Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

ACUTE MYELOID LEUKEMIA

Loss of bisecting GlcNAcylation on MCAM of bone marrow stoma determined pro-tumoral niche in MDS/AML

Abstract

Bone marrow (BM) stroma plays key roles in supporting hematopoietic stem cell (HSC) growth. Glycosylation contributes to the interactions between HSC and surrounding microenvironment. We observed that bisecting N-acetylglucosamine (GlcNAc) structures, in BM stromal cells were significantly lower for MDS/AML patients than for healthy subjects. Malignant clonal cells delivered exosomal miR-188-5p to recipient stromal cells, where it suppressed bisecting GlcNAc by targeting MGAT3 gene. Proteomic analysis revealed reduced GlcNAc structures and enhanced expression of MCAM, a marker of BM niche. We characterized MCAM as a bisecting GlcNAc-bearing target protein, and identified Asn 56 as bisecting GlcNAc modification site on MCAM. MCAM on stromal cell surface with reduced bisecting GlcNAc bound strongly to CD13 on myeloid cells, activated responding ERK signaling, and thereby promoted myeloid cell growth. Our findings, taken together, suggest a novel mechanism whereby MDS/AML clonal cells generate a self-permissive niche by modifying glycosylation level of stromal cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Expression of bisecting GlcNAc in BM stromal cells.
Fig. 2: Bisecting GlcNAc in NBM stroma affects myeloid cell proliferation.
Fig. 3: Exosomal miR188-5p inhibits bisecting GlcNAc by targeting MGAT3.
Fig. 4: Identification and function of bisecting GlcNAcylated MCAM in BM stroma.
Fig. 5: Effect of bisecting GlcNAc modification of MCAM on myeloid cell proliferation.
Fig. 6: Interaction of KG1a membrane proteins with stromal cell MCAM.

Similar content being viewed by others

Data availability

The data supporting the conclusions of this article have been given in this article and its additional files.

References

  1. Morrison SJ, Scadden DT. The bone marrow niche for haematopoietic stem cells. Nature. 2014;505:327–34.

    Article  CAS  Google Scholar 

  2. Snykers S, De Kock J, Rogiers V, Vanhaecke T. In vitro differentiation of embryonic and adult stem cells into hepatocytes: state of the art. Stem Cells. 2009;27:577–605.

    Article  CAS  Google Scholar 

  3. Corre J, Mahtouk K, Attal M, Gadelorge M, Huynh A, Fleury-Cappellesso S, et al. Bone marrow mesenchymal stem cells are abnormal in multiple myeloma. Leukemia. 2007;21:1079–88.

    Article  CAS  Google Scholar 

  4. Noll J, Williams S, Tong C, Wang H, Quach J, Purton L, et al. Myeloma plasma cells alter the bone marrow microenvironment by stimulating the proliferation of mesenchymal stromal cells. Haematologica. 2014;99:163–71.

    Article  CAS  Google Scholar 

  5. Shafat M, Oellerich T, Mohr S, Robinson S, Edwards D, Marlein C, et al. Leukemic blasts program bone marrow adipocytes to generate a protumoral microenvironment. Blood. 2017;129:1320–32.

    Article  CAS  Google Scholar 

  6. Hemmoranta H, Satomaa T, Blomqvist M, Heiskanen A, Aitio O, Saarinen J, et al. N-glycan structures and associated gene expression reflect the characteristic N-glycosylation pattern of human hematopoietic stem and progenitor cells. Exp Hematol. 2007;35:1279–92.

    Article  CAS  Google Scholar 

  7. Mak A, Blakely K, Williams R, Penttila P, Shukalyuk A, Osman K, et al. CD133 protein N-glycosylation processing contributes to cell surface recognition of the primitive cell marker AC133 epitope. J Biol Chem. 2011;286:41046–56.

    Article  CAS  Google Scholar 

  8. Marjon K, Termini C, Karlen K, Saito-Reis C, Soria C, Lidke K, et al. Tetraspanin CD82 regulates bone marrow homing of acute myeloid leukemia by modulating the molecular organization of N-cadherin. Oncogene. 2016;35:4132–40.

    Article  CAS  Google Scholar 

  9. Irons E, Lee-Sundlov M, Zhu Y, Neelamegham S, Hoffmeister K, Lau J. B cells suppress medullary granulopoiesis by an extracellular glycosylation-dependent mechanism. Elife. 2019;8:e47328.

