Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

CHRONIC MYELOPROLIFERATIVE NEOPLASMS

Distinct clinico-molecular arterial and venous thrombosis scores for myeloproliferative neoplasms risk stratification

Abstract

Current recommended risk scores to predict thrombotic events associated with myeloproliferative neoplasms (MPN) do not discriminate between arterial and venous thrombosis despite their different physiopathology. To define novel stratification systems, we delineated a comprehensive landscape of MPN associated thrombosis across a large long-term follow-up MPN cohort. Prior arterial thrombosis, age >60 years, cardiovascular risk factors and presence of TET2 or DNMT3A mutations were independently associated with arterial thrombosis in multivariable analysis. ARTS, an ARterial Thrombosis Score, based on these four factors, defined low- (0.37% patients-year) and high-risk (1.19% patients-year) patients. ARTS performance was superior to the two-tiered conventional risk stratification in our training cohort, across all MPN subtypes, as well as in two external validation cohorts. Prior venous thrombosis and presence of a JAK2V617F mutation with a variant allelic frequency ≥50% were independently associated with venous thrombosis. The discrimination potential of VETS, a VEnous Thrombosis Score based on these two factors, was poor, similar to the two-tiered conventional risk stratification. Our study pinpoints arterial and venous thrombosis clinico-molecular differences and proposes an arterial risk score for more accurate patients’ stratification. Further improvement of venous risk scores, accounting for additional factors and considering venous thrombosis as a heterogeneous entity is warranted.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Incidence and type of arterial and venous thrombotic events in patients diagnosed with MPN.
Fig. 2: Molecular characteristics of patients diagnosed with arterial thrombotic events during MPN follow-up.
Fig. 3: Molecular characteristics of patients diagnosed with venous thrombotic events during MPN follow-up.
Fig. 4: Clinical, biological and molecular factors associated with arterial or venous thrombotic events occurrence in MPN.
Fig. 5: Clinico-molecular arterial thrombosis risk scores in global MPN training cohort and in the two external validation cohorts.
Fig. 6: Clinico-molecular arterial risk score in MPN subtype cohorts.

Similar content being viewed by others

Data availability

The datasets analyzed during the current study are available from the corresponding author LB.

References

  1. Campello E, Spiezia L, Adamo A, Simioni P. Thrombophilia, risk factors and prevention. Expert Rev Hematol. 2019;12:147–58.

    Article  CAS  PubMed  Google Scholar 

  2. Garcia D, Erkan D. Diagnosis and management of the antiphospholipid syndrome. N Engl J Med. 2018;378:2010–21.

    Article  CAS  PubMed  Google Scholar 

  3. Giustozzi M, Ehrlinder H, Bongiovanni D, Borovac JA, Guerreiro RA, Gąsecka A, et al. Coagulopathy and sepsis: pathophysiology, clinical manifestations and treatment. Blood Rev. 2021;50:100864.

    Article  CAS  PubMed  Google Scholar 

  4. Fernandes CJ, Morinaga LTK, Alves JL, Castro MA, Calderaro D, Jardim CVP, et al. Cancer-associated thrombosis: the when, how and why. Eur Respir Rev. 2019;28:180119.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Puurunen MK, Gona PN, Larson MG, Murabito JM, Magnani JW, O’Donnell CJ. Epidemiology of venous thromboembolism in the Framingham Heart Study. Thromb Res. 2016;145:27–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Horowitz NA, Brenner B. Thrombosis in hematological malignancies: mechanisms and implications. Thromb Res. 2020;191:S58–S62.

    Article  CAS  PubMed  Google Scholar 

  7. Adelborg K, Corraini P, Darvalics B, Frederiksen H, Ording A, Horváth-Puhó E, et al. Risk of thromboembolic and bleeding outcomes following hematological cancers: a Danish population-based cohort study. J Thromb Haemost. 2019;17:1305–18.

