Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Knock-out of Hopx disrupts stemness and quiescence of hematopoietic stem cells in mice

Abstract

HOPX is a stem cell marker in hair follicles and intestines. It was shown critical for primitive hematopoiesis. We previously showed an association between higher HOPX expression and clinical characteristics related to stemness and quiescence of leukemic cells in acute myeloid leukemia (AML) patients. To further explore its physiologic functions in hematopoietic system, we generated a mouse model with hematopoietic cell-specific knockout of Hopx (Hopx−/−). In young Hopx−/− mice, the hematopoietic stem cells (HSC) showed decreased reconstitution ability after serial transplantation. Further transcriptomic study revealed decreased HSC signatures in long-term HSCs from the Hopx−/− mice. At 18 months of age, half of the Hopx−/− mice developed cytopenia and splenomegaly. Bone marrow (BM) from the sick mice showed myeloid hyperplasia with predominant mature neutrophils, and decreased progenitor cells and lymphocytes. These phenotypes suggested critical functions of Hopx in maintaining HSC quiescence. Transcriptomic study of the Hopx−/− marrow cells showed significant downregulation of the Cxcl12-Cxcr4 axis, which is critical for maintenance of HSC quiescence. We next examined the role of Hopx in AML by using the MN1 overexpression murine leukemia model. Mice transplanted with MN1-overexpressed Hopx−/− BM cells developed AML with more aggressive phenotypes compared with those transplanted with MN1-overexpressed Hopx-wild cells. Hopx−/− MN1-overexpressed leukemia cells showed higher proliferation rate and downregulation of Cxcl12 and Cxcr4. Furthermore, in human AML, BM plasma CXCL12 levels were lower in patients with lower HOPX expression. In conclusion, our study highlights the roles of Hopx in maintenance of quiescence of the hematopoietic stem cells through CXCL12 pathway in vivo and provides implication of this protein in normal and malignant hematopoiesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Generation of Hopx−/− mice.
Fig. 2: The subtle phenotypes of young Hopx−/− mice.
Fig. 3: Analysis of aged Hopx wild-type (WT) and Hopx−/− mice.
Fig. 4: Transcriptomic analysis of WT and Hopx−/− mice.
Fig. 5: Phenotypic analysis of AML cells transformed by MN1 overpression in Hopx KO or WT backgrounds.
Fig. 6: Transcriptomic analyses of AML cells induced by MN1 overexpression in WT or Hopx−/− background.

Similar content being viewed by others

References

  1. Shin CH, Liu ZP, Passier R, Zhang CL, Wang DZ, Harris TM, et al. Modulation of cardiac growth and development by HOP, an unusual homeodomain protein. Cell. 2002;110:725–35.

    Article  CAS  PubMed  Google Scholar 

  2. Chen F, Kook H, Milewski R, Gitler AD, Lu MM, Li J, et al. Hop is an unusual homeobox gene that modulates cardiac development. Cell. 2002;110:713–23.

    Article  CAS  PubMed  Google Scholar 

  3. Kook H, Yung WW, Simpson RJ, Kee HJ, Shin S, Lowry JA, et al. Analysis of the structure and function of the transcriptional coregulator HOP. Biochemistry. 2006;45:10584–90.

    Article  CAS  PubMed  Google Scholar 

  4. Takeda N, Jain R, LeBoeuf MR, Wang Q, Lu MM, Epstein JA. Interconversion between intestinal stem cell populations in distinct niches. Science. 2011;334:1420–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Munoz J, Stange DE, Schepers AG, van de Wetering M, Koo BK, Itzkovitz S, et al. The Lgr5 intestinal stem cell signature: robust expression of proposed quiescent ‘+4’ cell markers. EMBO J. 2012;31:3079–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Takeda N, Jain R, Leboeuf MR, Padmanabhan A, Wang Q, Li L, et al. Hopx expression defines a subset of multipotent hair follicle stem cells and a progenitor population primed to give rise to K6+ niche cells. Development. 2013;140:1655–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jain R, Barkauskas CE, Takeda N, Bowie EJ, Aghajanian H, Wang Q, et al. Plasticity of Hopx(+) type I alveolar cells to regenerate type II cells in the lung. Nat Commun. 2015;6:6727.

