Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Degradation of FA reduces Aβ neurotoxicity and Alzheimer-related phenotypes

Abstract

Dysregulation of formaldehyde (FA) has been implicated in the development of Alzheimer’s Disease (AD). Elevated FA levels in Alzheimer’s patients and animal models are associated with impaired cognitive functions. However, the exact role of FA in AD remains unknown. We now identified that oxidative demethylation at serine8/26 of amyloid-beta protein (Aβ) induced FA generation and FA cross-linked with the lysine28 residue in the β-turn of Aβ monomer to form Aβ dimers, and then accelerated Aβ oligomerization and fibrillogenesis in vitro. However, Aβ42 mutation in serine8/26, lysine28 abolished Aβ self-aggregation. Furthermore, Aβ inhibited the activity of formaldehyde dehydrogenase (FDH), the enzyme for FA degradation, resulting in FA accumulation. In turn, excess of FA stimulated Aβ aggregation both in vitro and in vivo by increasing the formation of Aβ oligomers and fibrils. We found that degradation of FA by formaldehyde scavenger-NaHSO3 or coenzyme Q10 reduced Aβ aggregation and ameliorated the neurotoxicity, and improved the cognitive performance in APP/PS1 mice. Our study provides evidence that endogenous FA is essential for Aβ self-aggregation and scavenging FA could be an effective strategy for treating AD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Aβ42-induced FA generation through the oxidative demethylation of serine residues.
Fig. 2: Aβ interacted with FDH and inhibited FDH activity, leading to FA accumulation.
Fig. 3: FA triggered Aβ oligomeriztion and fibrillogenesis by crosslinking with lysine residues.
Fig. 4: FA stimulated the aggregation of Aβ with the mutants.
Fig. 5: FA facilitated Aβ aggregation and exacerbated Aβ-induced neurotoxicity in APP/PS1 mice.
Fig. 6: Degradation of FA reduced Aβ aggregation and ameliorated memory deficits in APP/PS1 mice.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Sun X, Bromley-Brits K, Song W. Regulation of beta-site APP-cleaving enzyme 1 gene expression and its role in Alzheimer’s disease. J Neurochem. 2012;120:62–70.

    CAS  PubMed  Google Scholar 

  2. Deng Y, Wang Z, Wang R, Zhang X, Zhang S, Wu Y, et al. Amyloid-beta protein (Abeta) Glu11 is the major beta-secretase site of beta-site amyloid-beta precursor protein-cleaving enzyme 1(BACE1), and shifting the cleavage site to Abeta Asp1 contributes to Alzheimer pathogenesis. Eur J Neurosci. 2013;37:1962–9.

    PubMed  Google Scholar 

  3. Ly PT, Wu Y, Zou H, Wang R, Zhou W, Kinoshita A, et al. Inhibition of GSK3beta-mediated BACE1 expression reduces Alzheimer-associated phenotypes. J Clin Invest. 2013;123:224–35.

    CAS  PubMed  Google Scholar 

  4. Zhang S, Cai F, Wu Y, Bozorgmehr T, Wang Z, Zhang S, et al. A presenilin-1 mutation causes Alzheimer disease without affecting Notch signaling. Mol Psychiatry. 2020;25:603–13.

    CAS  PubMed  Google Scholar 

  5. Zhang S, Wang Z, Cai F, Zhang M, Wu Y, Zhang J, et al. BACE1 cleavage site selection critical for amyloidogenesis and alzheimer’s pathogenesis. J Neurosci. 2017;37:6915–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Hardy JA, Higgins GA. Alzheimer’s disease: the amyloid cascade hypothesis. Science. 1992;256:184–5.

    CAS  PubMed  Google Scholar 

  7. Zhang Y, Song W. Islet amyloid polypeptide: another key molecule in Alzheimer’s pathogenesis? Prog Neurobiol. 2017;153:100–20.

    CAS  PubMed  Google Scholar 

  8. Zott B, Simon MM, Hong W, Unger F, Chen-Engerer HJ, Frosch MP, et al. A vicious cycle of beta amyloid-dependent neuronal hyperactivation. Science. 2019;365:559–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Shankar GM, Li S, Mehta TH, Garcia-Munoz A, Shepardson NE, Smith I, et al. Amyloid-beta protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nat Med. 2008;14:837–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Lesne SE. Toxic oligomer species of amyloid-beta in Alzheimer’s disease, a timing issue. Swiss Med Wkly. 2014;144:w14021.