    Article  PubMed  Google Scholar 

  8. Tefferi A, Rumi E, Finazzi G, Gisslinger H, Vannucchi AM, Rodeghiero F, et al. Survival and prognosis among 1545 patients with contemporary polycythemia vera: an international study. Leukemia. 2013;27:1874–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Barbui T, Carobbio A, Rumi E, Finazzi G, Gisslinger H, Rodeghiero F, et al. In contemporary patients with polycythemia vera, rates of thrombosis and risk factors delineate a new clinical epidemiology. Blood. 2014;124:3021–3.

    Article  PubMed  Google Scholar 

  10. Marchioli R, Finazzi G, Specchia G, Cacciola R, Cavazzina R, Cilloni D, et al. Cardiovascular events and intensity of treatment in polycythemia vera. N Engl J Med. 2013;368:22–33.

    Article  CAS  PubMed  Google Scholar 

  11. Montanaro M, Latagliata R, Cedrone M, Spadea A, Rago A, Di Giandomenico J, et al. Thrombosis and survival in essential thrombocythemia: a regional study of 1,144 patients. Am J Hematol. 2014;89:542–6.

    Article  PubMed  Google Scholar 

  12. Barbui T, Carobbio A, Cervantes F, Vannucchi AM, Guglielmelli P, Antonioli E, et al. Thrombosis in primary myelofibrosis: incidence and risk factors. Blood. 2010;115:778–82.

    Article  CAS  PubMed  Google Scholar 

  13. Carobbio A, Thiele J, Passamonti F, Rumi E, Ruggeri M, Rodeghiero F, et al. Risk factors for arterial and venous thrombosis in WHO-defined essential thrombocythemia: an international study of 891 patients. Blood. 2011;117:5857–9.

    Article  CAS  PubMed  Google Scholar 

  14. Mancuso S, Santoro M, Accurso V, Agliastro G, Raso S, Di Piazza F, et al. Cardiovascular risk in polycythemia vera: thrombotic risk and survival: can cytoreductive therapy be useful in patients with low-risk polycythemia vera with cardiovascular risk factors? Oncol Res Treat. 2020;43:526–30.

    Article  PubMed  Google Scholar 

  15. Lussana F, Caberlon S, Pagani C, Kamphuisen PW, Büller HR, Cattaneo M. Association of V617F Jak2 mutation with the risk of thrombosis among patients with essential thrombocythaemia or idiopathic myelofibrosis: a systematic review. Thromb Res. 2009;124:409–17.

    Article  CAS  PubMed  Google Scholar 

  16. Landolfi R, Di Gennaro L, Barbui T, De Stefano V, Finazzi G, Marfisi R, et al. Leukocytosis as a major thrombotic risk factor in patients with polycythemia vera. Blood. 2007;109:2446–52.

    Article  CAS  PubMed  Google Scholar 

  17. Carobbio A, Finazzi G, Guerini V, Spinelli O, Delaini F, Marchioli R, et al. Leukocytosis is a risk factor for thrombosis in essential thrombocythemia: interaction with treatment, standard risk factors, and Jak2 mutation status. Blood. 2007;109:2310–3.

    Article  CAS  PubMed  Google Scholar 

  18. Barbui T, Barosi G, Birgegard G, Cervantes F, Finazzi G, Griesshammer M, et al. Philadelphia-negative classical myeloproliferative neoplasms: critical concepts and management recommendations from European LeukemiaNet. J Clin Oncol. 2011;29:761–70.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Barbui T, Tefferi A, Vannucchi AM, Passamonti F, Silver RT, Hoffman R, et al. Philadelphia chromosome-negative classical myeloproliferative neoplasms: revised management recommendations from European LeukemiaNet. Leukemia. 2018;32:1057–69.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Marchetti M, Vannucchi AM, Griesshammer M, Harrison C, Koschmieder S, Gisslinger H, et al. Appropriate management of polycythaemia vera with cytoreductive drug therapy: European LeukemiaNet 2021 recommendations. Lancet Haematol. 2022;9:e301–e311.

