes are associated with autism spectrum disorders (ASD) and intellectual disability (ID). Complex phenotypes have been also described in all mouse models of Shank mutations and deletions, consistent with the heterogeneity of the human phenotypes. However, the specific role of Shank proteins in synapse and neuronal functions remain to be elucidated. Here, we generated a new mouse model to investigate how simultaneously deletion of Shank1 and Shank3 affects brain development and behavior in mice. Shank1Shank3 DKO mice showed a low survival rate, a developmental strong reduction in the activation of intracellular signaling pathways involving Akt, S6, ERK1/2, and eEF2 during development and a severe behavioral impairments. Our study suggests that Shank1 and Shank3 proteins are essential to developmentally regulate the activation of Akt and correlated intracellular pathways crucial for mammalian postnatal brain development and synaptic plasticity. Therefore, Akt function might represent a new therapeutic target for enhancing cognitive abilities of syndromic ASD patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Shank1 and Shank3 double mutation causes severe deficits in young (P22–25) mice.
Fig. 2: Shank1−/− Shank3−/− double KO mice exhibit syndromic ASDs-like behavior.
Fig. 3: Adult (P60) Shank1−/− Shank3−/− double KO mice have morphological and functional deficits.
Fig. 4: Chronic cotinine treatment during brain development rescues neuronal morphology of Shank1−/− Shank3−/− double KO mice.
Fig. 5: Chronic cotinine treatment during brain development rescues behavioral deficits of Shank1−/− Shank3−/− double KO mice.

Similar content being viewed by others

References

  1. Naisbitt S, Kim E, Tu JC, Xiao B, Sala C, Valtschanoff J, et al. Shank, a novel family of postsynaptic density proteins that binds to the NMDA receptor/PSD-95/GKAP complex and cortactin. Neuron. 1999;23:569–82.

    Article  CAS  PubMed  Google Scholar 

  2. Tu JC, Xiao B, Naisbitt S, Yuan JP, Petralia RS, Brakeman P, et al. Coupling of mGluR/Homer and PSD-95 complexes by the Shank family of postsynaptic density proteins. Neuron. 1999;23:583–92.

    Article  CAS  PubMed  Google Scholar 

  3. Boeckers TM, Kreutz MR, Winter C, Zuschratter W, Smalla KH, Sanmarti-Vila L, et al. Proline-rich synapse-associated protein-1/cortactin binding protein 1 (ProSAP1/CortBP1) is a PDZ-domain protein highly enriched in the postsynaptic density. J Neurosci. 1999;19:6506–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sheng M, Kim E. The Shank family of scaffold proteins. J Cell Sci. 2000;113:1851–6.

    Article  CAS  PubMed  Google Scholar 

  5. Grabrucker AM, Schmeisser MJ, Schoen M, Boeckers TM. Postsynaptic ProSAP/Shank scaffolds in the cross-hair of synaptopathies. Trends Cell Biol. 2011;21:594–603.

    Article  CAS  PubMed  Google Scholar 

  6. Kim E, Sheng M. PDZ domain proteins of synapses. Nat Rev Neurosci. 2004;5:771–81.

    Article  CAS  PubMed  Google Scholar 

  7. Hayashi MK, Tang C, Verpelli C, Narayanan R, Stearns MH, Xu R-M, et al. The postsynaptic density proteins homer and shank form a polymeric network structure. Cell. 2009;137:159–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sala C, Piech V, Wilson NR, Passafaro M, Liu GS, Sheng M. Regulation of dendritic spine morphology and synaptic function by Shank and Homer. Neuron. 2001;31:115–30.

    Article  CAS  PubMed  Google Scholar 

  9. Leblond CS, Nava C, Polge A, Gauthier J, Huguet G, Lumbroso S, et al. Meta-analysis of SHANK Mutations in Autism Spectrum Disorders: a gradient of severity in cognitive impairments. PLoS Genet. 2014;10:e1004580.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Grabrucker AM, Knight MJ, Proepper C, Bockmann J, Joubert M, Rowan M, et al. Concerted action of zinc and ProSAP/Shank in synaptogenesis and synapse maturation. EMBO J. 2011;30:569–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sala C, Vicidomini C, Bigi I, Mossa A, Verpelli C. Shank synaptic scaffold proteins: keys to understanding the pathogenesis of autism and other synaptic disorders. J Neurochem. 2015;135:849–58.

