Chronic peer victimization has long-term impacts on mental health; however, the biological mediators of this adverse relationship are unknown. We sought to determine whether adolescent brain development is involved in mediating the effect of peer victimization on psychopathology. We included participants (n = 682) from the longitudinal IMAGEN study with both peer victimization and neuroimaging data. Latent profile analysis identified groups of adolescents with different experiential patterns of victimization. We then associated the victimization trajectories and brain volume changes with depression, generalized anxiety, and hyperactivity symptoms at age 19. Repeated measures ANOVA revealed time-by-victimization interactions on left putamen volume (F = 4.38, p = 0.037). Changes in left putamen volume were negatively associated with generalized anxiety (t = −2.32, p = 0.020). Notably, peer victimization was indirectly associated with generalized anxiety via decreases in putamen volume (95% CI = 0.004–0.109). This was also true for the left caudate (95% CI = 0.002–0.099). These data suggest that the experience of chronic peer victimization during adolescence might induce psychopathology-relevant deviations from normative brain development. Early peer victimization interventions could prevent such pathological changes.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Members of the IMAGEN Consortium are listed below the Acknowledgements.


  1. 1.

    Fuhrmann D, Knoll LJ, Blakemore SJ. Adolescence as a sensitive period of brain development. Trends Cogn Sci. 2015;19:558–66.

  2. 2.

    Paus T, Keshavan M, Giedd JN. Why do many psychiatric disorders emerge during adolescence? Nat Rev Neurosci. 2008;9:947–57.

  3. 3.

    Juvonen JGS. Peer harassment in school: the plight of the vulnerable and victimized. Guilford Press; 2001.

  4. 4.

    Hunter SC, Boyle JM, Warden D. Perceptions and correlates of peer-victimization and bullying. Br J Educ Psychol. 2007;77(Pt 4):797–810.

  5. 5.

    Sumter SR, Baumgartner SE, Valkenburg PM, Peter J. Developmental trajectories of peer victimization: off-line and online experiences during adolescence. J Adolesc Health. 2012;50:607–13.

  6. 6.

    Pellegrini A, Long J. A longitudinal study of bullying, dominances, and victimization during the transition from primary school through secondary school. Br J Dev Psychol. 2002;20:259–80.

  7. 7.

    Barker ED, Arseneault L, Brendgen M, Fontaine N, Maughan B. Joint development of bullying and victimization in adolescence: relations to delinquency and self-harm. J Am Acad Child Adolesc Psychiatry. 2008;47:1030–8.

  8. 8.

    Sourander A, Helstela L, Helenius H, Piha J. Persistence of bullying from childhood to adolescence--a longitudinal 8-year follow-up study. Child Abus Negl. 2000;24:873–81.

  9. 9.

    Takizawa R, Maughan B, Arseneault L. Adult health outcomes of childhood bullying victimization: evidence from a five-decade longitudinal British birth cohort. Am J Psychiatry. 2014;171:777–84.

  10. 10.

    Arseneault L, Bowes L, Shakoor S. Bullying victimization in youths and mental health problems: ‘much ado about nothing’? Psychol Med. 2010;40:717–29.

  11. 11.

    Gladstone GL, Parker GB, Malhi GS. Do bullied children become anxious and depressed adults? A cross-sectional investigation of the correlates of bullying and anxious depression. J Nerv Ment Dis. 2006;194:201–8.

  12. 12.

    Stapinski LA, Bowes L, Wolke D, Pearson RM, Mahedy L, Button KS, et al. Peer victimization during adolescence and risk for anxiety disorders in adulthood: a prospective cohort study. Depress Anxiety. 2014;31:574–82.

  13. 13.

    Lereya ST, Copeland WE, Costello EJ, Wolke D. Adult mental health consequences of peer bullying and maltreatment in childhood: two cohorts in two countries. Lancet Psychiatry. 2015;2:524–31.

  14. 14.

    Evans-Lacko S, Takizawa R, Brimblecombe N, King D, Knapp M, Maughan B, et al. Childhood bullying victimization is associated with use of mental health services over five decades: a longitudinal nationally representative cohort study. Psychol Med. 2017;47:127–35.