    Article  CAS  PubMed  Google Scholar 

  8. Berg DA, Su Y, Jimenez-Cyrus D, Patel A, Huang N, Morizet D, et al. A Common embryonic origin of stem cells drives developmental and adult neurogenesis. Cell. 2019;177:654–68.e15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chen Y, Pacyna-Gengelbach M, Deutschmann N, Niesporek S, Petersen I. Homeobox gene HOP has a potential tumor suppressive activity in human lung cancer. Int J Cancer J Int du Cancer. 2007;121:1021–7.

    Article  CAS  Google Scholar 

  10. Harada Y, Kijima K, Shinmura K, Sakata M, Sakuraba K, Yokomizo K, et al. Methylation of the homeobox gene, HOPX, is frequently detected in poorly differentiated colorectal cancer. Anticancer Res. 2011;31:2889–92.

    CAS  PubMed  Google Scholar 

  11. Yamashita K, Kim MS, Park HL, Tokumaru Y, Osada M, Inoue H, et al. HOP/OB1/NECC1 promoter DNA is frequently hypermethylated and involved in tumorigenic ability in esophageal squamous cell carcinoma. Mol. Cancer Res. 2008;6:31–41.

    Article  CAS  PubMed  Google Scholar 

  12. Katoh H, Yamashita K, Waraya M, Margalit O, Ooki A, Tamaki H, et al. Epigenetic silencing of HOPX promotes cancer progression in colorectal cancer. Neoplasia. 2012;14:559–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Waraya M, Yamashita K, Katoh H, Ooki A, Kawamata H, Nishimiya H, et al. Cancer specific promoter CpG Islands hypermethylation of HOP homeobox (HOPX) gene and its potential tumor suppressive role in pancreatic carcinogenesis. BMC Cancer. 2012;12:397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ooki A, Yamashita K, Kikuchi S, Sakuramoto S, Katada N, Kokubo K, et al. Potential utility of HOP homeobox gene promoter methylation as a marker of tumor aggressiveness in gastric cancer. Oncogene. 2010;29:3263–75.

    Article  CAS  PubMed  Google Scholar 

  15. Yamaguchi S, Asanoma K, Takao T, Kato K, Wake N. Homeobox gene HOPX is epigenetically silenced in human uterine endometrial cancer and suppresses estrogen-stimulated proliferation of cancer cells by inhibiting serum response factor. Int J Cancer J Int du Cancer. 2009;124:2577–88.

    Article  CAS  Google Scholar 

  16. Ren X, Yang X, Cheng B, Chen X, Zhang T, He Q, et al. HOPX hypermethylation promotes metastasis via activating SNAIL transcription in nasopharyngeal carcinoma. Nat Commun. 2017;8:14053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lin CC, Hsu YC, Li YH, Kuo YY, Hou HA, Lan KH, et al. Higher HOPX expression is associated with distinct clinical and biological features and predicts poor prognosis in de novo acute myeloid leukemia. Haematologica. 2017;102:1044–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhou X, Crow AL, Hartiala J, Spindler TJ, Ghazalpour A, Barsky LW, et al. The genetic landscape of hematopoietic stem cell frequency in mice. Stem Cell Rep. 2015;5:125–38.

    Article  CAS  Google Scholar 

  19. Palpant NJ, Wang Y, Hadland B, Zaunbrecher RJ, Redd M, Jones D, et al. Chromatin and transcriptional analysis of mesoderm progenitor cells identifies HOPX as a regulator of primitive hematopoiesis. Cell Rep. 2017;20:1597–608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tzeng YS, Li H, Kang YL, Chen WC, Cheng WC, Lai DM. Loss of Cxcl12/Sdf-1 in adult mice decreases the quiescent state of hematopoietic stem/progenitor cells and alters the pattern of hematopoietic regeneration after myelosuppression. Blood. 2011;117:429–39.

    Article  CAS  PubMed  Google Scholar 

  21. Greenbaum A, Hsu YM, Day RB, Schuettpelz LG, Christopher MJ, Borgerding JN, et al. CXCL12 in early mesenchymal progenitors is required for haematopoietic stem-cell maintenance. Nature. 2013;495:227–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Heuser M, Yun H, Berg T, Yung E, Argiropoulos B, Kuchenbauer F, et al. Cell of origin in AML: susceptibility to MN1-induced transformation is regulated by the MEIS1/AbdB-like HOX protein complex. Cancer Cell. 2011;20:39–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tumpel S, Rudolph KL. Quiescence: good and bad of stem cell aging. Trends Cell Biol. 2019;29:672–85.

