Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

ACUTE MYELOID LEUKEMIA

Expression profiling of extramedullary acute myeloid leukemia suggests involvement of epithelial–mesenchymal transition pathways

Abstract

Extramedullary (EM) colonization is a rare complication of acute myeloid leukemia (AML), occurring in about 10% of patients, but the processes underlying tissue invasion are not entirely characterized. Through the application of RNAseq technology, we examined the transcriptome profile of 13 AMLs, 9 of whom presented an EM localization. Our analysis revealed significant deregulation within the extracellular matrix (ECM)-receptor interaction and focal-adhesion pathways, specifically in the EM sites. The transcription factor TWIST1, which is known to impact on cancer invasion by dysregulating epithelial–mesenchymal-transition (EMT) processes, was significantly upregulated in EM-AML. To test the functional impact of TWIST1 overexpression, we treated OCI-AML3s with TWIST1-siRNA or metformin, a drug known to inhibit tumor progression in cancer models. After 48 h, we showed downregulation of TWIST1, and of the EMT-related genes FN1 and SNAI2. This was associated with significant impairment of migration and invasion processes by Boyden chamber assays. Our study shed light on the molecular mechanisms associated with EM tissue invasion in AML, and on the ability of metformin to interfere with key players of this process. TWIST1 may configure as candidate marker of EM-AML progression, and inhibition of EMT-pathways may represent an innovative therapeutic intervention to prevent or treat this complication.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Targeted-NGS analysis of BM samples of pts with EM-AML (n = 12).
Fig. 2: Principal component analysis (PCA).
Fig. 3: Statistically significant pathways and genes.
Fig. 4: TaqMan gene expression analysis.
Fig. 5: TWIST1 upregulation in EM-AMLs and TWIST1 silencing in OCI-AML3 cells.
Fig. 6: OCI-AML3 treatment with metformin.
Fig. 7: In vitro cell migration and invasion assessment using Boyden Chamber Assay after metformin treatment.

Similar content being viewed by others

Data availability

The datasets generated during the current study are available in the SRA repository, https://www.ncbi.nlm.nih.gov/sra/PRJNA1003124, BioProject PRJNA1003124. Request for additional information should be addressed to the corresponding author.

References

  1. Kahali B. Myeloid sarcoma: the other side of acute leukemia. In: Hematology - latest research and clinical advances. 2018. https://doi.org/10.5772/INTECHOPEN.74931.

  2. Mohammadiasl J, Khosravi A, Shahjahani M, Azizidoost S, Saki N. Molecular and cellular aspects of extramedullary manifestations of acute myeloid leukemia Quick Response Code. J Cancer Metastasis Treat. 2016. https://doi.org/10.4103/2394-4722.167230.

  3. Shallis RM, Gale RP, Lazarus HM, Roberts KB, Xu ML, Seropian SE, et al. Myeloid sarcoma, chloroma, or extramedullary acute myeloid leukemia tumor: a tale of misnomers, controversy and the unresolved. Blood Rev. 2021;47:100773.

    Article  CAS  PubMed  Google Scholar 

  4. Loscocco GG, Vannucchi AM. Myeloid sarcoma: more and less than a distinct entity. Ann Hematol. 2023;102. https://doi.org/10.1007/S00277-023-05288-1.

  5. Eckardt JN, Stölzel F, Kunadt D, Röllig C, Stasik S, Wagenführ L, et al. Molecular profiling and clinical implications of patients with acute myeloid leukemia and extramedullary manifestations. J Hematol Oncol. 2022;15. https://doi.org/10.1186/S13045-022-01267-7.

  6. Ganzel C, Manola J, Douer D, Rowe JM, Fernandez HF, Paietta EM, et al. Extramedullary disease in adult acute myeloid leukemia is common but lacks independent significance: analysis of patients in ECOG-ACRIN Cancer Research Group Trials, 1980-2008. J Clin Oncol. 2016;34:3544–53.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Goyal G, Bartley AC, Patnaik MM, Litzow MR, Al-Kali A, Go RS. Clinical features and outcomes of extramedullary myeloid sarcoma in the United States: analysis using a national data set. Blood Cancer J. 2017;7:e592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Movassaghian M, Brunner AM, Blonquist TM, Sadrzadeh H, Bhatia A, Perry AM, et al. Presentation and outcomes among patients with isolated myeloid sarcoma: a Surveillance, Epidemiology, and End Results database analysis. Leuk Lymphoma. 2015;56:1698–703.