    PubMed  PubMed Central  Google Scholar 

  11. Zhang M, Hausmann L, Song W. Targeting nascent soluble Abeta42 for potential Alzheimer drug development. J Neurochem. 2013;125:329–31.

    CAS  PubMed  Google Scholar 

  12. Zhang S, Zhao J, Zhang Y, Zhang Y, Cai F, Wang L, et al. Upregulation of MIF as a defense mechanism and a biomarker of Alzheimer’s disease. Alzheimers Res Ther. 2019;11:54.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Ahmed M, Davis J, Aucoin D, Sato T, Ahuja S, Aimoto S, et al. Structural conversion of neurotoxic amyloid-beta(1-42) oligomers to fibrils. Nat Struct Mol Biol. 2010;17:561–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Bernstein SL, Dupuis NF, Lazo ND, Wyttenbach T, Condron MM, Bitan G, et al. Amyloid-beta protein oligomerization and the importance of tetramers and dodecamers in the aetiology of Alzheimer’s disease. Nat Chem. 2009;1:326–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Du Y, Du Y, Zhang Y, Huang Z, Fu M, Li J, et al. MKP-1 reduces Abeta generation and alleviates cognitive impairments in Alzheimer’s disease models. Signal Transduct Target Ther. 2019;4:58.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Liao X, Cai F, Sun Z, Zhang Y, Wang J, Jiao B, et al. Identification of Alzheimer’s disease-associated rare coding variants in the ECE2 gene. JCI Insight. 2020;5:e135119.

  17. Qing H, He G, Ly PT, Fox CJ, Staufenbiel M, Cai F, et al. Valproic acid inhibits Abeta production, neuritic plaque formation, and behavioral deficits in Alzheimer’s disease mouse models. J Exp Med. 2008;205:2781–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Sun X, He G, Qing H, Zhou W, Dobie F, Cai F, et al. Hypoxia facilitates Alzheimer’s disease pathogenesis by up-regulating BACE1 gene expression. Proc Natl Acad Sci USA. 2006;103:18727–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Rozga M, Bal W. The Cu(II)/Abeta/human serum albumin model of control mechanism for copper-related amyloid neurotoxicity. Chem Res Toxicol. 2010;23:298–308.

    CAS  PubMed  Google Scholar 

  20. Li Y, Zhang L, Wang W. Formation of aldehyde and ketone compounds during production and storage of milk powder. Molecules. 2012;17:9900–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Kalasz H. Biological role of formaldehyde, and cycles related to methylation, demethylation, and formaldehyde production. Mini Rev Med Chem. 2003;3:175–92.

    CAS  PubMed  Google Scholar 

  22. Yue X, Mei Y, Zhang Y, Tong Z, Cui D, Yang J, et al. New insight into Alzheimer’s disease: Light reverses Abeta-obstructed interstitial fluid flow and ameliorates memory decline in APP/PS1 mice. Alzheimers Dement (N. Y). 2019;5:671–84.

    Google Scholar 

  23. Tang Y, Kong X, Xu A, Dong B, Lin W. Development of a two-photon fluorescent probe for imaging of endogenous formaldehyde in living tissues. Angew Chem Int Ed Engl. 2016;55:3356–9.

    CAS  PubMed  Google Scholar 

  24. Zhuang Y, Cao L. Sensitive fluorescence detection of etimicin based on derivatives of formaldehyde and acetylacetone. J Fluoresc. 2013;23:1–5.

    CAS  PubMed  Google Scholar 

  25. Luo W, Li H, Zhang Y, Ang CY. Determination of formaldehyde in blood plasma by high-performance liquid chromatography with fluorescence detection. J Chromatogr B Biomed Sci Appl. 2001;753:253–7.

    CAS  PubMed  Google Scholar 

  26. Yu D, Song L, Wang W, Guo C. Isolation and characterization of formaldehyde-degrading fungi and its formaldehyde metabolism. Environ Sci Pollut Res Int. 2014;21:6016–24.

    CAS  PubMed  Google Scholar 

  27. Mei Y, Jiang C, Wan Y, Lv J, Jia J, Wang X, et al. Aging-associated formaldehyde-induced norepinephrine deficiency contributes to age-related memory decline. Aging Cell. 2015;14:659–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Qiang M, Xiao R, Su T, Wu BB, Tong ZQ, Liu Y, et al. A novel mechanism for endogenous formaldehyde elevation in SAMP8 mouse. J Alzheimers Dis. 2014;40:1039–53.

