Alzheimer’s disease pathology: pathways between central norepinephrine activity, memory, and neuropsychiatric symptoms


The locus coeruleus (LC) supplies norepinephrine to the brain, is one of the first sites of tau deposition in Alzheimer’s disease (AD) and modulates a variety of behaviors and cognitive functions. Transgenic mouse models showed that norepinephrine dysregulation after LC lesions exacerbates inflammatory responses, blood–brain barrier leakage (BBB), and cognitive deficits. Here, we investigated relationships between central norepinephrine metabolism, tau and beta-amyloid (Aβ), inflammation, BBB-dysfunction, neuropsychiatric problems, and memory in-vivo in a memory clinic population (total n = 111, 60 subjective cognitive decline, 36 mild cognitively impaired, and 19 AD dementia). Cerebrospinal fluid (CSF) and blood samples were collected and analyzed for 3-methoxy-4-hydroxyphenylethyleneglycol (MHPG), CSF/plasma albumin ratio (Q-alb), Aβ, phosphorylated tau, and interleukins. The verbal word learning task and the neuropsychiatric inventory assessed memory functioning and neuropsychiatric symptoms. Structural equation models tested the relationships between all fluid markers, cognition and behavior, corrected for age, education, sex, and clinical dementia rating score. Our results showed that neuropsychiatric symptoms show strong links to both MHPG and p-tau, whereas memory deficits are linked to MHPG via a combination of p-tau and inflammation-driven amyloidosis (30–35% indirect effect contribution). These results suggest that the LC-norepinephrine may be pivotal to understand links between AD pathology and behavioral and cognitive deficits in AD.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3

Data availability

Supplementary information is available at MP’s website. Data used in the current study is available from the corresponding author on reasonable request and in accordance with the EU legislation on the general data protection regulation.


  1. 1.

    Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 1991;82:239–59.

    CAS  Article  Google Scholar 

  2. 2.

    Braak H, Thal DR, Ghebremedhin E, Del Tredici K. Stages of the pathologic process in Alzheimer disease: age categories from 1 to 100 years. J Neuropathol Exp Neurol. 2011;70:960–9.

    CAS  Article  Google Scholar 

  3. 3.

    Jack CR Jr., Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, et al. NIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 2018;14:535–62.

    Article  Google Scholar 

  4. 4.

    Braak H, Del Tredici K. The preclinical phase of the pathological process underlying sporadic Alzheimer’s disease. Brain. 2015;138(Pt 10):2814–33.

    Article  Google Scholar 

  5. 5.

    Braak H, Del Tredici K. The pathological process underlying Alzheimer’s disease in individuals under thirty. Acta Neuropathol. 2011;121:171–81.

    Article  Google Scholar 

  6. 6.

    Braak H, Del Tredici K. Where, when and in what form does sporadic Alzheimer’s disease begin? Curr Opin Neurol. 2012;25:708–14.

    CAS  Article  Google Scholar 

  7. 7.

    German DC, Manaye KF, White CL 3rd, Woodward DJ, McIntire DD, Smith WK, et al. Disease-specific patterns of locus coeruleus cell loss. Ann Neurol. 1992;32:667–76.

    CAS  Article  Google Scholar 

  8. 8.

    Bondareff W, Mountjoy CQ, Roth M. Loss of neurons of origin of the adrenergic projection to cerebral cortex (nucleus locus ceruleus) in senile dementia. Neurology. 1982;32:164–8.

    CAS  Article  Google Scholar 

  9. 9.

    Mann DM. The locus coeruleus and its possible role in ageing and degenerative disease of the human central nervous system. Mech Ageing Dev. 1983;23:73–94.

    CAS  Article  Google Scholar 

  10. 10.

    Matthews KL, Chen CP, Esiri MM, Keene J, Minger SL, Francis PT. Noradrenergic changes, aggressive behavior, and cognition in patients with dementia. Biol Psychiatry. 2002;51:407–16.

    CAS  Article  Google Scholar 

  11. 11.

    Peskind ER, Wingerson D, Murray S, Pascualy M, Dobie DJ, Le Corre P, et al. Effects of Alzheimer’s disease and normal aging on cerebrospinal fluid norepinephrine responses to yohimbine and clonidine. Arch Gen Psychiatry. 1995;52:774–82.

    CAS  Article  Google Scholar 

  12. 12.

    Zubenko GS, Moossy J. Major depression in primary dementia. Clinical and neuropathologic correlates. Arch Neurol. 1988;45:1182–6.

    CAS  Article  Google Scholar 

  13. 13.