    Article  PubMed  Google Scholar 

  9. Solh M, DeFor TE, Weisdorf DJ, Kaufman DS. Extramedullary relapse of acute myelogenous leukemia after allogeneic hematopoietic stem cell transplantation: better prognosis than systemic relapse. Biol Blood Marrow Transplant. 2012;18:106–12.

    Article  PubMed  Google Scholar 

  10. Yoshihara S, Ando T, Ogawa H. Extramedullary relapse of acute myeloid leukemia after allogeneic hematopoietic stem cell transplantation: an easily overlooked but significant pattern of relapse. Biol Blood Marrow Transplant. 2012;18:1800–7.

    Article  PubMed  Google Scholar 

  11. Juncà J, Garcia-Caro M, Granada I, Rodríguez-Hernández I, Torrent A, Morgades M, et al. Correlation of CD11b and CD56 expression in adult acute myeloid leukemia with cytogenetic risk groups and prognosis. Ann Hematol. 2014;93:1483–9.

    Article  PubMed  Google Scholar 

  12. Ball S, Knepper TC, Deutsch YE, Samra W, Watts JM, Bradley TJ, et al. Molecular annotation of extramedullary acute myeloid leukemia identifies high prevalence of targetable mutations. Cancer. 2022;128:3880–7.

    Article  CAS  PubMed  Google Scholar 

  13. Werstein B, Dunlap J, Cascio MJ, Ohgami RS, Fan G, Press R, et al. Molecular discordance between myeloid sarcomas and concurrent bone marrows occurs in actionable genes and is associated with worse overall survival. J Mol Diagn. 2020;22:338–45.

    Article  CAS  PubMed  Google Scholar 

  14. Greenland NY, Van Ziffle JA, Liu YC, Qi Z, Prakash S, Wang L. Genomic analysis in myeloid sarcoma and comparison with paired acute myeloid leukemia. Hum Pathol. 2021;108:76–83.

    Article  CAS  PubMed  Google Scholar 

  15. Engel NW, Reinert J, Borchert NM, Panagiota V, Gabdoulline R, Thol F, et al. Newly diagnosed isolated myeloid sarcoma-paired NGS panel analysis of extramedullary tumor and bone marrow. Ann Hematol. 2021;100:499–503.

    Article  CAS  PubMed  Google Scholar 

  16. Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Investig. 2009;119:1420–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Their JP. Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer. 2002;2:442–54.

    Article  Google Scholar 

  18. Yang J, Weinberg RA. Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell. 2008;14:818–29.

    Article  CAS  PubMed  Google Scholar 

  19. Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4:44–57.

    Article  CAS  PubMed  Google Scholar 

  20. Sherman BT, Hao M, Qiu J, Jiao X, Baseler MW, Lane HC, et al. DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 2022;50:W216–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhao J, Guan JL. Signal transduction by focal adhesion kinase in cancer. Cancer Metastasis Rev. 2009;28:35–49.

    Article  PubMed  Google Scholar 

  22. Golubovskaya VM, Kwen FA, Cance WG. Focal adhesion kinase and cancer. Histol Histopathol. 2009;24:503–10.

    CAS  PubMed  Google Scholar 

  23. Pankaew S, Potier D, Grosjean C, Nozais M, Quessada J, Loosveld M, et al. Calcium signaling is impaired in PTEN-Deficient T cell acute lymphoblastic leukemia. Front Immunol. 2022;13. https://doi.org/10.3389/FIMMU.2022.797244.

  24. Network TCGAR. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med. 2013;368:2059.

    Article  Google Scholar 

  25. Solh M, Solomon S, Morris L, Holland K, Bashey A. Extramedullary acute myelogenous leukemia. Blood Rev. 2016;30:333–9.

