DNA methylation profiling reliably distinguishes pulmonary enteric adenocarcinoma from metastatic colorectal cancer

Abstract

Pulmonary enteric adenocarcinoma is a rare non-small cell lung cancer subtype. It is poorly characterized and cannot be distinguished from metastatic colorectal or upper gastrointestinal adenocarcinomas by means of routine pathological methods. As DNA methylation patterns are known to be highly tissue specific, we aimed to develop a methylation-based algorithm to differentiate these entities. To this end, genome-wide methylation profiles of 600 primary pulmonary, colorectal, and upper gastrointestinal adenocarcinomas obtained from The Cancer Genome Atlas and the Gene Expression Omnibus database were used as a reference cohort to train a machine learning algorithm. The resulting classifier correctly classified all samples from a validation cohort consisting of 680 primary pulmonary, colorectal and upper gastrointestinal adenocarcinomas, demonstrating the ability of the algorithm to reliably distinguish these three entities. We then analyzed methylation data of 15 pulmonary enteric adenocarcinomas as well as four pulmonary metastases and four primary colorectal adenocarcinomas with the algorithm. All 15 pulmonary enteric adenocarcinomas were reliably classified as primary pulmonary tumors and all four metastases as well as all four primary colorectal cancer samples were identified as colorectal adenocarcinomas. In a t-distributed stochastic neighbor embedding analysis, the pulmonary enteric adenocarcinoma samples did not form a separate methylation subclass but rather diffusely intermixed with other pulmonary cancers. Additional characterization of the pulmonary enteric adenocarcinoma series using fluorescence in situ hybridization, next-generation sequencing and copy number analysis revealed KRAS mutations in nine of 15 samples (60%) and a high number of structural chromosomal changes. Except for an unusually high rate of chromosome 20 gain (67%), the molecular data was mostly reminiscent of standard pulmonary adenocarcinomas. In conclusion, we provide sound evidence of the pulmonary origin of pulmonary enteric adenocarcinomas and in addition provide a publicly available machine learning-based algorithm to reliably distinguish these tumors from metastatic colorectal cancer.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Tot T. Cytokeratins 20 and 7 as biomarkers: usefulness in discriminating primary from metastatic adenocarcinoma. Eur J Cancer. 2002;38:758–63.

  2. 2.

    Tsao M, Fraser R. Primary pulmonary adenocarcinoma with enteric differentiation. Cancer. 1991;68:1754–7.

  3. 3.

    Wang CX, Liu B, Wang YF, Zhang RS, Yu B, Lu ZF, et al. Pulmonary enteric adenocarcinoma: a study of the clinicopathologic and molecular status of nine cases. Int J Clin Exp Pathol. 2014;7:1266–74.

  4. 4.

    Travis WD, Brambilla E, Nicholson AG, Yatabe Y, Austin JHM, Beasley MB, et al. The 2015 World Health Organization classification of lung tumors: impact of genetic, clinical and radiologic advances since the 2004 classification. J Thorac Oncol. 2015;10:1243–60.

  5. 5.

    Travis WD, Brambilla E, Noguchi M, Nicholson AG, Geisinger KR, Yatabe Y, et al. International association for the study of lung cancer/american thoracic society/european respiratory society international multidisciplinary classification of lung adenocarcinoma. J Thorac Oncol. 2011;6:244–85.

  6. 6.

    Guo M, Tomoshige K, Meister M, Muley T, Fukazawa T, Tsuchiya T, et al. Gene signature driving invasive mucinous adenocarcinoma of the lung. EMBO Mol Med. 2017;9:462–81.

  7. 7.

    Rossi G, Murer B, Cavazza A, Losi L, Natali P, Marchioni A, et al. Primary mucinous (so-called colloid) carcinomas of the lung: a clinicopathologic and immunohistochemical study with special reference to CDX-2 homeobox gene and MUC2 expression. Am J Surg Pathol. 2004;28:442–52.

  8. 8.

    Bayrak R, Yenidünya S, Haltas H. Cytokeratin 7 and cytokeratin 20 expression in colorectal adenocarcinomas. Pathol Res Pract. 2011;207:156–60.

  9. 9.

    Lin L, Zhuang W, Wang W, Xu C, Chen R, Guan Y, et al. Genetic mutations in lung enteric adenocarcinoma identified using next-generation sequencing. Int J Clin Exp Pathol. 2017;10:9583–90.

  10. 10.

    Zhao L, Huang S, Liu J, Zhao J, Li Q, Wang HQ. Clinicopathological, radiographic, and oncogenic features of primary pulmonary enteric adenocarcinoma in comparison with invasive adenocarcinoma in resection specimens. Medicine. 2017;96:e8153.