    Chalermpalanupap T, Schroeder JP, Rorabaugh JM, Liles LC, Lah JJ, Levey AI, et al. Locus coeruleus ablation exacerbates cognitive deficits, neuropathology, and lethality in P301S tau transgenic mice. J Neurosci. 2018;38:74–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Kong Y, Ruan L, Qian L, Liu X, Le Y. Norepinephrine promotes microglia to uptake and degrade amyloid beta peptide through upregulation of mouse formyl peptide receptor 2 and induction of insulin-degrading enzyme. J Neurosci. 2010;30:11848–57.

    CAS  Article  Google Scholar 

  15. 15.

    Oikawa N, Ogino K, Masumoto T, Yamaguchi H, Yanagisawa K. Gender effect on the accumulation of hyperphosphorylated tau in the brain of locus-ceruleus-injured APP-transgenic mouse. Neurosci Lett. 2010;468:243–7.

    CAS  Article  Google Scholar 

  16. 16.

    Heneka MT, Nadrigny F, Regen T, Martinez-Hernandez A, Dumitrescu-Ozimek L, Terwel D, et al. Locus ceruleus controls Alzheimer’s disease pathology by modulating microglial functions through norepinephrine. Proc Natl Acad Sci USA. 2010;107:6058–63.

    CAS  Article  Google Scholar 

  17. 17.

    Heneka MT, Galea E, Gavriluyk V, Dumitrescu-Ozimek L, Daeschner J, O’Banion MK, et al. Noradrenergic depletion potentiates beta -amyloid-induced cortical inflammation: implications for Alzheimer’s disease. J Neurosci. 2002;22:2434–42.

    CAS  Article  Google Scholar 

  18. 18.

    Mawuenyega KG, Sigurdson W, Ovod V, Munsell L, Kasten T, Morris JC, et al. Decreased clearance of CNS beta-amyloid in Alzheimer’s disease. Science. 2010;330:1774.

    CAS  Article  Google Scholar 

  19. 19.

    Harik SI, McGunigal T Jr. The protective influence of the locus ceruleus on the blood-brain barrier. Ann Neurol. 1984;15:568–74.

    CAS  Article  Google Scholar 

  20. 20.

    Kalinin S, Feinstein DL, Xu HL, Huesa G, Pelligrino DA, Galea E. Degeneration of noradrenergic fibres from the locus coeruleus causes tight-junction disorganisation in the rat brain. Eur J Neurosci. 2006;24:3393–400.

    Article  Google Scholar 

  21. 21.

    Weinshenker D. Long road to ruin: noradrenergic dysfunction in neurodegenerative disease. Trends Neurosci. 2018;41:211–23.

    CAS  Article  Google Scholar 

  22. 22.

    Hoogendijk WJ, Feenstra MG, Botterblom MH, Gilhuis J, Sommer IE, Kamphorst W, et al. Increased activity of surviving locus ceruleus neurons in Alzheimer’s disease. Ann Neurol. 1999;45:82–91.

    CAS  Article  Google Scholar 

  23. 23.

    Raskind MA, Peskind ER, Holmes C, Goldstein DS. Patterns of cerebrospinal fluid catechols support increased central noradrenergic responsiveness in aging and Alzheimer’s disease. Biol Psychiatry. 1999;46:756–65.

    CAS  Article  Google Scholar 

  24. 24.

    Sheline YI, Miller K, Bardgett ME, Csernansky JG. Higher cerebrospinal fluid MHPG in subjects with dementia of the Alzheimer type. Relationship with cognitive dysfunction. Am J Geriatr Psychiatry. 1998;6:155–61.

    CAS  PubMed  Google Scholar 

  25. 25.

    Francis PT, Palmer AM, Sims NR, Bowen DM, Davison AN, Esiri MM, et al. Neurochemical studies of early-onset Alzheimer’s disease. Possible influence on treatment. N Eng J Med. 1985;313:7–11.

    CAS  Article  Google Scholar 

  26. 26.

    Brane G, Gottfries CG, Blennow K, Karlsson I, Lekman A, Parnetti L, et al. Monoamine metabolites in cerebrospinal fluid and behavioral ratings in patients with early and late onset of Alzheimer dementia. Alzheimer Dis Assoc Disord. 1989;3:148–56.

    CAS  Article  Google Scholar 

  27. 27.

    Sara SJ. The locus coeruleus and noradrenergic modulation of cognition. Nat Rev Neurosci. 2009;10:211–23.

    CAS  Article  Google Scholar 

  28. 28.

