Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

MYELODYSPLASTIC NEOPLASM

RUNX1 mutations mitigate quiescence to promote transformation of hematopoietic progenitors in Fanconi anemia

Abstract

Many inherited bone marrow failure syndromes (IBMFSs) present a high risk of transformation to myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). During transformation of IBMFSs, hematopoietic stem and progenitor cells (HSPCs) with poor fitness gain ectopic, dysregulated self-renewal secondary to somatic mutations via undefined mechanisms. Here, in the context of the prototypical IBMFS Fanconi anemia (FA), we performed multiplexed gene editing of mutational hotspots in MDS-associated genes in human induced pluripotent stem cells (iPSCs) followed by hematopoietic differentiation. We observed aberrant self-renewal and impaired differentiation of HSPCs with enrichment of RUNX1 insertions and deletions (indels), generating a model of IBMFS-associated MDS. We observed that compared to the failure state, FA MDS cells show mutant RUNX1-mediated blunting of the G1/S cell cycle checkpoint that is normally activated in FA in response to DNA damage. RUNX1 indels also lead to activation of innate immune signaling, which stabilizes the homologous recombination (HR) effector BRCA1, and this pathway can be targeted to abrogate viability and restore sensitivity to genotoxins in FA MDS. Together, these studies develop a paradigm for modeling clonal evolution in IBMFSs, provide basic understanding of the pathogenesis of MDS, and uncover a therapeutic target in FA-associated MDS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Clonal evolution in FA.
Fig. 2: Diminished checkpoint activity in FA MDS.
Fig. 3: DNA damage response in FA MDS.
Fig. 4: Activation of innate inflammation in FA MDS.
Fig. 5: Targeting innate inflammation in FA MDS.

Similar content being viewed by others

Data availability

RNA sequencing data are available in the Gene Expression Omnibus (GSE205844) and the Database of Genotypes and Phenotypes (phs003024).

References

  1. Jaiswal S, Fontanillas P, Flannick J, Manning A, Grauman PV, Mar BG, et al. Age-related clonal hematopoiesis associated with adverse outcomes. N. Engl J Med. 2014;371:2488–98.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Steensma DP, Bejar R, Jaiswal S, Lindsley RC, Sekeres MA, Hasserjian RP, et al. Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood .2015;126:9–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ayas M, Saber W, Davies SM, Harris RE, Hale GA, Socie G, et al. Allogeneic hematopoietic cell transplantation for fanconi anemia in patients with pretransplantation cytogenetic abnormalities, myelodysplastic syndrome, or acute leukemia. J Clin Oncol. 2013;31:1669–76.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Alter BP, Caruso JP, Drachtman RA, Uchida T, Velagaleti GV, Elghetany MT. Fanconi anemia: myelodysplasia as a predictor of outcome. Cancer Genet Cytogenet. 2000;117:125–31.

    Article  CAS  PubMed  Google Scholar 

  5. Auerbach AD, Allen RG. Leukemia and preleukemia in Fanconi anemia patients. A review of the literature and report of the International Fanconi Anemia Registry. Cancer Genet Cytogenet. 1991;51:1–12.

    Article  PubMed  Google Scholar 

  6. Kennedy AL, Myers KC, Bowman J, Gibson CJ, Camarda ND, Furutani E, et al. Distinct genetic pathways define pre-malignant versus compensatory clonal hematopoiesis in Shwachman-Diamond syndrome. Nat Commun. 2021;12:1334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tsai FD, Lindsley RC. Clonal hematopoiesis in the inherited bone marrow failure syndromes. Blood. 2020;136:1615–22.

    PubMed  PubMed Central  Google Scholar 

  8. Gregory JJ Jr, Wagner JE, Verlander PC, Levran O, Batish SD, Eide CR, et al. Somatic mosaicism in Fanconi anemia: evidence of genotypic reversion in lymphohematopoietic stem cells. Proc Natl Acad Sci USA. 2001;98:2532–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chao MM, Thomay K, Goehring G, Wlodarski M, Pastor V, Schlegelberger B, et al. Mutational spectrum of fanconi anemia associated myeloid neoplasms. Klin Padiatr. 2017;229:329–34.

    Article  PubMed  Google Scholar 

  10. Quentin S, Cuccuini W, Ceccaldi R, Nibourel O, Pondarre C, Pages MP, et al. Myelodysplasia and leukemia of Fanconi anemia are associated with a specific pattern of genomic abnormalities that includes cryptic RUNX1/AML1 lesions. Blood .2011;117:e161–70.