  15. 15.

    Singham T, Viding E, Schoeler T, Arseneault L, Ronald A, Cecil CM, et al. Concurrent and longitudinal contribution of exposure to bullying in childhood to mental health: the role of vulnerability and resilience. JAMA Psychiatry. 2017;74:1112–9.

  16. 16.

    Schaefer J, Moffitt T, Arseneault L, Danese A, Fisher HL, Houts R, et al. Adolescent victimization and early-adult psychopathology: approaching causal inference using a longitudinal twin study to rule out noncausal explanations. Clin Psychol Sci. 2017. 2018 May; 6:352–371.

  17. 17.

    van Harmelen AL, van Tol MJ, van der Wee NJ, Veltman DJ, Aleman A, Spinhoven P, et al. Reduced medial prefrontal cortex volume in adults reporting childhood emotional maltreatment. Biol Psychiatry. 2010;68:832–8.

  18. 18.

    Teicher MH, Anderson CM, Polcari A. Childhood maltreatment is associated with reduced volume in the hippocampal subfields CA3, dentate gyrus, and subiculum. Proc Natl Acad Sci USA. 2012;109:E563–72.

  19. 19.

    Lim L, Radua J, Rubia K. Gray matter abnormalities in childhood maltreatment: a voxel-wise meta-analysis. Am J Psychiatry. 2014;171:854–63.

  20. 20.

    Dannlowski U, Stuhrmann A, Beutelmann V, Zwanzger P, Lenzen T, Grotegerd D, et al. Limbic scars: long-term consequences of childhood maltreatment revealed by functional and structural magnetic resonance imaging. Biol Psychiatry. 2012;71:286–93.

  21. 21.

    Cohen RA, Grieve S, Hoth KF, Paul RH, Sweet L, Tate D, et al. Early life stress and morphometry of the adult anterior cingulate cortex and caudate nuclei. Biol Psychiatry. 2006;59:975–82.

  22. 22.

    Berking M, Wupperman P. Emotion regulation and mental health: recent findings, current challenges, and future directions. Curr Opin Psychiatry. 2012;25:128–34.

  23. 23.

    Cardinal RN, Winstanley CA, Robbins TW, Everitt BJ. Limbic corticostriatal systems and delayed reinforcement. Ann N Y Acad Sci. 2004;1021:33–50.

  24. 24.

    Kalivas PW, Volkow ND. The neural basis of addiction: a pathology of motivation and choice. Am J Psychiatry. 2005;162:1403–13.

  25. 25.

    Andersen SL, Teicher MH. Stress, sensitive periods and maturational events in adolescent depression. Trends Neurosci. 2008;31:183–91.

  26. 26.

    Gogtay N, Giedd JN, Lusk L, Hayashi KM, Greenstein D, Vaituzis AC, et al. Dynamic mapping of human cortical development during childhood through early adulthood. Proc Natl Acad Sci USA. 2004;101:8174–9.

  27. 27.

    Schumann G, Loth E, Banaschewski T, Barbot A, Barker G, Buchel C, et al. The IMAGEN study: reinforcement-related behaviour in normal brain function and psychopathology. Mol Psychiatry. 2010;15:1128–39.

  28. 28.

    Olweus D. The revised Olweus Bully/Victim Questionnaire for students. Bergen, Norway: Res. Cent. Health Promot. (HEMIL), Univ. Bergen; 1996.

  29. 29.

    Goodman R, Ford T, Richards H, Gatward R, Meltzer H. The Development and Well-Being Assessment: description and initial validation of an integrated assessment of child and adolescent psychopathology. J Child Psychol Psychiatry. 2000;41:645–55.

  30. 30.

    Goodman A, Heiervang E, Collishaw S, Goodman R. The ‘DAWBA bands’ as an ordered-categorical measure of child mental health: description and validation in British and Norwegian samples. Soc Psychiatry Psychiatr Epidemiol. 2011;46:521–32.

  31. 31.

    Goodman R. The Strengths and Difficulties Questionnaire: a research note. J Child Psychol Psychiatry. 1997;38:581–6.