    Sara SJ, Bouret S. Orienting and reorienting: the locus coeruleus mediates cognition through arousal. Neuron. 2012;76:130–41.

    CAS  Article  Google Scholar 

  29. 29.

    Albert MS, Dekosky ST, Dickson D, Dubois B, Feldman HH, Fox NC, et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7:270–9.

    Article  Google Scholar 

  30. 30.

    McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr., Kawas CH, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7:263–9.

    Article  Google Scholar 

  31. 31.

    Jessen F, Wiese B, Bachmann C, Eifflaender-Gorfer S, Haller F, Kolsch H, et al. Prediction of dementia by subjective memory impairment: effects of severity and temporal association with cognitive impairment. Arch Gen Psychiatry. 2010;67:414–22.

    Article  Google Scholar 

  32. 32.

    de Jong D, Kremer BP, Olde Rikkert MG, Verbeek MM. Current state and future directions of neurochemical biomarkers for Alzheimer’s disease. Clin Chem Lab Med. 2007;45:1421–34.

    PubMed  Google Scholar 

  33. 33.

    Blennow K, Hampel H, Weiner M, Zetterberg H. Cerebrospinal fluid and plasma biomarkers in Alzheimer disease. Nat Rev. Neurol. 2010;6:131–44.

    CAS  Article  Google Scholar 

  34. 34.

    Tijms BM, Bertens D, Slot RE, Gouw AA, Teunissen CE, Scheltens P, et al. Low normal cerebrospinal fluid Abeta42 levels predict clinical progression in nondemented subjects. Ann Neurol. 2017;81:749–53.

    CAS  Article  Google Scholar 

  35. 35.

    Aerts MB, Esselink RA, Claassen JA, Abdo WF, Bloem BR, Verbeek MM. CSF tau, Abeta42, and MHPG differentiate dementia with Lewy bodies from Alzheimer’s disease. J Alzheimers Dis. 2011;27:377–84.

    CAS  Article  Google Scholar 

  36. 36.

    Janelidze S, Hertze J, Nagga K, Nilsson K, Nilsson C, Swedish Bio FSG, et al. Increased blood-brain barrier permeability is associated with dementia and diabetes but not amyloid pathology or APOE genotype. Neurobiol Aging. 2017;51:104–12.

    CAS  Article  Google Scholar 

  37. 37.

    Zlokovic BV. The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron. 2008;57:178–201.

    CAS  Article  Google Scholar 

  38. 38.

    Morris JC. The clinical dementia rating (CDR): current version and scoring rules. Neurology. 1993;43:2412–4.

    CAS  Article  Google Scholar 

  39. 39.

    Cummings JL. The neuropsychiatric inventory: assessing psychopathology in dementia patients. Neurology. 1997;48(5Suppl 6):S10–16.

    CAS  Article  Google Scholar 

  40. 40.

    Van der Elst W, van Boxtel MPJ, van Breukelen GJP, Jolles J. Normative data for the animal, profession and letter M naming verbal fluency tests for Dutch speaking participants and the effects of age, education and sex. J Int Neuropsychol Soc. 2006;12:80–9.

    Article  Google Scholar 

  41. 41.

    Van der Elst W, van Boxtel MPJ, van Breukelen GJP, Jolles J. The Letter Digit Substitution Test: normative data for 1,858 healthy participants aged 24-81 from the Maastricht Aging Study (MAAS): influence of age, education, and sex. J Clin Exp Neuropsychol. 2006;28:998–1009.

    Article  Google Scholar 

  42. 42.

    Van der Elst W, van Boxtel MPJ, van Breukelen GJP, Jolles J. Rey’s verbal learning test: normative data for 1855 healthy participants aged 24–81 years and the influence of age, sex, education, and mode of presentation. J Int Neuropsychol Soc. 2005;11:290–302.

    Article  Google Scholar 

  43. 43.

    Jacobs HI, Leritz EC, Williams VJ, Van Boxtel MP, Van der Elst W, Jolles J, et al. Association between white matter microstructure and cognition in older adults: the impact of vascular health. Hum Brain Mapp. 2013;34:77–95.

    Article  Google Scholar 

  44. 44.

    Bentler PM. Comparative fit indexes in structural models. Psychol Bull. 1990;107:238–46.

    CAS  Article  Google Scholar 

  45. 45.

    Browne MW, Cudeck R Alternative ways of assessing model fit. In: Bollen KA, Long JS, editors. Testing structural equation models. Newbury Park, CA: Sage; 1993, p. 136–62.

