Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

ACUTE MYELOID LEUKEMIA

Targeting a mitochondrial E3 ubiquitin ligase complex to overcome AML cell-intrinsic Venetoclax resistance

Abstract

To identify molecules/pathways governing Venetoclax (VEN) sensitivity, we performed genome-wide CRISPR/Cas9 screens using a mouse AML line insensitive to VEN-induced mitochondrial apoptosis. Levels of sgRNAs targeting March5, Ube2j2 or Ube2k significantly decreased upon VEN treatment, suggesting synthetic lethal interaction. Depletion of either Ube2j2 or Ube2k sensitized AML cells to VEN only in the presence of March5, suggesting coordinate function of the E2s Ube2j2 and Ube2k with the E3 ligase March5. We next performed CRISPR screens using March5 knockout cells and identified Noxa as a key March5 substrate. Mechanistically, Bax released from Bcl2 upon VEN treatment was entrapped by Mcl1 and Bcl-XL and failed to induce apoptosis in March5 intact AML cells. By contrast, in March5 knockout cells, liberated Bax did not bind to Mcl1, as Noxa likely occupied Mcl1 BH3-binding grooves and efficiently induced mitochondrial apoptosis. We reveal molecular mechanisms underlying AML cell-intrinsic VEN resistance and suggest a novel means to sensitize AML cells to VEN.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A genome-wide CRISPR-Cas9 screen identifies components of the E3 ubiquitin ligase complex as key modulators of VEN sensitivity.
Fig. 2: Ube2j2 and Ube2k function March5-dependently.
Fig. 3: March5 depletion significantly sensitizes mMA9Cas cells to VEN or A-1155463 treatment.
Fig. 4: A genome-wide CRIPSR screen in March5 KO cells identifies Noxa as a March5 substrate relevant to VEN sensitivity.
Fig. 5: The March5/Noxa axis regulates AML cells sensitivity to Venetoclax by modulating BAX saturation of anti-apoptotic proteins.

Similar content being viewed by others

Data availability

The processed data of CRISPR/Cas9 screens are available as Supplementary tables. Raw data will be provided upon request.

References

  1. Papaemmanuil E, Gerstung M, Bullinger L, Gaidzik VI, Paschka P, Roberts ND, et al. Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med. 2016;374:2209–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Short NJ, Rytting ME, Cortes JE. Acute myeloid leukaemia. Lancet. 2018;392:593–606.

    Article  PubMed  Google Scholar 

  3. Dohner H, Wei AH, Appelbaum FR, Craddock C, DiNardo CD, Dombret H, et al. Diagnosis and management of AMl in adults: 2022 ELN recommendations from an international expert panel. Blood. 2022;140:1345–77.

    Article  PubMed  Google Scholar 

  4. Dohner H, Wei AH, Lowenberg B. Towards precision medicine for AML. Nat Rev Clin Oncol. 2021;18:577–90.

    Article  PubMed  Google Scholar 

  5. Chan SM, Thomas D, Corces-Zimmerman MR, Xavy S, Rastogi S, Hong WJ, et al. Isocitrate dehydrogenase 1 and 2 mutations induce BCL-2 dependence in acute myeloid leukemia. Nat Med. 201521:178–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Konopleva M, Pollyea DA, Potluri J, Chyla B, Hogdal L, Busman T, et al. Efficacy and biological correlates of response in a phase II study of Venetoclax monotherapy in patients with acute myelogenous leukemia. Cancer Discov. 2016;6:1106–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pollyea DA, Stevens BM, Jones CL, Winters A, Pei S, Minhajuddin M, et al. Venetoclax with azacitidine disrupts energy metabolism and targets leukemia stem cells in patients with acute myeloid leukemia. Nat Med. 2018;24:1859–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. DiNardo CD, Jonas BA, Pullarkat V, Thirman MJ, Garcia JS, Wei AH, et al. Azacitidine and Venetoclax in previously untreated acute myeloid leukemia. N Engl J Med. 2020;383:617–29.

    Article  CAS  PubMed  Google Scholar 

  9. Roberts AW, Wei AH, Huang DCS. BCL2 and MCL1 inhibitors for hematologic malignancies. Blood. 2021;138:1120–36.

    Article  CAS  PubMed  Google Scholar 

  10. Wei AH, Montesinos P, Ivanov V, DiNardo CD, Novak J, Laribi K, et al. Venetoclax plus LDAC for newly diagnosed AML ineligible for intensive chemotherapy: a phase 3 randomized placebo-controlled trial. Blood. 2020;135:2137–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Park CM, Bruncko M, Adickes J, Bauch J, Ding H, Kunzer A, et al. Discovery of an orally bioavailable small molecule inhibitor of prosurvival B-cell lymphoma 2 proteins. J Med Chem. 2008;51:6902–15.