    CAS  PubMed  Google Scholar 

  29. Teng S, Beard K, Pourahmad J, Moridani M, Easson E, Poon R, et al. The formaldehyde metabolic detoxification enzyme systems and molecular cytotoxic mechanism in isolated rat hepatocytes. Chem Biol Interact. 2001;130-132:285–96.

    CAS  PubMed  Google Scholar 

  30. LaFerla FM, Green KN, Oddo S. Intracellular amyloid-beta in Alzheimer’s disease. Nat Rev Neurosci. 2007;8:499–509.

    CAS  PubMed  Google Scholar 

  31. Murakami K, Irie K, Morimoto A, Ohigashi H, Shindo M, Nagao M, et al. Neurotoxicity and physicochemical properties of Abeta mutant peptides from cerebral amyloid angiopathy: implication for the pathogenesis of cerebral amyloid angiopathy and Alzheimer’s disease. J Biol Chem. 2003;278:46179–87.

    CAS  PubMed  Google Scholar 

  32. Chen WT, Hong CJ, Lin YT, Chang WH, Huang HT, Liao JY, et al. Amyloid-beta (Abeta) D7H mutation increases oligomeric Abeta42 and alters properties of Abeta-zinc/copper assemblies. PLoS One. 2012;7:e35807.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Kaden D, Harmeier A, Weise C, Munter LM, Althoff V, Rost BR, et al. Novel APP/Abeta mutation K16N produces highly toxic heteromeric Abeta oligomers. EMBO Mol Med. 2012;4:647–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Bergman A, Religa D, Karlstrom H, Laudon H, Winblad B, Lannfelt L, et al. APP intracellular domain formation and unaltered signaling in the presence of familial Alzheimer’s disease mutations. Exp Cell Res. 2003;287:1–9.

    CAS  PubMed  Google Scholar 

  35. Zhang Y, Dong Z, Song W. NLRP3 inflammasome as a novel therapeutic target for Alzheimer’s disease. Signal Transduct Target Ther. 2020;5:37.

    PubMed  PubMed Central  Google Scholar 

  36. Roberts AL, Johnson NJ, Cudkowicz ME, Eum KD, Weisskopf MG. Job-related formaldehyde exposure and ALS mortality in the USA. J Neurol Neurosurg Psychiatry. 2016;87:786–8.

    PubMed  Google Scholar 

  37. Kilburn KH, Warshaw R, Thornton JC. Formaldehyde impairs memory, equilibrium, and dexterity in histology technicians: effects which persist for days after exposure. Arch Environ Health. 1987;42:117–20.

    CAS  PubMed  Google Scholar 

  38. Kilburn KH. Neurobehavioral impairment and seizures from formaldehyde. Arch Environ Health. 1994;49:37–44.

    CAS  PubMed  Google Scholar 

  39. Kilburn KH, Warshaw RH. Neurobehavioral effects of formaldehyde and solvents on histology technicians: repeated testing across time. Environ Res. 1992;58:134–46.

    CAS  PubMed  Google Scholar 

  40. Tong Z, Wang W, Luo W, Lv J, Li H, Luo H, et al. Urine formaldehyde predicts cognitive impairment in post-stroke dementia and Alzheimer’s disease. J Alzheimers Dis. 2017;55:1031–8.

    CAS  PubMed  Google Scholar 

  41. Perna RB, Bordini EJ, Deinzer-Lifrak M. A case of claimed persistent neuropsychological sequelae of chronic formaldehyde exposure: clinical, psychometric, and functional findings. Arch Clin Neuropsychol. 2001;16:33–44.

    CAS  PubMed  Google Scholar 

  42. Tong Z, Zhang J, Luo W, Wang W, Li F, Li H, et al. Urine formaldehyde level is inversely correlated to mini mental state examination scores in senile dementia. Neurobiol Aging. 2011;32:31–41.

    CAS  PubMed  Google Scholar 

  43. Tong Z, Han C, Luo W, Wang X, Li H, Luo H, et al. Accumulated hippocampal formaldehyde induces age-dependent memory decline. Age (Dordr). 2013;35:583–96.

    Google Scholar 

  44. Liu X, Zhang Y, Wu R, Ye M, Zhao Y, Kang J, et al. Acute formaldehyde exposure induced early Alzheimer-like changes in mouse brain. Toxicol Mech Methods. 2018;28:95–104.

    CAS  PubMed  Google Scholar 

  45. Tan T, Zhang Y, Luo W, Lv J, Han C, Hamlin JNR, et al. Formaldehyde induces diabetes-associated cognitive impairments. FASEB J. 2018;32:3669–79.