    Article  CAS  Google Scholar 

  10. Li X, Marcondes A, Ragoczy T, Telling A, Deeg H. Effect of intravenous coadministration of human stroma cell lines on engraftment of long-term repopulating clonal myelodysplastic syndrome cells in immunodeficient mice. Blood Cancer J. 2013;3:e113.

    Article  CAS  Google Scholar 

  11. Li X, Li D, Pang X, Yang G, Deeg H, Guan F. Quantitative analysis of glycans, related genes, and proteins in two human bone marrow stromal cell lines using an integrated strategy. Exp Hematol. 2015;43:760–9.

    Article  CAS  Google Scholar 

  12. Li J, Xu J, Li L, Ianni A, Kumari P, Liu S, et al. MGAT3-mediated glycosylation of tetraspanin CD82 at asparagine 157 suppresses ovarian cancer metastasis by inhibiting the integrin signaling pathway. Theranostics. 2020;10:6467–82.

    Article  CAS  Google Scholar 

  13. Cheng L, Cao L, Wu Y, Xie W, Li J, Guan F, et al. Bisecting N-Acetylglucosamine on EGFR Inhibits Malignant Phenotype of Breast Cancer via Down-Regulation of EGFR/Erk Signaling. Front Oncol. 2020;10:929.

    Article  Google Scholar 

  14. Tan Z, Cao L, Wu Y, Wang B, Song Z, Yang J, et al. Bisecting GlcNAc modification diminishes the pro-metastatic functions of small extracellular vesicles from breast cancer cells. J Extracell Vesicles. 2020;10:e12005.

    Article  CAS  Google Scholar 

  15. Li H, Wang Y, Pang X, Xie C, Deeg J, Wang H, et al. Elevated TWIST1 expression in myelodysplastic syndromes/acute myeloid leukemia reduces efficacy of hypomethylating therapy with decitabine. Haematologica. 2020;105:e502.

    Article  Google Scholar 

  16. Bruscia E, Ziegler E, Price J, Weiner S, Egan M, Krause D. Engraftment of donor-derived epithelial cells in multiple organs following bone marrow transplantation into newborn mice. Stem Cells. 2006;24:2299–308.

    Article  CAS  Google Scholar 

  17. Park N, Pandey K, Chang S, Kwon A, Cho Y, Hur J, et al. Preclinical platform for long-term evaluation of immuno-oncology drugs using hCD34+ humanized mouse model. J Immunother Cancer. 2020;8:e001513.

    Article  Google Scholar 

  18. Sultan A, Miyoshi E, Ihara Y, Nishikawa A, Tsukada Y, Taniguchi N. Bisecting GlcNAc structures act as negative sorting signals for cell surface glycoproteins in forskolin-treated rat hepatoma cells. J Biol Chem. 1997;272:2866–72.

    Article  CAS  Google Scholar 

  19. Negahdaripour M, Owji H, Eskandari S, Zamani M, Vakili B, Nezafat N. Small extracellular vesicles (sEVs): discovery, functions, applications, detection methods and various engineered forms. Expert Opin Biol Ther. 2021;21:371–94.

    Article  CAS  Google Scholar 

  20. Zhou J, Li G, Zheng Y, Shen H, Hu X, Ming Q, et al. A novel autophagy/mitophagy inhibitor liensinine sensitizes breast cancer cells to chemotherapy through DNM1L-mediated mitochondrial fission. Autophagy. 2015;11:1259–79.

    Article  CAS  Google Scholar 

  21. Jia J, Bissa B, Brecht L, Allers L, Choi S, Gu Y, et al. AMPK, a Regulator of Metabolism and Autophagy, Is Activated by Lysosomal Damage via a Novel Galectin-Directed Ubiquitin Signal Transduction System. Mol Cell. 2020;77:951–69.

    Article  CAS  Google Scholar 

  22. Wang Y, Chen T, Han C, He D, Liu H, An H, et al. Lysosome-associated small Rab GTPase Rab7b negatively regulates TLR4 signaling in macrophages by promoting lysosomal degradation of TLR4. Blood. 2007;110:962–71.

    Article  CAS  Google Scholar 

  23. Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, et al. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015;43:447–52.

    Article  Google Scholar 

  24. Subramani J, Ghosh M, Rahman M, Caromile L, Gerber C, Rezaul K, et al. Tyrosine phosphorylation of CD13 regulates inflammatory cell-cell adhesion and monocyte trafficking. J Immunol. 2013;191:3905–12.