  32. 32.

    Bernstein DP, Ahluvalia T, Pogge D, Handelsman L. Validity of the Childhood Trauma Questionnaire in an adolescent psychiatric population. J Am Acad Child Adolesc Psychiatry. 1997;36:340–8.

  33. 33.

    Newcomb MD, Huba GJ, Bentler PM. A multidimensional assessment of stressful life events among adolescents. J Health Soc Behav. 1981;22:400–15.

  34. 34.

    Quinlan EB, Cattrell A, Jia T, Artiges E, Banaschewski T, Barker G, et al. Psychosocial stress and brain function in adolescent psychopathology. Am J Psychiatry. 2017;174:785–94.

  35. 35.

    Edmiston EE, Wang F, Mazure CM, Guiney J, Sinha R, Mayes LC, et al. Corticostriatal-limbic gray matter morphology in adolescents with self-reported exposure to childhood maltreatment. Arch Pediatr Adolesc Med. 2011;165:1069–77.

  36. 36.

    Hart H, Rubia K. Neuroimaging of child abuse: a critical review. Front Hum Neurosci. 2012;6:52.

  37. 37.

    Saleh A, Potter GG, McQuoid DR, Boyd B, Turner R, MacFall JR, et al. Effects of early life stress on depression, cognitive performance and brain morphology. Psychol Med. 2017;47:171–81.

  38. 38.

    Baker LM, Williams LM, Korgaonkar MS, Cohen RA, Heaps JM, Paul RH. Impact of early vs. late childhood early life stress on brain morphometrics. Brain Imaging Behav. 2013;7:196–203.

  39. 39.

    Price RB, Kuckertz JM, Siegle GJ, Ladouceur CD, Silk JS, Ryan ND, et al. Empirical recommendations for improving the stability of the dot-probe task in clinical research. Psychol Assess. 2015;27:365–76.

  40. 40.

    Shete S, Beasley TM, Etzel CJ, Fernandez JR, Chen J, Allison DB, et al. Effect of winsorization on power and type 1 error of variance components and related methods of QTL detection. Behav Genet. 2004;34:153–9.

  41. 41.

    Petersen AC, Crockett L, Richards M, Boxer A. A self-report measure of pubertal status: reliability, validity, and initial norms. J Youth Adolesc. 1988;17:117–33.

  42. 42.

    Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc B Met. 1995;57:289–300.

  43. 43.

    Lenroot RK, Gogtay N, Greenstein DK, Wells EM, Wallace GL, Clasen LS, et al. Sexual dimorphism of brain developmental trajectories during childhood and adolescence. Neuroimage. 2007;36:1065–73.

  44. 44.

    Teicher MH, Andersen SL, Hostetter JC Jr. Evidence for dopamine receptor pruning between adolescence and adulthood in striatum but not nucleus accumbens. Brain Res Dev Brain Res. 1995;89:167–72.

  45. 45.

    Sowell ER, Thompson PM, Holmes CJ, Jernigan TL, Toga AW. In vivo evidence for post-adolescent brain maturation in frontal and striatal regions. Nat Neurosci. 1999;2:859–61.

  46. 46.

    Lenroot RK, Giedd JN. Brain development in children and adolescents: insights from anatomical magnetic resonance imaging. Neurosci Biobehav Rev. 2006;30:718–29.

  47. 47.

    Liao M, Yang F, Zhang Y, He Z, Song M, Jiang T, et al. Childhood maltreatment is associated with larger left thalamic gray matter volume in adolescents with generalized anxiety disorder. PLoS ONE. 2013;8:e71898.

  48. 48.

    De Brito SA, Viding E, Sebastian CL, Kelly PA, Mechelli A, Maris H, et al. Reduced orbitofrontal and temporal grey matter in a community sample of maltreated children. J Child Psychol Psychiatry. 2013;54:105–12.

  49. 49.

    Barker ED, Boivin M, Brendgen M, Fontaine N, Arseneault L, Vitaro F, et al. Predictive validity and early predictors of peer-victimization trajectories in preschool. Arch Gen Psychiatry. 2008;65:1185–92.