    Article  CAS  PubMed  Google Scholar 

  12. Souers AJ, Leverson JD, Boghaert ER, Ackler SL, Catron ND, Chen J, et al. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat Med. 2013;19:202–8.

    Article  CAS  PubMed  Google Scholar 

  13. Pan R, Hogdal LJ, Benito JM, Bucci D, Han L, Borthakur G, et al. Selective BCL-2 inhibition by ABT-199 causes on-target cell death in acute myeloid leukemia. Cancer Discov. 2014;4:362–75.

    Article  CAS  PubMed  Google Scholar 

  14. Walensky LD. Targeting BAX to drug death directly. Nat Chem Biol. 2019;15:657–65.

    Article  CAS  PubMed  Google Scholar 

  15. Diepstraten ST, Anderson MA, Czabotar PE, Lessene G, Strasser A, Kelly GL. The manipulation of apoptosis for cancer therapy using BH3-mimetic drugs. Nat Rev Cancer. 2021;22:45–64.

    Article  PubMed  Google Scholar 

  16. Vo TT, Ryan J, Carrasco R, Neuberg D, Rossi DJ, Stone RM, et al. Relative mitochondrial priming of myeloblasts and normal HSCs determines chemotherapeutic success in AML. Cell. 2012;151:344–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kotschy A, Szlavik Z, Murray J, Davidson J, Maragno AL, Le Toumelin-Braizat G, et al. The MCL1 inhibitor S63845 is tolerable and effective in diverse cancer models. Nature. 2016;538:477–82.

    Article  PubMed  Google Scholar 

  18. Yamauchi T, Masuda T, Canver MC, Seiler M, Semba Y, Shboul M, et al. Genome-wide CRISPR-Cas9 screen identifies leukemia-specific dependence on a Pre-mRNA metabolic pathway regulated by DCPS. Cancer Cell. 2018;33:386–400 e385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li W, Koster J, Xu H, Chen CH, Xiao T, Liu JS, et al. Quality control, modeling, and visualization of CRISPR screens with MAGeCK-VISPR. Genome Biol. 2015;16:281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Guièze R, Liu VM, Rosebrock D, Jourdain AA, Hernández-Sánchez M, Martinez Zurita A, et al. Mitochondrial reprogramming underlies resistance to BCL-2 inhibition in lymphoid malignancies. Cancer Cell. 2019;36:369–384.e13.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Chen X, Glytsou C, Zhou H, Narang S, Reyna DE, Lopez A, et al. Targeting mitochondrial structure sensitizes acute myeloid leukemia to venetoclax treatment. Cancer Disco. 2019;9:890–909.

    Article  CAS  Google Scholar 

  22. Roca-Portoles A, Rodriguez-Blanco G, Sumpton D, Cloix C, Mullin M, Mackay GM, et al. Venetoclax causes metabolic reprogramming independent of BCL-2 inhibition. Cell Death Dis. 2020;11:616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang X, Herr RA, Rabelink M, Hoeben RC, Wiertz EJ, Hansen TH. Ube2j2 ubiquitinates hydroxylated amino acids on ER-associated degradation substrates. J Cell Biol. 2009;187:655–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Middleton AJ, Day CL. The molecular basis of lysine 48 ubiquitin chain synthesis by Ube2K. Sci Rep. 2015;5:16793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zheng N, Shabek N. Ubiquitin ligases: structure, function, and regulation. Annu Rev Biochem. 2017;86:129–57.

    Article  CAS  PubMed  Google Scholar 

  26. Yonashiro R, Ishido S, Kyo S, Fukuda T, Goto E, Matsuki Y, et al. A novel mitochondrial ubiquitin ligase plays a critical role in mitochondrial dynamics. EMBO J. 2006;25:3618–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tao ZF, Hasvold L, Wang L, Wang X, Petros AM, Park CH, et al. Discovery of a potent and selective BCL-XL inhibitor with in vivo activity. ACS Med Chem Lett. 2014;5:1088–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nabet B, Roberts JM, Buckley DL, Paulk J, Dastjerdi S, Yang A, et al. The dTAG system for immediate and target-specific protein degradation. Nat Chem Biol. 2018;14:431–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nabet B, Ferguson FM, Seong BKA, Kuljanin M, Leggett AL, Mohardt ML, et al. Rapid and direct control of target protein levels with VHL-recruiting dTAG molecules. Nat Commun. 2020;11:4687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Haschka MD, Karbon G, Soratroi C, O’Neill KL, Luo X, Villunger A. MARCH5-dependent degradation of MCL1/NOXA complexes defines susceptibility to antimitotic drug treatment. Cell Death Differ. 2020;27:2297–312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Djajawi TM, Liu L, Gong JN, Huang AS, Luo MJ, Xu Z, et al. MARCH5 requires MTCH2 to coordinate proteasomal turnover of the MCL1:NOXA complex. Cell Death Differ. 2020;27:2484–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Arai S, Varkaris A, Nouri M, Chen S, Xie L, Balk SP. MARCH5 mediates NOXA-dependent MCL1 degradation driven by kinase inhibitors and integrated stress response activation. Elife. 2020;9:e54954.