    Article  CAS  PubMed  Google Scholar 

  11. Papaemmanuil E, Gerstung M, Malcovati L, Tauro S, Gundem G, Van Loo P, et al. Clinical and biological implications of driver mutations in myelodysplastic syndromes. Blood .2013;122:3616–27. quiz 99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kennedy AL, Shimamura A. Genetic predisposition to MDS: clinical features and clonal evolution. Blood 2019;133:1071–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ceccaldi R, Parmar K, Mouly E, Delord M, Kim JM, Regairaz M, et al. Bone marrow failure in Fanconi anemia is triggered by an exacerbated p53/p21 DNA damage response that impairs hematopoietic stem and progenitor cells. Cell Stem Cell. 2012;11:36–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Marion W, Boettcher S, Ruiz-Torres S, Lummertz da Rocha E, Lundin V, Morris V, et al. An induced pluripotent stem cell model of Fanconi anemia reveals mechanisms of p53-driven progenitor cell differentiation. Blood Adv. 2020;4:4679–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Tasdogan A, Kumar S, Allies G, Bausinger J, Beckel F, Hofemeister H, et al. DNA damage-induced HSPC malfunction depends on ROS accumulation downstream of IFN-1 signaling and bid mobilization. Cell Stem Cell. 2016;19:752–67.

    Article  CAS  PubMed  Google Scholar 

  16. Cioc AM, Wagner JE, MacMillan ML, DeFor T, Hirsch B. Diagnosis of myelodysplastic syndrome among a cohort of 119 patients with fanconi anemia: morphologic and cytogenetic characteristics. Am J Clin Pathol. 2010;133:92–100.

    Article  CAS  PubMed  Google Scholar 

  17. Parshad R, Sanford KK, Jones GM. Chromosomal radiosensitivity during the G2 cell-cycle period of skin fibroblasts from individuals with familial cancer. Proc Natl Acad Sci USA. 1985;82:5400–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Peffault de Latour R, Soulier J. How I treat MDS and AML in Fanconi anemia. Blood .2016;127:2971–9.

    Article  CAS  PubMed  Google Scholar 

  19. Nalepa G, Clapp DW. Fanconi anaemia and cancer: an intricate relationship. Nat Rev Cancer. 2018;18:168–85.

    Article  CAS  PubMed  Google Scholar 

  20. Tothova Z, Krill-Burger JM, Popova KD, Landers CC, Sievers QL, Yudovich D, et al. Multiplex CRISPR/Cas9-Based genome editing in human hematopoietic stem cells models clonal hematopoiesis and myeloid neoplasia. Cell Stem Cell. 2017;21:547–55.e8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sturgeon CM, Ditadi A, Awong G, Kennedy M, Keller G. Wnt signaling controls the specification of definitive and primitive hematopoiesis from human pluripotent stem cells. Nat Biotechnol. 2014;32:554–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tulpule A, Lensch MW, Miller JD, Austin K, D’Andrea A, Schlaeger TM, et al. Knockdown of Fanconi anemia genes in human embryonic stem cells reveals early developmental defects in the hematopoietic lineage. Blood .2010;115:3453–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kamimae-Lanning AN, Goloviznina NA, Kurre P. Fetal origins of hematopoietic failure in a murine model of Fanconi anemia. Blood 2013;121:2008–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Boettcher S, Miller PG, Sharma R, McConkey M, Leventhal M, Krivtsov AV, et al. A dominant-negative effect drives selection of TP53 missense mutations in myeloid malignancies. Science .2019;365:599–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Barreyro L, Sampson AM, Ishikawa C, Hueneman KM, Choi K, Pujato MA, et al. Blocking UBE2N abrogates oncogenic immune signaling in acute myeloid leukemia. Sci Transl Med. 2022;14:eabb7695.

    Article  CAS  PubMed  Google Scholar 

  26. Chlon TM, Ruiz-Torres S, Maag L, Mayhew CN, Wikenheiser-Brokamp KA, Davies SM, et al. Overcoming pluripotent stem cell dependence on the repair of endogenous DNA damage. Stem Cell Rep. 2016;6:44–54.

    Article  CAS  Google Scholar 

  27. Parmar K, D’Andrea A, Niedernhofer LJ. Mouse models of Fanconi anemia. Mutat Res. 2009;668:133–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Muller LU, Milsom MD, Harris CE, Vyas R, Brumme KM, Parmar K, et al. Overcoming reprogramming resistance of Fanconi anemia cells. Blood .2012;119:5449–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Doulatov S, Vo LT, Chou SS, Kim PG, Arora N, Li H, et al. Induction of multipotential hematopoietic progenitors from human pluripotent stem cells via respecification of lineage-restricted precursors. Cell Stem Cell. 2013;13:459–70.

    Article  CAS  PubMed  Google Scholar 

  30. Ivanova NB, Dimos JT, Schaniel C, Hackney JA, Moore KA, Lemischka IR. A stem cell molecular signature. Science .2002;298:601–4.