    Article  CAS  PubMed  Google Scholar 

  12. Monteiro P, Feng G. SHANK proteins: roles at the synapse and in autism spectrum disorder. Nat Rev Neurosci. 2017;18:147–57.

    Article  CAS  PubMed  Google Scholar 

  13. Jiang YH, Ehlers MD. Modeling autism by SHANK gene mutations in mice. Neuron. 2013;78:8–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hung AY, Futai K, Sala C, Valtschanoff JG, Ryu J, Woodworth MA, et al. Smaller dendritic spines, weaker synaptic transmission, but enhanced spatial learning in mice lacking Shank1. J Neurosci. 2008;28:1697–708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Vicidomini C, Ponzoni L, Lim D, Schmeisser MJ, Reim D, Morello N, et al. Pharmacological enhancement of mGlu5 receptors rescues behavioral deficits in SHANK3 knock-out mice. Mol Psychiatry. 2017;22:689–702.

    Article  CAS  PubMed  Google Scholar 

  16. Schmeisser MJ, Ey E, Wegener S, Bockmann J, Stempel AV, Kuebler A, et al. Autistic-like behaviours and hyperactivity in mice lacking ProSAP1/Shank2. Nature. 2012;486:256–60.

    Article  CAS  PubMed  Google Scholar 

  17. Deacon RM. Assessing nest building in mice. Nat Protoc. 2006;1:1117–9.

    Article  PubMed  Google Scholar 

  18. McFarlane HG, Kusek GK, Yang M, Phoenix JL, Bolivar VJ, Crawley JN. Autism-like behavioral phenotypes in BTBR T+tf/J mice. Genes Brain Behav. 2008;7:152–63.

    Article  CAS  PubMed  Google Scholar 

  19. Hickey MA, Kosmalska A, Enayati J, Cohen R, Zeitlin S, Levine MS, et al. Extensive early motor and non-motor behavioral deficits are followed by striatal neuronal loss in knock-in Huntington’s disease mice. Neuroscience. 2008;157:280–95.

    Article  CAS  PubMed  Google Scholar 

  20. Sala M, Braida D, Lentini D, Busnelli M, Bulgheroni E, Capurro V, et al. Pharmacologic rescue of impaired cognitive flexibility, social deficits, increased aggression, and seizure susceptibility in oxytocin receptor null mice: a neurobehavioral model of autism. Biol Psychiatry. 2011;69:875–82.

    Article  CAS  PubMed  Google Scholar 

  21. Morris R. Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods. 1984;11:47–60.

    Article  CAS  PubMed  Google Scholar 

  22. Zhang H, Zhang SB, Zhang QQ, Liu M, He XY, Zou Z, et al. Rescue of cAMP response element-binding protein signaling reversed spatial memory retention impairments induced by subanesthetic dose of propofol. CNS Neurosci Ther. 2013;19:484–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Heise C, Taha E, Murru L, Ponzoni L, Cattaneo A, Guarnieri FC, et al. eEF2K/eEF2 pathway controls the excitation/inhibition balance and susceptibility to epileptic seizures. Cereb Cortex. 2017;27:2226–48.

    PubMed  Google Scholar 

  24. Nikolaienko O, Patil S, Eriksen MS, Bramham CR. Arc protein: a flexible hub for synaptic plasticity and cognition. Semin Cell Dev Biol. 2018;77:33–42.

    Article  CAS  PubMed  Google Scholar 

  25. Korb E, Finkbeiner S. Arc in synaptic plasticity: from gene to behavior. Trends Neurosci. 2011;34:591–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wu GY, Deisseroth K, Tsien RW. Spaced stimuli stabilize MAPK pathway activation and its effects on dendritic morphology. Nat Neurosci. 2001;4:151–8.

    Article  CAS  PubMed  Google Scholar 

  27. Verpelli C, Piccoli G, Zanchi A, Gardoni F, Huang K, Brambilla D, et al. Synaptic activity controls dendritic spine morphology by modulating eEF2-dependent BDNF synthesis. J Neurosci. 2010;30:5830–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Biever A, Valjent E, Puighermanal E. Ribosomal protein S6 phosphorylation in the nervous system: from regulation to function. Front Mol Neurosci. 2015;8:75.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Wilkerson JR, Albanesi JP, Huber KM. Roles for Arc in metabotropic glutamate receptor-dependent LTD and synapse elimination: implications in health and disease. Semin Cell Dev Biol. 2018;77:51–62.