  50. 50.

    Crick NR, Casas JF, Ku HC. Relational and physical forms of peer victimization in preschool. Dev Psychol. 1999;35:376–85.

  51. 51.

    Sheppard CS, Giletta M, Prinstein MJ. Peer victimization trajectories at the adolescent transition: associations among chronic victimization, peer-reported status, and adjustment. J Clin Child Adolesc Psychol. 2016;1–10.

  52. 52.

    Geoffroy MC, Boivin M, Arseneault L, Renaud J, Perret LC, Turecki G, et al. Childhood trajectories of peer victimization and prediction of mental health outcomes in midadolescence: a longitudinal population-based study. CMAJ. 2018;190:E37–43.

  53. 53.

    Ladd GW, Etteka I, Kochenderfer-Ladd B. Peer victimization trajectories from kindergarten through high school: differential pathways for children’s school engagement and achievement? J Educ Psychol. 2017;109:826–41.

  54. 54.

    Rosen LH, Beron KJ, Underwood MK. Social victimization trajectories from middle childhood through late adolescence. Soc Dev. 2017;26:227–47.

  55. 55.

    Lago T, Davis A, Grillon C, Ernst M. Striatum on the anxiety map: small detours into adolescence. Brain Res. 2017;1654(Pt B):177–84.

  56. 56.

    Haber SN. Corticostriatal circuitry. Dialogues Clin Neurosci. 2016;18:7–21.

  57. 57.

    Perez-Edgar K, Hardee JE, Guyer AE, Benson BE, Nelson EE, Gorodetsky E, et al. DRD4 and striatal modulation of the link between childhood behavioral inhibition and adolescent anxiety. Soc Cogn Affect Neurosci. 2014;9:445–53.

  58. 58.

    Guyer AE, Choate VR, Detloff A, Benson B, Nelson EE, Perez-Edgar K, et al. Striatal functional alteration during incentive anticipation in pediatric anxiety disorders. Am J Psychiatry. 2012;169:205–12.

  59. 59.

    Wang X, Li J, Yuan Y, Wang M, Ding J, Zhang J, et al. Altered putamen functional connectivity is associated with anxiety disorder in Parkinson’s disease. Oncotarget. 2017;8:81377–86.

  60. 60.

    Liu WJ, Yin DZ, Cheng WH, Fan MX, You MN, Men WW, et al. Abnormal functional connectivity of the amygdala-based network in resting-state FMRI in adolescents with generalized anxiety disorder. Med Sci Monit. 2015;21:459–67.

  61. 61.

    Qiao J, Li A, Cao C, Wang Z, Sun J, Xu G. Aberrant functional network connectivity as a biomarker of generalized anxiety disorder. Front Hum Neurosci. 2017;11:626.

  62. 62.

    Kelly PA, Viding E, Puetz VB, Palmer AL, Mechelli A, Pingault JB, et al. Sex differences in socioemotional functioning, attentional bias, and gray matter volume in maltreated children: a multilevel investigation. Dev Psychopathol. 2015;27(4 Pt 2):1591–609.

  63. 63.

    Busso DS, McLaughlin KA, Brueck S, Peverill M, Gold AL, Sheridan MA. Child abuse, neural structure, and adolescent psychopathology: a longitudinal study. J Am Acad Child Adolesc Psychiatry. 2017;56:321–8.e1.

  64. 64.

    Teicher MH, Samson JA, Anderson CM, Ohashi K. The effects of childhood maltreatment on brain structure, function and connectivity. Nat Rev Neurosci. 2016;17:652–66.

  65. 65.

    Brain Development Cooperative Group. Total and regional brain volumes in a population-based normative sample from 4 to 18 years: the NIH MRI study of normal brain development. Cereb Cortex. 2012;22:1–12.

  66. 66.

    Herting MM, Sowell ER. Puberty and structural brain development in humans. Front Neuroendocrinol. 2017;44:122–37.

