Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

“Blasts” in myeloid neoplasms – how do we define blasts and how do we incorporate them into diagnostic schema moving forward?

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Different cell types reside in CD45 versus side scatter-defined blast gate.
Fig. 2: Blasts may reside outside of CD45 versus side scatter-defined blast gate.
Fig. 3: Improved approaches to incorporate “blast” percentage in disease classification and stratification.

References

  1. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, et al. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. Revised 4th Edition ed. Lyon: International Agency for Research on Cancer; 2017.

  2. Wood BL, Arroz M, Barnett D, DiGiuseppe J, Greig B, Kussick SJ. et al. 2006 Bethesda International Consensus recommendations on the immunophenotypic analysis of hematolymphoid neoplasia by flow cytometry: optimal reagents and reporting for the flow cytometric diagnosis of hematopoietic neoplasia. Cytom B Clin Cytom. 2007;72:S14–22.

    Article  Google Scholar 

  3. Schuurhuis GJ, Heuser M, Freeman S, Bene MC, Buccisano F, Cloos J, et al. Minimal/measurable residual disease in AML: a consensus document from the European LeukemiaNet MRD Working Party. Blood.2018;131:1275–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Theunissen P, Mejstrikova E, Sedek L, van der Sluijs-Gelling AJ, Gaipa G, Bartels M, et al. Standardized flow cytometry for highly sensitive MRD measurements in B-cell acute lymphoblastic leukemia. Blood.2017;129:347–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wood BL. Principles of minimal residual disease detection for hematopoietic neoplasms by flow. Cytom Cytom B Clin Cytom. 2016;90:47–53.

    Article  Google Scholar 

  6. Feller N, van der Velden VH, Brooimans RA, Boeckx N, Preijers F, Kelder A, et al. Defining consensus leukemia-associated immunophenotypes for detection of minimal residual disease in acute myeloid leukemia in a multicenter setting. Blood Cancer J. 2013;3:e129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wood BL. Flow cytometric monitoring of residual disease in acute leukemia. Methods Mol Biol. 2013;999:123–36.

    Article  CAS  PubMed  Google Scholar 

  8. Kratz A, Lee SH, Zini G, Riedl JA, Hur M, Machin S, et al. Digital morphology analyzers in hematology: ICSH review and recommendations. Int J Lab Hematol. 2019;41:437–47.

    PubMed  Google Scholar 

  9. Astle JM, Xu ML, Friedman T, Brown E. Limitations of poor bone marrow aspirations (for an accurate diagnosis) despite the multimodal analytical era: a longitudinal retrospective study. Am J Hematol. 2017;92:E600–2.

    Article  PubMed  Google Scholar 

  10. DiFrancesco T, Boychuk DJ, Lafferty JD, Crowther MA. Bone marrow aspirate collection and preparation–a comparison of three methods. Clin Invest Med. 2012;35:E114–6.

    Article  PubMed  Google Scholar 

  11. Lee SH, Erber WN, Porwit A, Tomonaga M, Peterson LC. International council for standardization in hematology. ICSH guidelines for the standardization of bone marrow specimens and reports. Int J Lab Hematol. 2008;30:349–64.

    Article  PubMed  Google Scholar 

  12. Loken MR, Chu SC, Fritschle W, Kalnoski M, Wells DA. Normalization of bone marrow aspirates for hemodilution in flow cytometric analyses. Cytom B Clin Cytom. 2009;76:27–36.

    Article  Google Scholar 

  13. Harrington AM, Olteanu H, Kroft SH. A dissection of the CD45/side scatter “blast gate”. Am J Clin Pathol. 2012;137:800–4.

    Article  PubMed  Google Scholar 

  14. Chen X, Cherian S. Acute myeloid leukemia immunophenotyping by flow cytometric analysis. Clin Lab Med. 2017;37:753–69.

    Article  PubMed  Google Scholar 

  15. Stouten K, Riedl JA, Levin MD, van Gelder W. Examination of peripheral blood smears: performance evaluation of a digital microscope system using a large-scale leukocyte database. Int J Lab Hematol. 2015;37:e137–40.

    Article  CAS  PubMed  Google Scholar 

  16. Riedl JA, Stouten K, Ceelie H, Boonstra J, Levin MD, van Gelder W. Interlaboratory reproducibility of blood morphology using the digital microscope. J Lab Autom. 2015;20:670–5.

    Article  CAS  PubMed  Google Scholar 

  17. Amundsen EK, Urdal P, Hagve TA, Holthe MR, Henriksson CE. Absolute neutrophil counts from automated hematology instruments are accurate and precise even at very low levels. Am J Clin Pathol. 2012;137:862–9.

    Article  PubMed  Google Scholar 

  18. Kim HN, Hur M, Kim H, Kim SW, Moon HW, Yun YM. Performance of automated digital cell imaging analyzer Sysmex DI- 60. Clin Chem Lab Med. 2017;56:94–102.