    Article  PubMed  Google Scholar 

  26. Xu S, Xu H, Wang W, Li S, Li H, Li T, et al. The role of collagen in cancer: from bench to bedside. J Transl Med. 2019;17:309.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Rozario T, DeSimone DW. The extracellular matrix in development and morphogenesis: a dynamic view. Dev Biol. 2010;341:126–40.

    Article  CAS  PubMed  Google Scholar 

  28. Graf F, Horn P, Ho AD, Boutros M, Maercker C. The extracellular matrix proteins type I collagen, type III collagen, fibronectin, and laminin 421 stimulate migration of cancer cells. FASEB J. 2021;35. https://doi.org/10.1096/FJ.202002558RR.

  29. Huang J, Zhang L, Wan D, Zhou L, Zheng S, Lin S, et al. Extracellular matrix and its therapeutic potential for cancer treatment. Signal Transduct Target Ther. 2021;6:1–24.

    Google Scholar 

  30. Gruszka AM, Valli D, Restelli C, Alcalay M. Adhesion deregulation in acute myeloid leukaemia. Cells. 2019;8:66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Luciano M, Krenn PW, Horejs-Hoeck J. The cytokine network in acute myeloid leukemia. Front Immunol. 2022;13:1000996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Faaij CMJM, Willemze AJ, Révész T, Balzarolo M, Tensen CP, Hoogeboom M, et al. Chemokine/chemokine receptor interactions in extramedullary leukaemia of the skin in childhood AML: differential roles for CCR2, CCR5, CXCR4 and CXCR7. Pediatr Blood Cancer. 2010;55:344–8.

    Article  PubMed  Google Scholar 

  33. Bhagat TD, Chen S, Bartenstein M, Barlowe AT, Von Ahrens D, Choudhary GS, et al. Epigenetically aberrant stroma in MDS propagates disease via Wnt/β-catenin activation. Cancer Res. 2017;77:4846–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Konopleva MY, Jordan CT. Leukemia stem cells and microenvironment: biology and therapeutic targeting. J Clin Oncol. 2011;29:591–9.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Uy GL, Rettig MP, Motabi IH, McFarland K, Trinkaus KM, Hladnik LM, et al. A phase 1/2 study of chemosensitization with the CXCR4 antagonist plerixafor in relapsed or refractory acute myeloid leukemia. Blood. 2012;119:3917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Andreeff M, Zeng Z, Kelly MA, Wang R, McQueen T, Duvvuri S, et al. Mobilization and elimination of FLT3-ITD+ acute myelogenous leukemia (AML) stem/progenitor cells by Plerixafor/G-CSF/Sorafenib: results from a phase I trial in relapsed/refractory AML patients. Blood. 2012;120:142.

    Article  Google Scholar 

  37. Burger JA, Bürkle A. The CXCR4 chemokine receptor in acute and chronic leukaemia: a marrow homing receptor and potential therapeutic target. Br J Haematol. 2007;137:288–96.

    Article  CAS  PubMed  Google Scholar 

  38. Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial–mesenchymal transition. Nat Rev Mol Cell Biol. 2014;15:178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Savagner P, Yamada KM, Thiery JP. The zinc-finger protein slug causes desmosome dissociation, an initial and necessary step for growth factor-induced epithelial-mesenchymal transition. J Cell Biol. 1997;137:1403–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cobaleda Ć, Ṕerez-Caro M, Vicente-Duẽnas C, Śanchez-García I. Function of the zinc-finger transcription factor SNAI2 in cancer and development. Annu Rev Genet. 2007;41:41–61.

    Article  CAS  PubMed  Google Scholar 

  41. Zhu QQ, Ma C, Wang Q, Song Y, Lv T. The role of TWIST1 in epithelial-mesenchymal transition and cancers. Tumour Biol. 2016;37:185–97.

    Article  CAS  PubMed  Google Scholar 

  42. Kang Y, Massagué J. Epithelial-mesenchymal transitions: twist in development and metastasis. Cell. 2004;118:277–9.

    Article  CAS  PubMed  Google Scholar 

  43. Chen SC, Liao TT, Yang MH. Emerging roles of epithelial-mesenchymal transition in hematological malignancies. J Biomed Sci. 2018;25:1–8.