    Article  CAS  PubMed  Google Scholar 

  30. Szczypka MS, Kwok K, Brot MD, Marck BT, Matsumoto AM, Donahue BA, et al. Dopamine production in the caudate putamen restores feeding in dopamine-deficient mice. Neuron. 2001;30:819–28.

    Article  CAS  PubMed  Google Scholar 

  31. Rojas DC, Wilson LB. γ-band abnormalities as markers of autism spectrum disorders. Biomark Med. 2014;8:353–68.

    Article  CAS  PubMed  Google Scholar 

  32. Echeverria V, Zeitlin R, Burgess S, Patel S, Barman A, Thakur G, et al. Cotinine reduces amyloid-β aggregation and improves memory in Alzheimer’s disease mice. J Alzheimers Dis. 2011;24:817–35.

    Article  CAS  PubMed  Google Scholar 

  33. Pardo M, Beurel E, Jope RS. Cotinine administration improves impaired cognition in the mouse model of Fragile X syndrome. Eur J Neurosci. 2017;45:490–8.

    Article  PubMed  Google Scholar 

  34. Gao J, Adam BL, Terry AV. Evaluation of nicotine and cotinine analogs as potential neuroprotective agents for Alzheimer’s disease. Bioorg Med Chem Lett. 2014;24:1472–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Grizzell JA, Iarkov A, Holmes R, Mori T, Echeverria V. Cotinine reduces depressive-like behavior, working memory deficits, and synaptic loss associated with chronic stress in mice. Behav Brain Res. 2014;268:55–65.

    Article  CAS  PubMed  Google Scholar 

  36. Patel S, Grizzell JA, Holmes R, Zeitlin R, Solomon R, Sutton TL, et al. Cotinine halts the advance of Alzheimer’s disease-like pathology and associated depressive-like behavior in Tg6799 mice. Front Aging Neurosci. 2014;6:162.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Terry AV, Buccafusco JJ, Schade RF, Vandenhuerk L, Callahan PM, Beck WD, et al. The nicotine metabolite, cotinine, attenuates glutamate (NMDA) antagonist-related effects on the performance of the five choice serial reaction time task (5C-SRTT) in rats. Biochem Pharm. 2012;83:941–51.

    Article  CAS  PubMed  Google Scholar 

  38. Echeverria V, Zeitlin R. Cotinine: a potential new therapeutic agent against Alzheimer’s disease. CNS Neurosci Ther. 2012;18:517–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Silverman JL, Turner SM, Barkan CL, Tolu SS, Saxena R, Hung AY, et al. Sociability and motor functions in Shank1 mutant mice. Brain Res. 2011;1380:120–37.

    Article  CAS  PubMed  Google Scholar 

  40. Wöhr M, Roullet FI, Hung AY, Sheng M, Crawley JN. Communication impairments in mice lacking Shank1: reduced levels of ultrasonic vocalizations and scent marking behavior. PLoS One. 2011;6:e20631.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Sungur A, Vörckel KJ, Schwarting RK, Wöhr M. Repetitive behaviors in the Shank1 knockout mouse model for autism spectrum disorder: developmental aspects and effects of social context. J Neurosci Methods. 2014;234:92–100.

    Article  CAS  PubMed  Google Scholar 

  42. Wöhr M. Ultrasonic vocalizations in Shank mouse models for autism spectrum disorders: detailed spectrographic analyses and developmental profiles. Neurosci Biobehav Rev. 2014;43:199–212.

    Article  PubMed  Google Scholar 

  43. Sungur A, Jochner MCE, Harb H, Kılıç A, Garn H, Schwarting RKW, et al. Aberrant cognitive phenotypes and altered hippocampal BDNF expression related to epigenetic modifications in mice lacking the post-synaptic scaffolding protein SHANK1: implications for autism spectrum disorder. Hippocampus. 2017;27:906–19.