    Article  CAS  Google Scholar 

  25. Yehudai-Resheff S, Attias-Turgeman S, Sabbah R, Gabay T, Musallam R, Fridman-Dror A, et al. Abnormal morphological and functional nature of bone marrow stromal cells provides preferential support for survival of acute myeloid leukemia cells. Int J Cancer 2019;144:2279–89.

    CAS  Google Scholar 

  26. Klamer S, Voermans C. The role of novel and known extracellular matrix and adhesion molecules in the homeostatic and regenerative bone marrow microenvironment. Cell Adh Migr. 2014;8:563–77.

    Article  Google Scholar 

  27. Crean S, Meneski J, Hullinger T, Reilly M, DeBoever E, Taichman R. N-linked sialyated sugar receptors support haematopoietic cell-osteoblast adhesions. Br J Haematol. 2004;124:534–46.

    Article  CAS  Google Scholar 

  28. Buffone A, Weaver V. Don’t sugarcoat it: How glycocalyx composition influences cancer progression. J Cell Biol. 2020;219:e201910070.

    Article  Google Scholar 

  29. Lee J, Dykstra B, Spencer J, Kenney L, Greiner D, Shultz L, et al. mRNA-mediated glycoengineering ameliorates deficient homing of human stem cell-derived hematopoietic progenitors. J Clin Investig. 2017;127:2433–7.

    Article  Google Scholar 

  30. Dykstra B, Lee J, Mortensen L, Yu H, Wu Z, Lin C, et al. Glycoengineering of E-Selectin Ligands by Intracellular versus Extracellular Fucosylation Differentially Affects Osteotropism of Human Mesenchymal Stem Cells. Stem Cells. 2016;34:2501–11.

    Article  CAS  Google Scholar 

  31. Lo CY, Weil B, Palka B, Momeni A, Canty J, Neelamegham S. Cell surface glycoengineering improves selectin-mediated adhesion of mesenchymal stem cells (MSCs) and cardiosphere-derived cells (CDCs): Pilot validation in porcine ischemia-reperfusion model. Biomaterials. 2016;74:19–30.

    Article  CAS  Google Scholar 

  32. Isaji T, Gu J, Nishiuchi R, Zhao Y, Takahashi M, Miyoshi E, et al. Introduction of bisecting GlcNAc into integrin alpha5beta1 reduces ligand binding and down-regulates cell adhesion and cell migration. J Biol Chem. 2004;279:19747–54.

    Article  CAS  Google Scholar 

  33. Kitada T, Miyoshi E, Noda K, Higashiyama S, Ihara H, Matsuura N, et al. The addition of bisecting N-acetylglucosamine residues to E-cadherin down-regulates the tyrosine phosphorylation of beta-catenin. J Biol Chem. 2001;276:475–80.

    Article  CAS  Google Scholar 

  34. Kizuka Y, Kitazume S, Fujinawa R, Saito T, Iwata N, Saido T, et al. An aberrant sugar modification of BACE1 blocks its lysosomal targeting in Alzheimer’s disease. EMBO Mol Med. 2015;7:175–89.

    Article  CAS  Google Scholar 

  35. Bronisz A, Godlewski J, Wallace J, Merchant A, Nowicki M, Mathsyaraja H, et al. Reprogramming of the tumour microenvironment by stromal PTEN-regulated miR-320. Nat Cell Biol. 2011;14:159–67.

    Article  CAS  Google Scholar 

  36. Lehmann J, Riethmüller G, Johnson J. MUC18, a marker of tumor progression in human melanoma, shows sequence similarity to the neural cell adhesion molecules of the immunoglobulin superfamily. Proc Natl Acad Sci USA. 1989;86:9891–5.

    Article  CAS  Google Scholar 

  37. Wang Z, Xu Q, Zhang N, Du X, Xu G, Yan X. CD146, from a melanoma cell adhesion molecule to a signaling receptor. Signal Transduct Target Ther. 2020;5:148.

    Article  CAS  Google Scholar 

  38. Trzpis M, McLaughlin P, de Leij L, Harmsen M. Epithelial cell adhesion molecule: more than a carcinoma marker and adhesion molecule. Am J Pathol. 2007;171:386–95.

    Article  CAS  Google Scholar 

  39. Chen J, Dang Y, Feng W, Qiao C, Liu D, Zhang T, et al. SOX18 promotes gastric cancer metastasis through transactivating MCAM and CCL7. Oncogene. 2020;39:5536–52.