    Article  CAS  PubMed  Google Scholar 

  21. Barbui T, Vannucchi AM, Buxhofer-Ausch V, De Stefano V, Betti S, Rambaldi A, et al. Practice-relevant revision of IPSET-thrombosis based on 1019 patients with WHO-defined essential thrombocythemia. Blood Cancer J. 2015;5:e369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Barbui T, Carobbio A, De Stefano V. Thrombosis in myeloproliferative neoplasms during cytoreductive and antithrombotic drug treatment. Res Pract Thromb Haemost. 2022;6:e12657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Marchioli R, Finazzi G, Landolfi R, Kutti J, Gisslinger H, Patrono C, et al. Vascular and neoplastic risk in a large cohort of patients with polycythemia vera. J Clin Oncol. 2005;23:2224–32.

    Article  PubMed  Google Scholar 

  24. Carobbio A, Vannucchi AM, De Stefano V, Masciulli A, Guglielmelli P, Loscocco GG, et al. Neutrophil-to-lymphocyte ratio is a novel predictor of venous thrombosis in polycythemia vera. Blood Cancer J. 2022;12:28.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Vainchenker W, Kralovics R. Genetic basis and molecular pathophysiology of classical myeloproliferative neoplasms. Blood. 2017;129:667–79.

    Article  CAS  PubMed  Google Scholar 

  26. Tefferi A, Lasho TL, Guglielmelli P, Finke CM, Rotunno G, Elala Y, et al. Targeted deep sequencing in polycythemia vera and essential thrombocythemia. Blood Adv. 2016;1:21–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tefferi A, Lasho TL, Finke CM, Elala Y, Hanson CA, Ketterling RP, et al. Targeted deep sequencing in primary myelofibrosis. Blood Adv. 2016;1:105–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Grinfeld J, Nangalia J, Baxter EJ, Wedge DC, Angelopoulos N, Cantrill R, et al. Classification and personalized prognosis in myeloproliferative neoplasms. N Engl J Med. 2018;379:1416–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Marcault C, Zhao L-P, Maslah N, Verger E, Daltro de Oliveira R, Soret-Dulphy J, et al. Impact of NFE2 mutations on AML transformation and overall survival in patients with myeloproliferative neoplasms. Blood. 2021;138:2142–8.

    Article  CAS  PubMed  Google Scholar 

  30. Cheung B, Radia D, Pantelidis P, Yadegarfar G, Harrison C. The presence of the JAK2 V617F mutation is associated with a higher haemoglobin and increased risk of thrombosis in essential thrombocythaemia. Br J Haematol. 2006;132:244–5.

    Article  CAS  PubMed  Google Scholar 

  31. Finazzi G, Rambaldi A, Guerini V, Carobbo A, Barbui T. Risk of thrombosis in patients with essential thrombocythemia and polycythemia vera according to JAK2 V617F mutation status. Haematologica. 2007;92:135–6.

    Article  PubMed  Google Scholar 

  32. Vannucchi AM, Antonioli E, Guglielmelli P, Longo G, Pancrazzi A, Ponziani V, et al. Prospective identification of high-risk polycythemia vera patients based on JAK2(V617F) allele burden. Leukemia. 2007;21:1952–9.

    Article  CAS  PubMed  Google Scholar 

  33. Segura-Díaz A, Stuckey R, Florido Y, González-Martín JM, López-Rodríguez JF, Sánchez-Sosa S, et al. Thrombotic Risk Detection in Patients with Polycythemia Vera: The Predictive Role of DNMT3A/TET2/ASXL1 Mutations. Cancers. 2020;12:E934.

    Article  Google Scholar 

  34. Sevitt S.Thrombosis and embolism after injury.J Clin Pathol Suppl (R Coll Pathol). 1970;4:86–101.

    Article  CAS  PubMed  Google Scholar 

  35. Esmon CT. Basic mechanisms and pathogenesis of venous thrombosis. Blood Rev. 2009;23:225–9.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Mackman N. Triggers, targets and treatments for thrombosis. Nature. 2008;451:914–8.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. Luque Paz DL, Mansier O, Riou J, Conejero C, Roy L, et al. Positive impact of molecular analysis on prognostic scores in essential thrombocythemia: a single center prospective cohort experience. Haematologica. 2019;104:e134–e137.