    Article  PubMed  Google Scholar 

  19. Briggs C, Longair I, Slavik M, Thwaite K, Mills R, Thavaraja V, et al. Can automated blood film analysis replace the manual differential? An evaluation of the CellaVision DM96 automated image analysis system. Int J Lab Hematol. 2009;31:48–60.

    Article  CAS  PubMed  Google Scholar 

  20. Rollins-Raval MA, Raval JS, Contis L. Experience with CellaVision DM96 for peripheral blood differentials in a large multi-center academic hospital system. J Pathol Inf. 2012;3:29.

    Article  Google Scholar 

  21. Park SH, Park CJ, Choi MO, Kim MJ, Cho YU, Jang S, et al. Automated digital cell morphology identification system (CellaVision DM96) is very useful for leukocyte differentials in specimens with qualitative or quantitative abnormalities. Int J Lab Hematol. 2013;35:517–27.

    Article  CAS  PubMed  Google Scholar 

  22. Da Rin G, Benegiamo A, Di Fabio AM, Dima F, Francione S, Fanelli A, et al. Multicentric evaluation of analytical performances digital morphology with respect to the reference methods by manual optical microscopy. J Clin Pathol. 2020. https://doi.org/10.1136/jclinpath-2020-206857. Online ahead of print.

  23. Makhija K, Lincz LF, Attalla K, Scorgie FE, Enjeti AK, Prasad R. White blood cell evaluation in haematological malignancies using a web-based digital microscopy platform. Int J Lab Hematol. 2021;43:1379–87.

    Article  PubMed  Google Scholar 

  24. Pantanowitz L, Sinard JH, Henricks WH, Fatheree LA, Carter AB, Contis L, et al. Validating whole slide imaging for diagnostic purposes in pathology: guideline from the College of American Pathologists Pathology and Laboratory Quality Center. Arch Pathol Lab Med. 2013;137:1710–22.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Aladily TN, Alnahhal J, Alshorman A, Awidi A. Transient increase in blast count following COVID-19 infection mimicking acute leukemia. Int J Lab Hematol. 2021;43:339–40.

    Article  PubMed  Google Scholar 

  26. Garcia-Bates TM, Cordeiro MT, Nascimento EJ, Smith AP, Soares de Melo KM, McBurney SP, et al. Association between magnitude of the virus-specific plasmablast response and disease severity in dengue patients. J Immunol. 2013;190:80–7.

    Article  CAS  PubMed  Google Scholar 

  27. Imataki O, Ohnishi H, Yamaoka G, Arai T, Kitanaka A, Kubota Y, et al. Marked increase of normal blast morphologically mimicking leukemic clone in acute lymphoblastic leukemia patient following G-CSF therapy. Int J Hematol. 2008;88:468–70.

    Article  PubMed  Google Scholar 

  28. Mattoo H, Mahajan VS, Della-Torre E, Sekigami Y, Carruthers M, Wallace ZS, et al. De novo oligoclonal expansions of circulating plasmablasts in active and relapsing IgG4-related disease. J Allergy Clin Immunol. 2014;134:679–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Moreno-Madrid F, Uberos J, Diaz-Molina M, Ramirez-Arredondo A, Jimenez-Gamiz P, Molina-Carballo A. The presence of precursors of benign pre-B lymphoblasts (hematogones) in the bone marrow of a paediatric patient with cytomegalovirus infection. Clin Med Oncol. 2008;2:437–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Gorczyca W, Sun ZY, Cronin W, Li X, Mau S, Tugulea S. Immunophenotypic pattern of myeloid populations by flow cytometry analysis. Methods Cell Biol. 2011;103:221–66.

    Article  CAS  PubMed  Google Scholar 

  31. Naqvi K, Jabbour E, Bueso-Ramos C, Pierce S, Borthakur G, Estrov Z, et al. Implications of discrepancy in morphologic diagnosis of myelodysplastic syndrome between referral and tertiary care centers. Blood.2011;118:4690–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Senent L, Arenillas L, Luno E, Ruiz JC, Sanz G, Florensa L. Reproducibility of the World Health Organization 2008 criteria for myelodysplastic syndromes. Haematologica. 2013;98:568–75.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Font P, Loscertales J, Soto C, Ricard P, Novas CM, Martin-Clavero E, et al. Interobserver variance in myelodysplastic syndromes with less than 5 % bone marrow blasts: unilineage vs. multilineage dysplasia and reproducibility of the threshold of 2 % blasts. Ann Hematol. 2015;94:565–73.

    Article  PubMed  Google Scholar 

  34. Hodes A, Calvo KR, Dulau A, Maric I, Sun J, Braylan R. The challenging task of enumerating blasts in the bone marrow. Semin Hematol. 2019;56:58–64.

    Article  PubMed  Google Scholar 

  35. Chen X, Othus M, Wood BL, Walter RB, Becker PS, Percival ME, et al. Comparison of myeloid blast counts and variant allele frequencies of gene mutations in myelodysplastic syndrome with excess blasts and secondary acute myeloid leukemia. Leuk Lymphoma. 2021;62:1226–33.