    Article  Google Scholar 

  44. Li X, Marcondes AM, Gooley TA, Deeg HJ. The helix-loop-helix transcription factor TWIST is dysregulated in myelodysplastic syndromes. Blood. 2010;116:2304–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Li X, Xu F, Chang C, Byon J, Papayannopoulou T, Deeg HJ, et al. Transcriptional regulation of miR-10a/b by TWIST-1 in myelodysplastic syndromes. Haematologica. 2013;98:414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zeisberg M, Neilson EG. Biomarkers for epithelial-mesenchymal transitions. J Clin Investig. 2009;119:1429–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yang J, Mani SA, Donaher JL, Ramaswamy S, Itzykson RA, Come C, et al. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell. 2004;117:927–39.

    Article  CAS  PubMed  Google Scholar 

  48. Kwok WK, Ling MT, Lee TW, Lau TCM, Zhou C, Zhang X, et al. Up-regulation of TWIST in prostate cancer and its implication as a therapeutic target. Cancer Res. 2005;65:5153–62.

    Article  CAS  PubMed  Google Scholar 

  49. Chen YC, Li H, Wang J. Mechanisms of metformin inhibiting cancer invasion and migration. Am J Transl Res. 2020;12:4885.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Liu Q, Tong D, Liu G, Xu J, Do K, Geary K, et al. Metformin reverses prostate cancer resistance to enzalutamide by targeting TGF-β1/STAT3 axis-regulated EMT. Cell Death Dis. 2017;8:e3007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Park JH, Kim YH, Park EH, Lee SJ, Kim H, Kim A, et al. Effects of metformin and phenformin on apoptosis and epithelial-mesenchymal transition in chemoresistant rectal cancer. Cancer Sci. 2019;110:2834–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Xu J, Zhang W, Yan XJ, Lin XQ, Li W, Mi JQ, et al. DNMT3A mutation leads to leukemic extramedullary infiltration mediated by TWIST1. J Hematol Oncol. 2016;9:1–12.

    Article  Google Scholar 

  53. Zhang N, Ng AS, Cai S, Li Q, Yang L, Kerr D. Novel therapeutic strategies: targeting epithelial–mesenchymal transition in colorectal cancer. Lancet Oncol. 2021;22:e358–68.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by: AIRC 5 × 1000 call “Metastatic disease: the key unmet need in oncology” to MYNERVA project, #21267 (Myeloid Neoplasms Research Venture AIRC. A detailed description of the MYNERVA project is available at http://www.progettoagimm.it); MUR-PNRR M4C2I1.3 PE6 project PE00000019 Heal Italia; PRIN grant No. 2017WXR7ZT; Ministero della Salute, Rome, Italy (Finalizzata 2018, NET-2018-12365935, Personalized medicine program on myeloid neoplasms: characterization of the patient’s genome for clinical decision making and systematic collection of real-world data to improve quality of health care) to MTV. CG was supported by a grant from the Edward P. Evans Foundation. We thank Anna Paglia (Department of Anatomical Pathology, F. Spaziani Hospital, Frosinone, Italy) for her contributions to FFPE samples collection.

Author information

Authors and Affiliations

Authors

Contributions

TO, GS and MTV designed the study, interpreted the data, wrote the manuscript; RP helped in RNA-Seq data analysis and performed statistical analysis; ST helped in data interpretation, and gave helpful intellectual insights during the study; CG took part in data collection; FM, LG, SI, RA, AB, LF and MN participated in samples and data collection; AMN, EF, EA, MD, PR and MAIC performed the experiments, AM, AV, LA provided clinical data; MTV took responsibility for the integrity and the accuracy of the data presented; and all authors reviewed and approved the final version of this manuscript.

Corresponding author

Correspondence to M. T. Voso.

Ethics declarations

competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ottone, T., Silvestrini, G., Piazza, R. et al. Expression profiling of extramedullary acute myeloid leukemia suggests involvement of epithelial–mesenchymal transition pathways. Leukemia 37, 2383–2394 (2023). https://doi.org/10.1038/s41375-023-02054-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-023-02054-0

Search

Quick links