Download references


This work received support from the following sources: the European Union-funded FP6 Integrated Project IMAGEN (Reinforcement-related behavior in normal brain function and psychopathology) (LSHM-CT- 2007-037286), the Horizon 2020 funded ERC Advanced Grant “STRATIFY” (Brain network based stratification of reinforcement-related disorders) (695313), ERANID (Understanding the Interplay between Cultural, Biological and Subjective Factors in Drug Use Pathways) (PR-ST-0416-10004), BRIDGET (JPND: BRain Imaging, cognition Dementia and next generation GEnomics) (MR/N027558/1), the FP7 projects IMAGEMEND (602450; IMAging GEnetics for MENtal Disorders) and MATRICS (603016), the Innovative Medicine Initiative Project EU-AIMS (115300-2), the Medical Research Council Grant “c-VEDA” (Consortium on Vulnerability to Externalizing Disorders and Addictions) (MR/N000390/1), the Swedish Research Council FORMAS, the Medical Research Council, the National Institute for Health Research (NIHR) Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King’s College London, the Bundesministeriumfür Bildung und Forschung (BMBF grants 01GS08152; 01EV0711; eMED SysAlc01ZX1311A; Forschungsnetz AERIAL 01EE1406A), the Deutsche Forschungsgemeinschaft (DFG grants SM 80/7-1, SM 80/7-2, SFB 940/1). Further support was provided by grants from: ANR (project AF12-NEUR0008-01-WM2NA, and ANR-12-SAMA-0004), the Fondation de France, the Fondation pour la Recherche Médicale, the Mission Interministérielle de Lutte-contre-les-Drogues-et-les-Conduites-Addictives (MILDECA), the Assistance-Publique-Hôpitaux-de-Paris and INSERM (interface grant), Paris Sud University IDEX 2012; the National Institutes of Health, Science Foundation Ireland (16/ERCD/3797), U.S.A. (Axon, Testosterone and Mental Health during Adolescence; RO1 MH085772-01A1), and by NIH Consortium grant U54 EB020403, supported by a cross-NIH alliance that funds Big Data to Knowledge Centres of Excellence.

Other IMAGEN Consortium members

Pausova Z., Mann K., Barker G.J., Lawrence C., Rietschel M., Robbins T.W., Williams S., Nymberg C., Topper L., Smith L., Havatzias S., Stueber K., Mallik C., Clarke T.K., Stacey D., Peng Wong C., Werts H., Williams S., Andrew C., Häke I., Ivanov N., Klär A., Reuter J., Palafox C., Hohmann C., Lüdemann K., Romanowski A., Ströhle A., Wolff E., Rapp M., Ihlenfeld A., Walaszek B., Schubert F., Connolly C., Jones J., Lalor E., McCabe E., NíShiothcháin A., Spanagel R., Sommer W., Steiner S., Buehler M., Stolzenburg E., Schmal C., Schirmbeck F., Heym N., Newman C., Huebner T., Ripke S., Mennigen E., Muller K., Ziesch V., Lueken L., Yacubian J., Finsterbusch J., Bordas N., Bricaud Z., Galinowski A., Gourlan C., Schwartz Y., Lalanne C., Barbot A., Thyreau B., Subramaniam N., Theobald D., Richmond N., de Rover M., Molander A., Jordan E., Robinson E., Hipolata L., Moreno M., Arroyo M., Stephens D., Ripley T., Crombag H., Lathrop M., Lanzerath D., Heinrichs B., Spranger T., Resch F., Haffner J., Parzer P., Brunner R., Constant P., Mignon X., Thomsen T., Vestboe A., Ireland J., Rogers J.