    Article  CAS  PubMed  Google Scholar 

  44. Peça J, Feliciano C, Ting JT, Wang W, Wells MF, Venkatraman TN, et al. Shank3 mutant mice display autistic-like behaviours and striatal dysfunction. Nature. 2011;472:437–42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Bozdagi O, Sakurai T, Papapetrou D, Wang X, Dickstein DL, Takahashi N, et al. Haploinsufficiency of the autism-associated Shank3 gene leads to deficits in synaptic function, social interaction, and social communication. Mol Autism. 2010;1:15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang X, McCoy PA, Rodriguiz RM, Pan Y, Je HS, Roberts AC, et al. Synaptic dysfunction and abnormal behaviors in mice lacking major isoforms of Shank3. Hum Mol Genet. 2011;20:3093–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang X, Bey AL, Katz BM, Badea A, Kim N, David LK, et al. Altered mGluR5-Homer scaffolds and corticostriatal connectivity in a Shank3 complete knockout model of autism. Nat Commun. 2016;7:11459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lee J, Chung C, Ha S, Lee D, Kim DY, Kim H, et al. Shank3-mutant mice lacking exon 9 show altered excitation/inhibition balance, enhanced rearing, and spatial memory deficit. Front Cell Neurosci. 2015;9:94.

    PubMed  PubMed Central  Google Scholar 

  49. Jaramillo TC, Speed HE, Xuan Z, Reimers JM, Escamilla CO, Weaver TP, et al. Novel Shank3 mutant exhibits behaviors with face validity for autism and altered striatal and hippocampal function. Autism Res. 2017;10:42–65.

    Article  PubMed  Google Scholar 

  50. Kouser M, Speed HE, Dewey CM, Reimers JM, Widman AJ, Gupta N, et al. Loss of predominant Shank3 isoforms results in hippocampus-dependent impairments in behavior and synaptic transmission. J Neurosci. 2013;33:18448–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Bidinosti M, Botta P, Krüttner S, Proenca CC, Stoehr N, Bernhard M, et al. CLK2 inhibition ameliorates autistic features associated with SHANK3 deficiency. Science. 2016;351:1199–203.

    Article  CAS  PubMed  Google Scholar 

  52. Terry AV, Hernandez CM, Hohnadel EJ, Bouchard KP, Buccafusco JJ. Cotinine, a neuroactive metabolite of nicotine: potential for treating disorders of impaired cognition. CNS Drug Rev. 2005;11:229–52.

    Article  CAS  PubMed  Google Scholar 

  53. Moran VE. Cotinine: beyond that expected, more than a biomarker of tobacco consumption. Front Pharm. 2012;3:173.

    Article  CAS  Google Scholar 

  54. Buccafusco JJ, Shuster LC, Terry AV. Disconnection between activation and desensitization of autonomic nicotinic receptors by nicotine and cotinine. Neurosci Lett. 2007;413:68–71.

    Article  CAS  PubMed  Google Scholar 

  55. Li P, Beck WD, Callahan PM, Terry AV, Bartlett MG. Pharmacokinetics of cotinine in rats: a potential therapeutic agent for disorders of cognitive function. Pharm Rep. 2015;67:494–500.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Comitato Telethon Fondazione Onlus (grant no. GGP16131 to CV and GGP17176 to CS) and Regione Lombardia NeOn Progetto "NeOn" POR-FESR 2014–2020, ID 239047, CUP E47F17000000009 to CS and CV and Fondation Jérôme Lejeune (project #1638 to CS and project #1938 to CV). TMB is supported by the DFG (Project-ID 251293561—Collaborative Research Center (CRC) 1149), the Else Kröner Foundation and the project has received funding from the Innovative Medicines Initiative 2 Joint Undertaking under grant agreement no. 777394 for the project AIMS-2-TRIALS. This Joint Undertaking receives support from the European Union’s Horizon 2020 research and innovation program and EFPIA and AUTISM SPEAKS, Autistica, SFARI. Moreover, funding was received from the Innovative Medicines Initiative 2 Joint Undertaking under grant agreement no. 847818—CANDY.

Author information

Authors and Affiliations

Authors

Contributions

AM, JP, LP, AT, EV, CC, and SB participated in the execution and analysis of experiments. AM, JP, MF, MS, PC, TMB, CS, and CV participated in the interpretation of the results. CS and CV designed the experiments and wrote the paper.

Corresponding authors

Correspondence to Carlo Sala or Chiara Verpelli.

Ethics declarations

Conflict of interest

The authors declare that they have no confict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mossa, A., Pagano, J., Ponzoni, L. et al. Developmental impaired Akt signaling in the Shank1 and Shank3 double knock-out mice. Mol Psychiatry 26, 1928–1944 (2021). https://doi.org/10.1038/s41380-020-00979-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-020-00979-x

This article is cited by

Search

Quick links