    Article  CAS  PubMed  Google Scholar 

  36. Menssen AJ, Walter MJ. Genetics of progression from MDS to secondary leukemia. Blood.2020;136:50–60.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Papaemmanuil E, Gerstung M, Malcovati L, Tauro S, Gundem G, Van Loo P, et al. Clinical and biological implications of driver mutations in myelodysplastic syndromes. Blood.2013;122:3616–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lindsley RC, Mar BG, Mazzola E, Grauman PV, Shareef S, Allen SL, et al. Acute myeloid leukemia ontogeny is defined by distinct somatic mutations. Blood.2015;125:1367–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Papaemmanuil E, Gerstung M, Bullinger L, Gaidzik VI, Paschka P, Roberts ND, et al. Genomic classification and prognosis in acute myeloid leukemia. N. Engl J Med. 2016;374:2209–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Haferlach T, Nagata Y, Grossmann V, Okuno Y, Bacher U, Nagae G, et al. Landscape of genetic lesions in 944 patients with myelodysplastic syndromes. Leukemia.2014;28:241–7.

    Article  CAS  PubMed  Google Scholar 

  41. Estey E, Thall P, Beran M, Kantarjian H, Pierce S, Keating M. Effect of diagnosis (refractory anemia with excess blasts, refractory anemia with excess blasts in transformation, or acute myeloid leukemia [AML]) on outcome of AML-type chemotherapy. Blood.1997;90:2969–77.

    Article  CAS  PubMed  Google Scholar 

  42. Estey EH, Hasserjian RP, Dohner H. Distinguishing AML from MDS: a fixed blast percentage may no longer be optimal. Blood. 2021. https://doi.org/10.1182/blood.2021011304. Online ahead of print.

  43. DiNardo CD, Garcia-Manero G, Pierce S, Nazha A, Bueso-Ramos C, Jabbour E, et al. Interactions and relevance of blast percentage and treatment strategy among younger and older patients with acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS). Am J Hematol. 2016;91:227–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bachas C, Schuurhuis GJ, Assaraf YG, Kwidama ZJ, Kelder A, Wouters F, et al. The role of minor subpopulations within the leukemic blast compartment of AML patients at initial diagnosis in the development of relapse. Leukemia.2012;26:1313–20.

    Article  CAS  PubMed  Google Scholar 

  45. Ding L, Ley TJ, Larson DE, Miller CA, Koboldt DC, Welch JS, et al. Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature.2012;481:506–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ma X, Edmonson M, Yergeau D, Muzny DM, Hampton OA, Rusch M, et al. Rise and fall of subclones from diagnosis to relapse in pediatric B-acute lymphoblastic leukaemia. Nat Commun. 2015;6:6604.

    Article  CAS  PubMed  Google Scholar 

  47. Phillips D, Schurch CM, Khodadoust MS, Kim YH, Nolan GP, Jiang S. Highly multiplexed phenotyping of immunoregulatory proteins in the tumor microenvironment by CODEX tissue imaging. Front Immunol. 2021;12:687673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ornatsky O, Bandura D, Baranov V, Nitz M, Winnik MA, Tanner S. Highly multiparametric analysis by mass cytometry. J Immunol Methods. 2010;361:1–20.

    Article  CAS  PubMed  Google Scholar 

  49. Bendall SC, Simonds EF, Qiu P, Amir el AD, Krutzik PO, Finck R, et al. Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science.2011;332:687–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zeng Z, Konopleva M, Andreeff M. Single-cell mass cytometry of acute myeloid leukemia and leukemia stem/progenitor cells. Methods Mol Biol. 2017;1633:75–86.

    Article  CAS  PubMed  Google Scholar 

  51. Amir el AD, Davis KL, Tadmor MD, Simonds EF, Levine JH, Bendall SC, et al. viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia. Nat Biotechnol. 2013;31:545–52.

    Article  Google Scholar 

  52. Qiu P, Simonds EF, Bendall SC, Gibbs KD Jr., Bruggner RV, Linderman MD, et al. Extracting a cellular hierarchy from high-dimensional cytometry data with SPADE. Nat Biotechnol. 2011;29:886–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hughes AE, Magrini V, Demeter R, Miller CA, Fulton R, Fulton LL, et al. Clonal architecture of secondary acute myeloid leukemia defined by single-cell sequencing. PLoS Genet. 2014;10:e1004462.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

XC and KN wrote the manuscript and developed the figures and table. JF provided critical inputs.

Corresponding author

Correspondence to Kikkeri N. Naresh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Fromm, J.R. & Naresh, K.N. “Blasts” in myeloid neoplasms – how do we define blasts and how do we incorporate them into diagnostic schema moving forward?. Leukemia 36, 327–332 (2022). https://doi.org/10.1038/s41375-021-01498-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-021-01498-6

This article is cited by

Search

Quick links