  46. 46.

    Lawlor BA, Bierer LM, Ryan TM, Schmeidler J, Knott PJ, Williams LL, et al. Plasma 3-methoxy-4-hydroxyphenylglycol (MHPG) and clinical symptoms in Alzheimer’s disease. Biol Psychiatry. 1995;38:185–8.

    CAS  Article  Google Scholar 

  47. 47.

    Raskind MA, Peskind ER, Halter JB, Jimerson DC. Norepinephrine and MHPG levels in CSF and plasma in Alzheimer’s disease. Arch Gen Psychiatry. 1984;41:343–6.

    CAS  Article  Google Scholar 

  48. 48.

    Martignoni E, Bono G, Blandini F, Sinforiani E, Merlo P, Nappi G. Monoamines and related metabolite levels in the cerebrospinal fluid of patients with dementia of Alzheimer type. Influence of treatment with L-deprenyl. J Neural Transm Park Dis Dement Sect. 1991;3:15–25.

    CAS  Article  Google Scholar 

  49. 49.

    Nakamura S, Sakaguchi T. Development and plasticity of the locus coeruleus: a review of recent physiological and pharmacological experimentation. Prog Neurobiol. 1990;34:505–26.

    CAS  Article  Google Scholar 

  50. 50.

    Friedman JI, Adler DN, Davis KL. The role of norepinephrine in the pathophysiology of cognitive disorders: potential applications to the treatment of cognitive dysfunction in schizophrenia and Alzheimer’s disease. Biol Psychiatry. 1999;46:1243–52.

    CAS  Article  Google Scholar 

  51. 51.

    Koppel J, Jimenez H, Adrien L, HC E, Malhotra AK, Davies P. Increased tau phosphorylation follows impeded dopamine clearance in a P301L and novel P301L/COMT-deleted (DM) tau mouse model. J Neurochem. 2019;148:127–35.

    CAS  Article  Google Scholar 

  52. 52.

    Sara SJ. Noradrenergic modulation of selective attention: its role in memory retrieval. Ann N Y Acad Sci. 1985;444:178–93.

    CAS  Article  Google Scholar 

  53. 53.

    Higley JD, Suomi SJ, Linnoila M. CSF monoamine metabolite concentrations vary according to age, rearing, and sex, and are influenced by the stressor of social separation in rhesus monkeys. Psychopharmacology. 1991;103:551–6.

    CAS  Article  Google Scholar 

  54. 54.

    Vermeiren Y, Van Dam D, Aerts T, Engelborghs S, De Deyn PP. Monoaminergic neurotransmitter alterations in postmortem brain regions of depressed and aggressive patients with Alzheimer’s disease. Neurobiol Aging. 2014;35:2691–700.

    CAS  Article  Google Scholar 

  55. 55.

    Vermeiren Y, Van Dam D, Aerts T, Engelborghs S, De Deyn PP. Brain region-specific monoaminergic correlates of neuropsychiatric symptoms in Alzheimer’s disease. J Alzheimers Dis. 2014;41:819–33.

    CAS  Article  Google Scholar 

  56. 56.

    Koppel J, Acker C, Davies P, Lopez OL, Jimenez H, Azose M, et al. Psychotic Alzheimer’s disease is associated with gender-specific tau phosphorylation abnormalities. Neurobiol Aging. 2014;35:2021–8.

    CAS  Article  Google Scholar 

  57. 57.

    Ehrenberg AJ, Suemoto CK, Franca Resende EP, Petersen C, Leite REP, Rodriguez RD, et al. Neuropathologic correlates of psychiatric symptoms in Alzheimer’s disease. J Alzheimers Dis. 2018;66:115–26.

    CAS  Article  Google Scholar 

  58. 58.

    Nyback H, Nyman H, Schalling D. Neuropsychological test performance and CSF levels of monoamine metabolites in healthy volunteers and patients with Alzheimer’s dementia. Acta Psychiatr Scand. 1987;76:648–56.

    CAS  Article  Google Scholar 

  59. 59.

    Kelly SC, He B, Perez SE, Ginsberg SD, Mufson EJ, Counts SE. Locus coeruleus cellular and molecular pathology during the progression of Alzheimer’s disease. Acta Neuropathol Commun. 2017;5:8.

    Article  Google Scholar 

  60. 60.

    Wilson RS, Nag S, Boyle PA, Hizel LP, Yu L, Buchman AS, et al. Neural reserve, neuronal density in the locus ceruleus, and cognitive decline. Neurology. 2013;80:1202–8.