Author information


  1. Medical Research Council - Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK

    • Erin Burke Quinlan
    • , Sylvane Desrivières
    •  & Gunter Schumann
  2. Department of Psychology, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, UK

    • Edward D. Barker
  3. Institute of Science and Technology for Brain-Inspired Intelligence (ISTBI), Fudan University, Shanghai, China

    • Qiang Luo
  4. Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China

    • Qiang Luo
  5. Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159, Mannheim, Germany

    • Tobias Banaschewski
    • , Frauke Nees
    •  & Sarah Hohmann
  6. Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland

    • Arun L. W. Bokde
  7. University Medical Centre Hamburg-Eppendorf, House W34, 3.OG, Martini Street 52, 20246, Hamburg, Germany

    • Uli Bromberg
    •  & Christian Büchel
  8. Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, Mannheim, Germany

    • Herta Flor
    •  & Frauke Nees
  9. Department of Psychology, School of Social Sciences, University of Mannheim, 68131, Mannheim, Germany

    • Herta Flor
  10. NeuroSpin, CEA, Université Paris-Saclay, 91191, Paris, France

    • Vincent Frouin
    •  & Dimitri Papadopoulos Orfanos
  11. Departments of Psychiatry and Psychology, University of Vermont, Burlington, VT, 05405, USA

    • Hugh Garavan
    •  & Bader Chaarani
  12. Sir Peter Mansfield Imaging Centre School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, UK

    • Penny Gowland
  13. Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité, Universitätsmedizin Berlin, Charitéplatz 1, Berlin, Germany

    • Andreas Heinz
    •  & Henrik Walter
  14. Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany

    • Rüdiger Brühl
  15. Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1000 “Neuroimaging & Psychiatry”, University Paris Sud, University Paris Descartes, Paris, France

    • Jean-Luc Martinot
  16. Maison de Solenn, Paris, France

    • Marie-Laure Paillère Martinot
  17. Pitié-Salpêtrière Hospital, Paris, France

    • Marie-Laure Paillère Martinot
  18. Rotman Research Institute, Baycrest, Toronto, ON, M6A 2E1, Canada

    • Tomáš Paus
  19. Departments of Psychology and Psychiatry, University of Toronto, Toronto, ON, Canada

    • Tomáš Paus
  20. Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Centre Göttingen, von-Siebold Street 5, 37075, Göttingen, Germany

    • Luise Poustka
  21. Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany

    • Michael N. Smolka
    •  & Juliane H. Fröhner
  22. School of Psychology and Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland

    • Robert Whelan


  1. Search for Erin Burke Quinlan in:

  2. Search for Edward D. Barker in:

  3. Search for Qiang Luo in:

  4. Search for Tobias Banaschewski in:

  5. Search for Arun L. W. Bokde in:

  6. Search for Uli Bromberg in:

  7. Search for Christian Büchel in:

  8. Search for Sylvane Desrivières in:

  9. Search for Herta Flor in:

  10. Search for Vincent Frouin in:

  11. Search for Hugh Garavan in:

  12. Search for Bader Chaarani in:

  13. Search for Penny Gowland in:

  14. Search for Andreas Heinz in:

  15. Search for Rüdiger Brühl in:

  16. Search for Jean-Luc Martinot in:

  17. Search for Marie-Laure Paillère Martinot in:

  18. Search for Frauke Nees in:

  19. Search for Dimitri Papadopoulos Orfanos in:

  20. Search for Tomáš Paus in:

  21. Search for Luise Poustka in:

  22. Search for Sarah Hohmann in:

  23. Search for Michael N. Smolka in:

  24. Search for Juliane H. Fröhner in:

  25. Search for Henrik Walter in:

  26. Search for Robert Whelan in:

  27. Search for Gunter Schumann in:


  1. IMAGEN Consortium

    Conflict of interest

    T.B. has served as an advisor or consultant to Bristol-Myers Squibb, Desitin Arzneimittel, Eli Lilly, Medice, Novartis, Pfizer, Shire, UCB, and Vifor Pharma; he has received conference attendance support, conference support, or speaking fees from Eli Lilly, Janssen McNeil, Medice, Novartis, Shire, and UCB; and he is involved in clinical trials conducted by Eli Lilly, Novartis, and Shire; the present work is unrelated to these relationships. E.D.B. has received funding for a PhD student and honoraria for teaching on scanner programming courses from General Electric Healthcare; he acts as a consultant for IXICO. H.W. received a speaker honorarium from Servier (2014). The remaining authors declare that they have no conflict of interest.

    Corresponding author

    Correspondence to Erin Burke Quinlan.

    Electronic supplementary material

    About this article

    Publication history