    CAS  PubMed  Google Scholar 

  46. Tong Z, Han C, Luo W, Li H, Luo H, Qiang M, et al. Aging-associated excess formaldehyde leads to spatial memory deficits. Sci Rep. 2013;3:1807.

    PubMed  PubMed Central  Google Scholar 

  47. Gubisne-Haberle D, Hill W, Kazachkov M, Richardson JS, Yu PH. Protein cross-linkage induced by formaldehyde derived from semicarbazide-sensitive amine oxidase-mediated deamination of methylamine. J Pharm Exp Ther. 2004;310:1125–32.

    CAS  Google Scholar 

  48. Wang F, Chen D, Wu P, Klein C, Jin C. Formaldehyde, epigenetics, and Alzheimer’s disease. Chem Res Toxicol. 2019;32:820–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Shindyapina AV, Komarova TV, Sheshukova EV, Ershova NM, Tashlitsky VN, Kurkin AV, et al. The antioxidant cofactor alpha-lipoic acid may control endogenous formaldehyde metabolism in mammals. Front Neurosci. 2017;11:651.

    PubMed  PubMed Central  Google Scholar 

  50. Ai L, Tan T, Tang Y, Yang J, Cui D, Wang R, et al. Endogenous formaldehyde is a memory-related molecule in mice and humans. Commun Biol. 2019;2:446.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Fiandaca MS, Kapogiannis D, Mapstone M, Boxer A, Eitan E, Schwartz JB, et al. Identification of preclinical Alzheimer’s disease by a profile of pathogenic proteins in neurally derived blood exosomes: a case-control study. Alzheimers Dement. 2015;11:600–607 e601.

    PubMed  Google Scholar 

  52. Abd El-Aal SA, Abd El-Fattah MA, El-Abhar HS. CoQ10 augments rosuvastatin neuroprotective effect in a model of global ischemia via inhibition of NF-kappaB/JNK3/Bax and activation of Akt/FOXO3A/Bim cues. Front Pharm. 2017;8:735.

    Google Scholar 

  53. Momiyama Y. Serum coenzyme Q10 levels as a predictor of dementia in a Japanese general population. Atherosclerosis. 2014;237:433–4.

    CAS  PubMed  Google Scholar 

  54. Dumont M, Kipiani K, Yu F, Wille E, Katz M, Calingasan NY, et al. Coenzyme Q10 decreases amyloid pathology and improves behavior in a transgenic mouse model of Alzheimer’s disease. J Alzheimers Dis. 2011;27:211–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Fei X, Yu Y, Di Y, Ai L, Yao D, Bai S, et al. A rapid and non-invasive fluorescence method for quantifying coenzyme Q10 in blood and urine in clinical analysis. J Clin Lab Anal. 2019;34:e23130.

  56. Chang CT, Wu CS, Yang JT. Circular dichroic analysis of protein conformation: inclusion of the beta-turns. Anal Biochem. 1978;91:13–31.

    CAS  PubMed  Google Scholar 

  57. Tjernberg LO, Callaway DJ, Tjernberg A, Hahne S, Lilliehook C, Terenius L, et al. A molecular model of Alzheimer amyloid beta-peptide fibril formation. J Biol Chem. 1999;274:12619–25.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Prof. Lei Liu of Capital Medical University for his comments. This work was supported by the National Natural Science Foundation of China (82071214); the Beijing Natural Science Foundation of China (7172022); the Scientific Research Common Program of Beijing Municipal Commission of Education (KM201510025014); the Major Projects Fund of Beijing Institute for Brain Disorders (ZD2015-08); and the Canadian Institutes of Health Research (CIHR) Project Grant PJT-166127 (to WS). WS was the holder of the Tier 1 Canada Research Chair in Alzheimer’s Disease.

Author information

Authors and Affiliations

Authors

Contributions

WS and ZT conceived and designed the study and supervised all analyses. XF, YZ, YM, XY, WJ, LA, YY, HL, HL, WL, XY, JL and RH performed experiments. WS and ZT analyzed and contributed reagents /materials /analysis tools; XF, YZ, WS and ZT wrote the manuscript. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Weihong Song or Zhiqian Tong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fei, X., Zhang, Y., Mei, Y. et al. Degradation of FA reduces Aβ neurotoxicity and Alzheimer-related phenotypes. Mol Psychiatry 26, 5578–5591 (2021). https://doi.org/10.1038/s41380-020-00929-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41380-020-00929-7

This article is cited by

Search

Quick links