    Article  PubMed  Google Scholar 

  38. Harrell FE, Lee KL, Mark DB. Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med. 1996;15:361–87.

    Article  PubMed  Google Scholar 

  39. Finazzi G, Carobbio A, Thiele J, Passamonti F, Rumi E, Ruggeri M, et al. Incidence and risk factors for bleeding in 1104 patients with essential thrombocythemia or prefibrotic myelofibrosis diagnosed according to the 2008 WHO criteria. Leukemia. 2012;26:716–9.

    Article  CAS  PubMed  Google Scholar 

  40. Guglielmelli P, Loscocco GG, Mannarelli C, Rossi E, Mannelli F, Ramundo F, et al. JAK2V617F variant allele frequency >50% identifies patients with polycythemia vera at high risk for venous thrombosis. Blood Cancer J. 2021;11:199.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Rea IM, Gibson DS, McGilligan V, McNerlan SE, Alexander HD, Ross OA. Age and age-related diseases: role of inflammation triggers and cytokines. Front Immunol. 2018;9:586.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Ambrose JA, Barua RS. The pathophysiology of cigarette smoking and cardiovascular disease: an update. J Am Coll Cardiol. 2004;43:1731–7.

    Article  CAS  PubMed  Google Scholar 

  43. Petrie JR, Guzik TJ, Touyz RM. Diabetes, hypertension, and cardiovascular disease: clinical insights and vascular mechanisms. Can J Cardiol. 2018;34:575–84.

    Article  PubMed  Google Scholar 

  44. Dhawan UK, Bhattacharya P, Narayanan S, Manickam V, Aggarwal A, Subramanian M. Hypercholesterolemia impairs clearance of neutrophil extracellular traps and promotes inflammation and atherosclerotic plaque progression. Arterioscler Thromb Vasc Biol. 2021;41:2598–615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jaiswal S, Natarajan P, Silver AJ, Gibson CJ, Bick AG, Shvartz E, et al. Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease. N Engl J Med. 2017;377:111–21.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Jaiswal S. Clonal hematopoiesis and nonhematologic disorders. Blood. 2020;136:1606–14.

    PubMed  PubMed Central  Google Scholar 

  47. Avagyan S, Henninger JE, Mannherz WP, Mistry M, Yoon J, Yang S, et al. Resistance to inflammation underlies enhanced fitness in clonal hematopoiesis. Science. 2021;374:768–72.

    Article  ADS  CAS  PubMed  Google Scholar 

  48. Cedervall J, Hamidi A, Olsson A-K. Platelets, NETs and cancer. Thromb Res. 2018;164:S148–S152.

    Article  CAS  PubMed  Google Scholar 

  49. Papayannopoulos V. Neutrophil extracellular traps in immunity and disease. Nat Rev Immunol. 2018;18:134–47.

    Article  CAS  PubMed  Google Scholar 

  50. Teofili L, Martini M, Iachininoto MG, Capodimonti S, Nuzzolo ER, Torti L, et al. Endothelial progenitor cells are clonal and exhibit the JAK2(V617F) mutation in a subset of thrombotic patients with Ph-negative myeloproliferative neoplasms. Blood. 2011;117:2700–7.

    Article  CAS  PubMed  Google Scholar 

  51. Guy A, Gourdou-Latyszenok V, Le Lay N, Peghaire C, Kilani B, Dias JV, et al. Vascular endothelial cell expression of JAK2V617F is sufficient to promote a pro-thrombotic state due to increased P-selectin expression. Haematologica. 2019;104:70–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Guadall A, Lesteven E, Letort G, Awan Toor S, Delord M, Pognant D, et al. Endothelial cells harbouring the JAK2V617F mutation display pro-adherent and pro-thrombotic features. Thromb Haemost. 2018;118:1586–99.