  33. Hjerpe R, Aillet F, Lopitz-Otsoa F, Lang V, England P, Rodriguez MS. Efficient protection and isolation of ubiquitylated proteins using tandem ubiquitin-binding entities. EMBO Rep. 2009;10:1250–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Martinez Molina D, Jafari R, Ignatushchenko M, Seki T, Larsson EA, Dan C, et al. Monitoring drug target engagement in cells and tissues using the cellular thermal shift assay. Science. 2013;341:84–87.

    Article  PubMed  Google Scholar 

  35. Willis SN, Chen L, Dewson G, Wei A, Naik E, Fletcher JI, et al. Proapoptotic Bak is sequestered by Mcl-1 and Bcl-xL, but not Bcl-2, until displaced by BH3-only proteins. Genes Dev. 2005;19:1294–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lachowiez CA, Reville PK, Kantarjian H, Jabbour E, Borthakur G, Daver N, et al. Venetoclax combined with induction chemotherapy in patients with newly diagnosed acute myeloid leukaemia: a post-hoc, propensity score-matched, cohort study. Lancet Haematol. 2022;9:e350–e360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pullarkat VA, Lacayo NJ, Jabbour E, Rubnitz JE, Bajel A, Laetsch TW, et al. Venetoclax and Navitoclax in Combination with Chemotherapy in Patients with Relapsed or Refractory Acute Lymphoblastic Leukemia and Lymphoblastic Lymphoma. Cancer Discov. 2021;11:1440–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Daver N, Perl AE, Maly J, Levis M, Ritchie E, Litzow M, et al. Venetoclax plus gilteritinib for FLT3-mutated relapsed/refractory acute myeloid leukemia. J Clin Oncol. 2022;40:4048–59.

  39. Nechiporuk T, Kurtz SE, Nikolova O, Liu T, Jones CL, D’Alessandro A, et al. The TP53 apoptotic network is a primary mediator of resistance to BCL2 inhibition in AML cells. Cancer Discov. 2019;9:910–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Blombery P, Anderson MA, Gong JN, Thijssen R, Birkinshaw RW, Thompson ER, et al. Acquisition of the recurrent Gly101Val mutation in BCL2 confers resistance to venetoclax in patients with progressive chronic lymphocytic leukemia. Cancer Discov. 2019;9:342–53.

    Article  CAS  PubMed  Google Scholar 

  41. Pei S, Pollyea DA, Gustafson A, Stevens BM, Minhajuddin M, Fu R, et al. Monocytic subclones confer resistance to venetoclax-based therapy in acute myeloid leukemia patients. Cancer Discov. 2020;10:536–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Blombery P, Lew TE, Dengler MA, Thompson ER, Lin VS, Chen X, et al. Clonal hematopoiesis, myeloid disorders and BAX-mutated myelopoiesis in patients receiving venetoclax for CLL. Blood. 2021;139:1198–207.

  43. Bisaillon R, Moison C, Thiollier C, Krosl J, Bordeleau ME, Lehnertz B, et al. Genetic characterization of ABT-199 sensitivity in human AML. Leukemia. 2020;34:63–74.

    Article  PubMed  Google Scholar 

  44. Zhang H, Nakauchi Y, Kohnke T, Stafford M, Bottomly D, Thomas R, et al. Integrated analysis of patient samples identifies biomarkers for venetoclax efficacy and combination strategies in acute myeloid leukemia. Nat Cancer. 2020;1:826–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. DiNardo CD, Tiong IS, Quaglieri A, MacRaild S, Loghavi S, Brown FC, et al. Molecular patterns of response and treatment failure after frontline venetoclax combinations in older patients with AML. Blood. 2020;135:791–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Glaser SP, Lee EF, Trounson E, Bouillet P, Wei A, Fairlie WD, et al. Anti-apoptotic Mcl-1 is essential for the development and sustained growth of acute myeloid leukemia. Genes Dev. 2012;26:120–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Thijssen R, Diepstraten ST, Moujalled D, Chew E, Flensburg C, Shi MX, et al. Intact TP-53 function is essential for sustaining durable responses to BH3-mimetic drugs in leukemias. Blood. 2021;137:2721–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Subramanian A, Andronache A, Li YC, Wade M. Inhibition of MARCH5 ubiquitin ligase abrogates MCL1-dependent resistance to BH3 mimetics via NOXA. Oncotarget. 2016;7:15986–6002.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Jin S, Cojocari D, Purkal JJ, Popovic R, Talaty NN, Xiao Y, et al. 5-azacitidine induces NOXA to prime AML cells for venetoclax-mediated apoptosis. Clin Cancer Res. 2020;26:3371–83.