    Article  CAS  PubMed  Google Scholar 

  31. Cai X, Gao L, Teng L, Ge J, Oo ZM, Kumar AR, et al. Runx1 deficiency decreases ribosome biogenesis and confers stress resistance to hematopoietic stem and progenitor cells. Cell Stem Cell. 2015;17:165–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang H, Kozono DE, O’Connor KW, Vidal-Cardenas S, Rousseau A, Hamilton A, et al. TGF-beta inhibition rescues hematopoietic stem cell defects and bone marrow failure in Fanconi anemia. Cell Stem Cell. 2016;18:668–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Vanderwerf SM, Svahn J, Olson S, Rathbun RK, Harrington C, Yates J, et al. TLR8-dependent TNF-(alpha) overexpression in Fanconi anemia group C cells. Blood .2009;114:5290–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Garbati MR, Hays LE, Keeble W, Yates JE, Rathbun RK, Bagby GC. FANCA and FANCC modulate TLR and p38 MAPK-dependent expression of IL-1beta in macrophages. Blood .2013;122:3197–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Smith MA, Choudhary GS, Pellagatti A, Choi K, Bolanos LC, Bhagat TD, et al. U2AF1 mutations induce oncogenic IRAK4 isoforms and activate innate immune pathways in myeloid malignancies. Nat Cell Biol. 2019;21:640–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Melgar K, Walker MM, Jones LM, Bolanos LC, Hueneman K, Wunderlich M, et al. Overcoming adaptive therapy resistance in AML by targeting immune response pathways. Sci Transl Med. 2019;11:eaaw8828.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hosseini MM, Kurtz SE, Abdelhamed S, Mahmood S, Davare MA, Kaempf A, et al. Inhibition of interleukin-1 receptor-associated kinase-1 is a therapeutic strategy for acute myeloid leukemia subtypes. Leukemia. 2018;32:2374–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Volcic M, Karl S, Baumann B, Salles D, Daniel P, Fulda S, et al. NF-kappaB regulates DNA double-strand break repair in conjunction with BRCA1-CtIP complexes. Nucleic Acids Res. 2012;40:181–95.

    Article  CAS  PubMed  Google Scholar 

  39. Kraft D, Rall M, Volcic M, Metzler E, Groo A, Stahl A, et al. NF-kappaB-dependent DNA damage-signaling differentially regulates DNA double-strand break repair mechanisms in immature and mature human hematopoietic cells. Leukemia .2015;29:1543–54.

    Article  CAS  PubMed  Google Scholar 

  40. Rosenberg PS, Alter BP, Ebell W. Cancer risks in Fanconi anemia: findings from the German Fanconi Anemia Registry. Haematologica 2008;93:511–7.

    Article  PubMed  Google Scholar 

  41. Carreau M, Gan OI, Liu L, Doedens M, McKerlie C, Dick JE, et al. Bone marrow failure in the Fanconi anemia group C mouse model after DNA damage. Blood .1998;91:2737–44.

    Article  CAS  PubMed  Google Scholar 

  42. Wang T, Pine AR, Kotini AG, Yuan H, Zamparo L, Starczynowski DT, et al. Sequential CRISPR gene editing in human iPSCs charts the clonal evolution of myeloid leukemia and identifies early disease targets. Cell Stem Cell. 2021;28:1074–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hsu J, Reilly A, Hayes BJ, Clough CA, Konnick EQ, Torok-Storb B, et al. Reprogramming identifies functionally distinct stages of clonal evolution in myelodysplastic syndromes. Blood .2019;134:186–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kilpinen H, Goncalves A, Leha A, Afzal V, Alasoo K, Ashford S, et al. Common genetic variation drives molecular heterogeneity in human iPSCs. Nature. 2017;546:370–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ikeda H, Matsushita M, Waisfisz Q, Kinoshita A, Oostra AB, Nieuwint AW, et al. Genetic reversion in an acute myelogenous leukemia cell line from a Fanconi anemia patient with biallelic mutations in BRCA2. Cancer Res. 2003;63:2688–94.

    CAS  PubMed  Google Scholar 

  46. Yoon YM, Storm KJ, Kamimae-Lanning AN, Goloviznina NA, Kurre P. Endogenous DNA damage leads to p53-independent deficits in replicative fitness in fetal murine Fancd2(−/−) hematopoietic stem and progenitor cells. Stem Cell Rep. 2016;7:840–53.

    Article  CAS  Google Scholar 

  47. Ceccaldi R, Briot D, Larghero J, Vasquez N, Dubois d’Enghien C, Chamousset D, et al. Spontaneous abrogation of the G(2)DNA damage checkpoint has clinical benefits but promotes leukemogenesis in Fanconi anemia patients. J Clin Invest. 2011;121:184–94.