    Article  PubMed  CAS  Google Scholar 

  24. Chakkalakal JV, Jones KM, Basson MA, Brack AS. The aged niche disrupts muscle stem cell quiescence. Nature. 2012;490:355–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Morrison SJ, Weissman IL. The long-term repopulating subset of hematopoietic stem cells is deterministic and isolatable by phenotype. Immunity. 1994;1:661–73.

    Article  CAS  PubMed  Google Scholar 

  26. Cotsarelis G, Sun TT, Lavker RM. Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell. 1990;61:1329–37.

    Article  CAS  PubMed  Google Scholar 

  27. Codega P, Silva-Vargas V, Paul A, Maldonado-Soto AR, Deleo AM, Pastrana E, et al. Prospective identification and purification of quiescent adult neural stem cells from their in vivo niche. Neuron. 2014;82:545–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Basak O, Beumer J, Wiebrands K, Seno H, van Oudenaarden A, Clevers H. Induced quiescence of Lgr5+ stem cells in intestinal organoids enables differentiation of hormone-producing enteroendocrine cells. Cell Stem Cell. 2017;20:177–90.e4.

    Article  CAS  PubMed  Google Scholar 

  29. Buczacki SJ, Zecchini HI, Nicholson AM, Russell R, Vermeulen L, Kemp R, et al. Intestinal label-retaining cells are secretory precursors expressing Lgr5. Nature. 2013;495:65–9.

    Article  CAS  PubMed  Google Scholar 

  30. Tian H, Biehs B, Warming S, Leong KG, Rangell L, Klein OD, et al. A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable. Nature. 2011;478:255–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ni F, Yu WM, Wang X, Fay ME, Young KM, Qiu Y, et al. Ptpn21 controls hematopoietic stem cell homeostasis and biomechanics. Cell Stem Cell. 2019;24:608–20.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cheng T, Rodrigues N, Shen H, Yang Y, Dombkowski D, Sykes M, et al. Hematopoietic stem cell quiescence maintained by p21cip1/waf1. Science. 2000;287:1804–8.

    Article  CAS  PubMed  Google Scholar 

  33. Hock H, Hamblen MJ, Rooke HM, Schindler JW, Saleque S, Fujiwara Y, et al. Gfi-1 restricts proliferation and preserves functional integrity of haematopoietic stem cells. Nature. 2004;431:1002–7.

    Article  CAS  PubMed  Google Scholar 

  34. Nie Y, Han YC, Zou YR. CXCR4 is required for the quiescence of primitive hematopoietic cells. J Exp Med. 2008;205:777–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mendelson A, Frenette PS. Hematopoietic stem cell niche maintenance during homeostasis and regeneration. Nat Med. 2014;20:833–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Scadden DT. Nice neighborhood: emerging concepts of the stem cell niche. Cell. 2014;157:41–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Burger JA, Kipps TJ. CXCR4: a key receptor in the crosstalk between tumor cells and their microenvironment. Blood. 2006;107:1761–7.

    Article  CAS  PubMed  Google Scholar 

  38. Beck TC, Gomes AC, Cyster JG, Pereira JP. CXCR4 and a cell-extrinsic mechanism control immature B lymphocyte egress from bone marrow. J Exp Med. 2014;211:2567–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Agarwal P, Isringhausen S, Li H, Paterson AJ, He J, Gomariz A, et al. Mesenchymal niche-specific expression of Cxcl12 controls quiescence of treatment-resistant leukemia stem cells. Cell Stem Cell. 2019;24:769–84.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pitt LA, Tikhonova AN, Hu H, Trimarchi T, King B, Gong Y, et al. CXCL12-producing vascular endothelial niches control acute T cell leukemia maintenance. Cancer Cell. 2015;27:755–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hsu YC, Chen TC, Lin CC, Yuan CT, Hsu CL, Hou HA, et al. Phf6-null hematopoietic stem cells have enhanced self-renewal capacity and oncogenic potentials. Blood Adv. 2019;3:2355–67.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the FACS Core of National Taiwan University Hospital for performing cell sorting and FACS analysis. We also thank the technique help from the Genomics Core Facility of the Institute of Molecular Biology, Academia Sinica.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wen-Chien Chou or Hwei-Fang Tien.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, CC., Yao, CY., Hsu, YC. et al. Knock-out of Hopx disrupts stemness and quiescence of hematopoietic stem cells in mice. Oncogene 39, 5112–5123 (2020). https://doi.org/10.1038/s41388-020-1340-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-020-1340-2

This article is cited by

Search

Quick links