    Article  CAS  PubMed  Google Scholar 

  50. Cojocari D, Smith BN, Purkal JJ, Arrate MP, Huska JD, Xiao Y, et al. Pevonedistat and azacitidine upregulate NOXA (PMAIP1) to increase sensitivity to venetoclax in preclinical models of acute myeloid leukemia. Haematologica. 2021;107:825–35.

  51. Lin S, Larrue C, Scheidegger NK, Seong BKA, Dharia NV, Kuljanin M, et al. An in vivo CRISPR screening platform for prioritizing therapeutic targets in AML. Cancer Discov. 2022;12:432–49.

    Article  CAS  PubMed  Google Scholar 

  52. Nagashima S, Tokuyama T, Yonashiro R, Inatome R, Yanagi S. Roles of mitochondrial ubiquitin ligase MITOL/MARCH5 in mitochondrial dynamics and diseases. J Biochem. 2014;155:273–9.

    Article  CAS  PubMed  Google Scholar 

  53. Sasaki K, Yamauchi T, Semba Y, Nogami J, Imanaga H, Terasaki T, et al. Genome-wide CRISPR-Cas9 screen identifies rationally designed combination therapies for CRLF2-rearranged Ph-like ALL. Blood. 2022;139:748–60.

  54. Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA, Mikkelsen TS, et al. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science. 2014;343:84–87.

    Article  CAS  PubMed  Google Scholar 

  55. Colic M, Wang G, Zimmermann M, Mascall K, McLaughlin M, Bertolet L, et al. Identifying chemogenetic interactions from CRISPR screens with drugZ. Genome Med. 2019;11:52.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Edlich F, Banerjee S, Suzuki M, Cleland MM, Arnoult D, Wang C, et al. Bcl-x(L) retrotranslocates Bax from the mitochondria into the cytosol. Cell. 2011;145:104–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Schellenberg B, Wang P, Keeble JA, Rodriguez-Enriquez R, Walker S, Owens TW, et al. Bax exists in a dynamic equilibrium between the cytosol and mitochondria to control apoptotic priming. Mol Cell. 2013;49:959–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the members of the Department of Medicine and Biosystemic Science and the Division of Precision Medicine at Kyushu University for assistance and helpful discussion, and Elise Lamar for critical reading of the manuscript. This work is supported in part by a Grant-in-Aid for Young Scientists (18K16089)(to YS), a Grant-in-Aid for Young Scientists (19K17859), a Research Grant from the KANAE Foundation, the MSD Life Science Foundation, the Yasuda Medical Foundation, the Mochida Memorial Foundation for Medical and Pharmaceutical Research, the Shinnihon Foundation of Advanced Medical Treatment Research, the Takeda Science Foundation (to TY), a Grant-in-Aid for Scientific Research (C)(21K08429), the Shinnihon Foundation of Advanced Medical Treatment Research, the Takeda Science Foundation (to KM), a Grant-in-Aid for Scientific Research (B)(22494899)(to YK), a Grant-in-Aid for Scientific Research (C)(19K05544) (to T Masuda), a Grant-in-Aid for Scientific Research (S)(16H06391) (to KA), a Grant-in-Aid for Scientific Research (A) (17H01567, 20H00540), an AMED under grant number 18063889 and a Grant-in-Aid for Scientific Research (S)(20H05699)(to T Maeda).

Author information

Authors and Affiliations

Authors

Contributions

FN, YS, TY and T Maeda designed CRISPR-Cas9 screen experiments. FN, YS, TY, JN, KA and T Maeda reviewed CRISPR screen data. FN, KS, YS, TY, HI, TT, MM, SH, KM, YK, and T Masuda. executed CRISPR-Cas9 experiments and cell biology and molecular biology experiments. YS and JN analyzed CRISPR screen data. FN and T Maeda wrote the manuscript with help from all authors.

Corresponding author

Correspondence to Takahiro Maeda.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakao, F., Setoguchi, K., Semba, Y. et al. Targeting a mitochondrial E3 ubiquitin ligase complex to overcome AML cell-intrinsic Venetoclax resistance. Leukemia 37, 1028–1038 (2023). https://doi.org/10.1038/s41375-023-01879-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-023-01879-z

This article is cited by

Search

Quick links