    Article  CAS  PubMed  Google Scholar 

  48. Sebert M, Gachet S, Leblanc T, Rousseau A, Bluteau O, Kim R, et al. Clonal hematopoiesis driven by chromosome 1q/MDM4 trisomy defines a canonical route toward leukemia in Fanconi anemia. Cell Stem Cell. 2023;30:153–70.e9

    Article  CAS  PubMed  Google Scholar 

  49. Bowman RL, Busque L, Levine RL. Clonal hematopoiesis and evolution to hematopoietic malignancies. Cell Stem Cell. 2018;22:157–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rhyasen GW, Bolanos L, Fang J, Jerez A, Wunderlich M, Rigolino C, et al. Targeting IRAK1 as a therapeutic approach for myelodysplastic syndrome. Cancer Cell. 2013;24:90–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Trowbridge JJ, Starczynowski DT. Innate immune pathways and inflammation in hematopoietic aging, clonal hematopoiesis, and MDS. J Exp Med. 2021;218:e20201544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bellissimo DC, Chen CH, Zhu Q, Bagga S, Lee CT, He B, et al. Runx1 negatively regulates inflammatory cytokine production by neutrophils in response to Toll-like receptor signaling. Blood Adv. 2020;4:1145–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ritter M, Klimiankou M, Klimenkova O, Schambach A, Hoffmann D, Schmidt A, et al. Cooperating, congenital neutropenia-associated Csf3r and Runx1 mutations activate pro-inflammatory signaling and inhibit myeloid differentiation of mouse HSPCs. Ann Hematol. 2020;99:2329–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Satoh Y, Matsumura I, Tanaka H, Harada H, Harada Y, Matsui K, et al. C-terminal mutation of RUNX1 attenuates the DNA-damage repair response in hematopoietic stem cells. Leukemia .2012;26:303–11.

    Article  CAS  PubMed  Google Scholar 

  55. Krejci O, Wunderlich M, Geiger H, Chou FS, Schleimer D, Jansen M, et al. p53 signaling in response to increased DNA damage sensitizes AML1-ETO cells to stress-induced death. Blood .2008;111:2190–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Antony-Debre I, Manchev VT, Balayn N, Bluteau D, Tomowiak C, Legrand C, et al. Level of RUNX1 activity is critical for leukemic predisposition but not for thrombocytopenia. Blood .2015;125:930–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wang CQ, Krishnan V, Tay LS, Chin DW, Koh CP, Chooi JY, et al. Disruption of Runx1 and Runx3 leads to bone marrow failure and leukemia predisposition due to transcriptional and DNA repair defects. Cell Rep. 2014;8:767–82.

    Article  CAS  PubMed  Google Scholar 

  58. Tay LS, Krishnan V, Sankar H, Chong YL, Chuang LSH, Tan TZ, et al. RUNX Poly(ADP-Ribosyl)ation and BLM interaction facilitate the Fanconi anemia pathway of DNA repair. Cell Rep. 2018;24:1747–55.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institute of Diabetes and Digestive and Kidney Diseases (K08 DK114527 and R01 DK134515 to R.G.R.), the Fanconi Anemia Research Fund (to R.G.R.), the Edward P. Evans Foundation (to R.G.R.), and a Leukemia & Lymphoma Society CDP fellowship (to C.C.).

Author information

Authors and Affiliations

Authors

Contributions

W.M., T.K., C.C., D.W., K.F., S.F., P.S., O.A., T.C., S.R-T., M.P., S.B., and R.G.R. performed experiments; E.L.dR. and R.G.R. analyzed results; A.S., S.I.W., B.L.E., and D.S. provided key reagents; D.E.B. and T.S. provided key technical advice; R.G.R. designed the research and wrote the paper with feedback from S.I.W. and D.S. W.M. is leading co-first author as he executed the foundational experiments for this work.

Corresponding author

Correspondence to R. Grant Rowe.

Ethics declarations

COMPETING INTERESTS

BLE has received research funding from Celgene, Deerfield, Novartis, and Calico and consulting fees from GRAIL. He is a member of the scientific advisory board and shareholder for Neomorph Therapeutics, TenSixteen Bio, Skyhawk Therapeutics, and Exo Therapeutics.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marion, W., Koppe, T., Chen, CC. et al. RUNX1 mutations mitigate quiescence to promote transformation of hematopoietic progenitors in Fanconi anemia. Leukemia 37, 1698–1708 (2023). https://doi.org/10.1038/s41375-023-01945-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-023-01945-6

Search

Quick links