    Article  PubMed  Google Scholar 

  53. Bewersdorf JP, Giri S, Wang R, Podoltsev N, Williams RT, Tallman MS, et al. Interferon alpha therapy in essential thrombocythemia and polycythemia vera-a systematic review and meta-analysis. Leukemia. 2021;35:1643–60.

    Article  CAS  PubMed  Google Scholar 

  54. Gu W, Yang R, Xiao Z, Zhang L. Clinical outcomes of interferon therapy for polycythemia vera and essential thrombocythemia: a systematic review and meta-analysis. Int J Hematol. 2021;114:342–54.

    Article  PubMed  Google Scholar 

  55. How J, Hobbs G. Use of interferon alfa in the treatment of myeloproliferative neoplasms: perspectives and review of the literature. Cancers. 2020;12:E1954.

    Article  Google Scholar 

  56. Kiladjian J-J, Mesa RA, Hoffman R. The renaissance of interferon therapy for the treatment of myeloid malignancies. Blood. 2011;117:4706–15.

    Article  CAS  PubMed  Google Scholar 

  57. Guarda G, Braun M, Staehli F, Tardivel A, Mattmann C, Förster I, et al. Type I interferon inhibits interleukin-1 production and inflammasome activation. Immunity. 2011;34:213–23.

    Article  CAS  PubMed  Google Scholar 

  58. Heine A, Held SAE, Daecke SN, Wallner S, Yajnanarayana SP, Kurts C, et al. The JAK-inhibitor ruxolitinib impairs dendritic cell function in vitro and in vivo. Blood. 2013;122:1192–202.

    Article  CAS  PubMed  Google Scholar 

  59. Schönberg K, Rudolph J, Vonnahme M, Parampalli Yajnanarayana S, Cornez I, Hejazi M, et al. JAK inhibition impairs NK cell function in myeloproliferative neoplasms. Cancer Res. 2015;75:2187–99.

    Article  PubMed  Google Scholar 

  60. Keohane C, Kordasti S, Seidl T, Perez Abellan P, Thomas NSB, Harrison CN, et al. JAK inhibition induces silencing of T Helper cytokine secretion and a profound reduction in T regulatory cells. Br J Haematol. 2015;171:60–73.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the clinical care team of the Comprehensive Myeloproliferative Neoplasms Center for samples and data collection, and the staff of the cellular biology laboratory for excellent technical assistance. The authors also thank the French Intergroup for Myeloproliferative neoplasms (FIM) for insightful discussions. This research was supported with grants from “Association Laurette Fugain”, “Féderation Leucémie Espoir”, “Fondation ARC” and “INCa PrevBio”. Lina Benajiba is a “CCA-INSERM Bettencourt” and an “ATIP-Avenir” Laureate. Graphical abstract was partially generated using Biorender.com.

Author information

Authors and Affiliations

Authors

Contributions

CM, LPZ, RDO, NG, MC, EL, JCI and DLP collected the data. SG, NM, EV, BC, WCL, EL, VU and DLP performed molecular analyses. JSD, RDO, WV, NP, ER, SG, JJK, LB, LR and JCI provided patients care. LV performed statistical analysis. LB and HP analyzed the data, performed statistical analysis and wrote the manuscript. LB designed and supervised the study. All co-authors reviewed, edited and critically discussed the manuscript.

Corresponding author

Correspondence to Lina Benajiba.

Ethics declarations

Competing interests

LB has received research support from Gilead and Pfizer for research projects unrelated to the current study. The remaining authors declare no competing financial interests related to this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pasquer, H., Daltro de Oliveira, R., Vasseur, L. et al. Distinct clinico-molecular arterial and venous thrombosis scores for myeloproliferative neoplasms risk stratification. Leukemia 38, 326–339 (2024). https://doi.org/10.1038/s41375-023-02114-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-023-02114-5

Search

Quick links