    Article  CAS  Google Scholar 

  40. Harkness L, Zaher W, Ditzel N, Isa A, Kassem M. CD146/MCAM defines functionality of human bone marrow stromal stem cell populations. Stem Cell Res Ther. 2016;7:4.

    Article  Google Scholar 

  41. Zhou BO, Yu H, Yue R, Zhao Z, Rios JJ, Naveiras O, et al. Bone marrow adipocytes promote the regeneration of stem cells and haematopoiesis by secreting SCF. Nat Cell Biol. 2017;19:891–903.

    Article  CAS  Google Scholar 

  42. Yue R, Zhou BO, Shimada IS, Zhao Z, Morrison SJ. Leptin Receptor Promotes Adipogenesis and Reduces Osteogenesis by Regulating Mesenchymal Stromal Cells in Adult Bone Marrow. Cell Stem Cell. 2016;18:782–96.

    Article  CAS  Google Scholar 

  43. Stopp S, Bornhäuser M, Ugarte F, Wobus M, Kuhn M, Brenner S, et al. Expression of the melanoma cell adhesion molecule in human mesenchymal stromal cells regulates proliferation, differentiation, and maintenance of hematopoietic stem and progenitor cells. Haematologica. 2013;98:505–13.

    Article  CAS  Google Scholar 

  44. Sacchetti B, Funari A, Michienzi S, Di Cesare S, Piersanti S, Saggio I, et al. Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell. 2007;131:324–36.

    Article  CAS  Google Scholar 

  45. Li LB, Chen N, Ramamoorthy S, Chi L, Cui XN, Wang L, et al. The role of N-glycosylation in function and surface trafficking of the human dopamine transporter. J Biol Chem. 2004;279:21012–20.

    Article  CAS  Google Scholar 

  46. Wujek P, Kida E, Walus M, Wisniewski K, Golabek A. N-glycosylation is crucial for folding, trafficking, and stability of human tripeptidyl-peptidase I. J Biol Chem. 2004;279:12827–39.

    Article  CAS  Google Scholar 

  47. Haga Y, Ishii K, Suzuki T. N-glycosylation is critical for the stability and intracellular trafficking of glucose transporter GLUT4. J Biol Chem. 2011;286:31320–7.

    Article  CAS  Google Scholar 

  48. Fukasawa K, Fujii H, Saitoh Y, Koizumi K, Aozuka Y, Sekine K, et al. Aminopeptidase N (APN/CD13) is selectively expressed in vascular endothelial cells and plays multiple roles in angiogenesis. Cancer Lett. 2006;243:135–43.

    Article  CAS  Google Scholar 

  49. He X, Feng Z, Ma J, Ling S, Cao Y, Gurung B, et al. Bispecific and split CAR T cells targeting CD13 and TIM3 eradicate acute myeloid leukemia. Blood. 2020;135:713–23.

    Article  Google Scholar 

  50. Guo Q, Li X, Cui M, Sun J, Ji H, Ni B, et al. CD13: A Key Player in Multidrug Resistance in Cancer Chemotherapy. Oncol Res. 2020;28:533–40.

    Article  Google Scholar 

  51. Ranogajec I, Jakić-Razumović J, Puzović V, Gabrilovac J. Prognostic value of matrix metalloproteinase-2 (MMP-2), matrix metalloproteinase-9 (MMP-9) and aminopeptidase N/CD13 in breast cancer patients. Med Oncol. 2012;29:561–9.

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the National Science Foundation of China (No. 32071274, 82100148, 31971211), Science Foundation for Distinguished Young Scholars of Shaanxi Province (2021JC-39), the Natural Science Foundation of Shaanxi Province (2021SF-294), and the Youth Innovation Team of Shaanxi Universities.

Author information

Authors and Affiliations

Authors

Contributions

XL and FG conceived the study. JF, YW, BL, XY, LL, JW, XZ, QC, YZ, JG, HL, ZT and ZD performed the experiments and data analysis. FG and XL supervised research and wrote the paper. All authors read and approved the final paper.

Corresponding authors

Correspondence to Xiang Li or Feng Guan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, J., Wang, Y., Li, B. et al. Loss of bisecting GlcNAcylation on MCAM of bone marrow stoma determined pro-tumoral niche in MDS/AML. Leukemia 37, 113–121 (2023). https://doi.org/10.1038/s41375-022-01748-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-022-01748-1

This article is cited by

Search

Quick links