    Article  Google Scholar 

  61. 61.

    Jacobs HIL, Hedden T, Schultz AP, Sepulcre J, Perea RD, Amariglio RE, et al. Structural tract alterations predict downstream tau accumulation in amyloid-positive older individuals. Nat Neurosci. 2018;21:424–31.

    CAS  Article  Google Scholar 

  62. 62.

    Feinstein DL, Heneka MT, Gavrilyuk V, Dello Russo C, Weinberg G, Galea E. Noradrenergic regulation of inflammatory gene expression in brain. Neurochem Int. 2002;41:357–65.

    CAS  Article  Google Scholar 

  63. 63.

    Kalinin S, Polak PE, Lin SX, Sakharkar AJ, Pandey SC, Feinstein DL. The noradrenaline precursor L-DOPS reduces pathology in a mouse model of Alzheimer’s disease. Neurobiol Aging. 2012;33:1651–63.

    CAS  Article  Google Scholar 

  64. 64.

    Braun D, Madrigal JL, Feinstein DL. Noradrenergic regulation of glial activation: molecular mechanisms and therapeutic implications. Current neuropharmacology. 2014;12:342–52.

    CAS  Article  Google Scholar 

  65. 65.

    Feinstein DL, Kalinin S, Braun D. Causes, consequences, and cures for neuroinflammation mediated via the locus coeruleus: noradrenergic signaling system. J Neurochem. 2016;139(Suppl 2):154–78.

    CAS  Article  Google Scholar 

  66. 66.

    Wyss-Coray T. Inflammation in Alzheimer disease: driving force, bystander or beneficial response? Nat. Med. 2006;12:1005–15.

    CAS  PubMed  Google Scholar 

  67. 67.

    Hardebo JE, Owman C. Barrier mechanisms for neurotransmitter monoamines and their precursors at the blood-brain interface. Ann Neurol. 1980;8:1–31.

    CAS  Article  Google Scholar 

  68. 68.

    Wu JW, Hussaini SA, Bastille IM, Rodriguez GA, Mrejeru A, Rilett K, et al. Neuronal activity enhances tau propagation and tau pathology in vivo. Nat Neurosci. 2016;19:1085–92.

    CAS  Article  Google Scholar 

  69. 69.

    Zetterberg H. Cerebrospinal fluid biomarkers for Alzheimer’s disease: current limitations and recent developments. Curr Opin Psychiatry. 2015;28:402–9.

    Article  Google Scholar 

  70. 70.

    Knudsen K, Fedorova TD, Hansen AK, Sommerauer M, Otto M, Svendsen KB, et al. In-vivo staging of pathology in REM sleep behaviour disorder: a multimodality imaging case-control study. Lancet Neurol. 2018;17:618–28.

    Article  Google Scholar 

  71. 71.

    Priovoulos N, Jacobs HIL, Ivanov D, Uludag K, Verhey FRJ, Poser BA. High-resolution in vivo imaging of human locus coeruleus by magnetization transfer MRI at 3T and 7T. Neuroimage. 2018;168:427–36.

    Article  Google Scholar 

  72. 72.

    Bangasser DA, Wiersielis KR, Khantsis S. Sex differences in the locus coeruleus-norepinephrine system and its regulation by stress. Brain Res. 2016;1641(Pt B):177–88.

    CAS  Article  Google Scholar 

  73. 73.

    Blennow K, Wallin A, Gottfries CG, Karlsson I, Mansson JE, Skoog I, et al. Cerebrospinal fluid monoamine metabolites in 114 healthy individuals 18-88 years of age. Eur Neuropsychopharmacol. 1993;3:55–61.

    CAS  Article  Google Scholar 

  74. 74.

    Mine K, Okada M, Mishima N, Fujiwara M, Nakagawa T. Plasma-free and sulfoconjugated MHPG in major depressive disorders: differences between responders to treatment and nonresponders. Biol Psychiatry. 1993;34:654–60.

    CAS  Article  Google Scholar 

Download references


This work is supported by a standard grant of Alzheimer Nederland [#15007]. We are grateful to Linda Pagen M.Sc and Ron Mengelers for their assistance in obtaining the clinical data.

Author information



Corresponding author

Correspondence to Heidi I. L. Jacobs.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jacobs, H.I.L., Riphagen, J.M., Ramakers, I.H.G.B. et al. Alzheimer’s disease pathology: pathways between central norepinephrine activity, memory, and neuropsychiatric symptoms. Mol Psychiatry (2019).

Download citation

Further reading