  11. 11.

    Hatanaka K, Tsuta K, Watanabe K, Sugino K, Uekusa T. Primary pulmonary adenocarcinoma with enteric differentiation resembling metastatic colorectal carcinoma: a report of the second case negative for cytokeratin 7. Pathol Res Pract. 2011;207:188–91.

  12. 12.

    Chen M, Liu P, Yan F, Xu S, Jiang Q, Pan J, et al. Distinctive features of immunostaining and mutational load in primary pulmonary enteric adenocarcinoma: implications for differential diagnosis and immunotherapy. J Transl Med. 2018;16:81.

  13. 13.

    Inamura K, Satoh Y, Okumura S, Nakagawa K, Tsuchiya E, Fukayama M, et al. Pulmonary adenocarcinomas with enteric differentiation: histologic and immunohistochemical characteristics compared with metastatic colorectal cancers and usual pulmonary adenocarcinomas. Am J Surg Pathol. 2005;29:660–5.

  14. 14.

    Matsushima J, Yazawa T, Suzuki M, Takahashi Y, Ota S, Nakajima T, et al. Clinicopathological, immunohistochemical, and mutational analyses of pulmonary enteric adenocarcinoma: usefulness of SATB2 and β-catenin immunostaining for differentiation from metastatic colorectal carcinoma. Hum Pathol. 2017;64:179–85.

  15. 15.

    Sun WW, Xu ZH, Wang CF, Wu F, Cao JM, Cui PJ, et al. Pulmonary enteric adenocarcinoma with pancreatic metastasis: A case report. Oncol Lett. 2017;13:4651–6.

  16. 16.

    Bonanno L, Attili I, Nannini N, Del Bianco P, Frega S, Pasello G, et al. P3.01-017 Primary lung adenocarcinomas with enteric differentiation: a retrospective analysis. J Thorac Oncol. 2017;12:S1128–9.

  17. 17.

    Nottegar A, Tabbò F, Luchini C, Brunelli M, Bria E, Veronese N, et al. Pulmonary adenocarcinoma with enteric differentiation: immunohistochemistry and molecular morphology. Appl Immunhisto Mol Morpho. 2018;26. 

  18. 18.

    Lokk K, Modhukur V, Rajashekar B, Märtens K, Mägi R, Kolde R, et al. DNA methylome profiling of human tissues identifies global and tissue-specific methylation patterns. Genome Biol. 2014;15:r54.

  19. 19.

    Chen Y1, Breeze CE, Zhen S, Beck S, Teschendorff AE. Tissue-independent and tissue-specific patterns of DNA methylation alteration in cancer. Epigenetics Chromatin. 2016;9:10.

  20. 20.

    Capper D, Jones DTW, Sill M, Hovestadt V, Schrimpf D, Sturm D, et al. DNA methylation-based classification of central nervous system tumours. Nature. 2018;555:469–74.

  21. 21.

    Moran S, Martínez-Cardús A, Sayols S, Musulén E, Balañá C, Estival-Gonzalez A, et al. Epigenetic profiling to classify cancer of unknown primary: a multicentre, retrospective analysis. Lancet Oncol. 2016;17:1386–95.

  22. 22.

    Grossman RL, Heath AP, Ferretti V, Varmus HE, Lowy DR, Kibbe WA, et al. Toward a shared vision for cancer genomic data. N Eng J Med. 2016;375:1109–12.

  23. 23.

    Qu X, Sandmann T, Frierson H Jr, Fu L, Fuentes E, Walter K, et al. Integrated genomic analysis of colorectal cancer progression reveals activation of EGFR through demethylation of the EREG promoter. Oncogene. 2016;35:6403–15.

  24. 24.

    Blueprint consortium. Quantitative comparison of DNA methylation assays for biomarker development and clinical applications. Nat Biotechnol. 2016;34:726–37.

  25. 25.

    Zhou W, Laird PW, Shen H. Comprehensive characterization, annotation and innovative use of Infinium DNA methylation BeadChip probes. Nucleic Acids Res. 2017;45:e22.

  26. 26.

    Kettunen E, Hernandez-Vargas H, Cros MP, Durand G, Le Calvez-Kelm F, Stuopelyte K, et al. Asbestos-associated genome-wide DNA methylation changes in lung cancer. Int J Cancer. 2017;141:2014–29.

  27. 27.

    Kajiura K, Masuda K, Naruto T, Kohmoto T, Watabnabe M, Tsuboi M, et al. Frequent silencing of the candidate tumor suppressor TRIM58 by promoter methylation in early-stage lung adenocarcinoma. Oncotarget. 2017;8:2890–905.

  28. 28.

    Kerr KM. Pulmonary adenocarcinomas: classification and reporting. Histopathology. 2009;54:12–27.

  29. 29.

    Jurmeister P, Lenze D, Berg E, Mende S, Schäper F, Kellner U et al. Parallel screening for ALK, MET and ROS1 alterations in non-small cell lung cancer with implications for daily routine testing. Lung Cancer. 2015;87:122–9.

  30. 30.

    von Laffert M, Stenzinger A, Hummel M, Weichert W, Lenze D, Warth A, et al. ALK-FISH borderline cases in non-small cell lung cancer: Implications for diagnostics and clinical decision making. Lung Cancer. 2015;90:465–71.

  31. 31.

    Cappuzzo F, Marchetti A, Skokan M, Rossi E, Gajapathy S, Felicioni L, et al. Increased MET gene copy number negatively affects survival of surgically resected non-small-cell lung cancer patients. J Clin Oncol. 2009;27:1667–74.

  32. 32.

    Tanaka A, Sueoka-Aragane N, Nakamura T, Takeda Y, Mitsuoka M, Yamasaki F, et al. Co-existence of positive MET FISH status with EGFR mutations signifies poor prognosis in lung adenocarcinoma patients. Lung Cancer. 2012;75:89–94.

  33. 33.

    Vollbrecht C, Lehmann A, Lenze D, Hummel M. Validation and comparison of two NGS assays for the detection of EGFR T790M resistance mutation in liquid biopsies of NSCLC patients. Oncotarget. 2018;9:18529–39.

  34. 34.

    Hovestadt V, Zapatka M. Conumee: enhanced copy-number variation analysis using Illumina DNA methylation arrays. 2017. R package version 1.9.0. http://bioconductor.org/packages/conumee/. Accessed on: 27 Aug 2018.

  35. 35.

    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. 2017. https://www.R-project.org/.

  36. 36.

    RStudio Team. RStudio: Integrated Development for R. RStudio, Inc., Boston. 2016. http://www.rstudio.com/.

  37. 37.

    Maksimovic J, Phipson B, Oshlack A. A cross-package bioconductor workflow for analysing methylation array data. F1000. 2016;5:1281.

  38. 38.

    Aryee MJ, Jaffe AE, Corrada-Bravo H, Ladd-Acosta C, Feinberg AP, Hansen KD, et al. Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays. Bioinformatics. 2014;30:1363–9.

  39. 39.

    Fortin JP, Labbe A, Lemire M, Zanke BW, Hudson TJ, Fertig EJ, et al. Functional normalization of 450k methylation array data improves replication in large cancer studies. Genome Biol. 2014;15:503.

  40. 40.

    Chen YA, Lemire M, Choufani S, Butcher DT, Grafodatskaya D, Zanke BW, et al. Discovery of cross-reactive probes and polymorphic CpGs in the Illumina Infinium HumanMethylation450 microarray. Epigenetics. 2013;8:203–9.

  41. 41.

    Oytam Y, Sobhanmanesh F, Duesing K, Bowden JC, Osmond-McLeod M, Ross J. Risk-conscious correction of batch effects: maximising information extraction from high-throughput genomic datasets. BMC Bioinforma. 2016;17:332.

  42. 42.

    Krijthe JH. Rtsne: T-distributed stochastic neighbor embedding using a Barnes-Hut implementation. 2015. https://github.com/jkrijthe/Rtsne. Accessed: 27 Aug 2018.

  43. 43.

    Kuhn M. Caret: Classification and regression training. 2016. R package version 6.0-71. https://CRAN.R-project.org/package=caret. Accessed: 27 Aug 2018.

  44. 44.

    Nottegar A, Tabbò F, Luchini C, Guerrera F, Gaudiano M, Bria E, et al. Pulmonary adenocarcinoma with enteric differentiation: dissecting oncogenic genes alterations with DNA sequencing and FISH analysis. Exp Mol Pathol. 2017;102:276–9.

Download references

Acknowledgements

We gratefully acknowledge the excellent technical assistance of Daniel Teichmann, Alexandra Förster, Vera Arnemann and Didier Nana-Kouegoua.

Author information

Correspondence to Philipp Jurmeister.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary File S1

Supplementary Table S1

Supplementary Table S2

Supplementary Table S3

Supplementary Table S4

Supplementary Figure S1

Supplementary Figure S2

Supplementary Figure S3

Supplementary Figure S4

Supplementary Figure S5

Supplementary Legends

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark