Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

CHRONIC MYELOPROLIFERATIVE NEOPLASMS

Germline ATG2B/GSKIP-containing 14q32 duplication predisposes to early clonal hematopoiesis leading to myeloid neoplasms

Abstract

The germline predisposition associated with the autosomal dominant inheritance of the 14q32 duplication implicating ATG2B/GSKIP genes is characterized by a wide clinical spectrum of myeloid neoplasms. We analyzed 12 asymptomatic carriers and 52 patients aged 18–74 years from six families, by targeted sequencing of 41 genes commonly mutated in myeloid malignancies. We found that 75% of healthy carriers displayed early clonal hematopoiesis mainly driven by TET2 mutations. Molecular landscapes of patients revealed two distinct routes of clonal expansion and leukemogenesis. The first route is characterized by the clonal dominance of myeloproliferative neoplasms (MPN)-driver events associated with TET2 mutations in half of cases and mutations affecting splicing and/or the RAS pathway in one-third of cases, leading to the early development of MPN, mostly essential thrombocythemia, with a high risk of transformation (50% after 10 years). The second route is distinguished by the absence of MPN-driver mutations and leads to AML without prior MPN. These patients mostly harbored a genomic landscape specific to acute myeloid leukemia secondary to myelodysplastic syndrome. An unexpected result was the total absence of DNMT3A mutations in this cohort. Our results suggest that the germline duplication constitutively mimics hematopoiesis aging by favoring TET2 clonal hematopoiesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Pedigrees of the six families linked to the germline CNVdupATG2B/GSKIP.
Fig. 2: Characteristics of clonal hematopoiesis in asymptomatic carriers of the CNVdupATG2B/GSKIP.
Fig. 3: Clonal phylogeny of seven patients with ET.
Fig. 4: Effects of genomic acquired factors on the risk of progression of ET patients.
Fig. 5: Disease penetrance and schematic representation of the two alternative routes of leukemogenesis associated with the germline CNVdupATG2B/GSKIP locus.

Similar content being viewed by others

References

  1. Babushok DV, Bessler M, Olson TS. Genetic predisposition to myelodysplastic syndrome and acute myeloid leukemia in children and young adults. Leuk Lymphoma. 2016;57:520–36.

    Article  CAS  PubMed  Google Scholar 

  2. Churpek JE. Familial myelodysplastic syndrome/acute myeloid leukemia. Best Pr Res Clin Haematol. 2017;30:287–9.

    Article  Google Scholar 

  3. Tawana K, Wang J, Renneville A, Bödör C, Hills R, Loveday C, et al. Disease evolution and outcomes in familial AML with germline CEBPA mutations. Blood. 2015;126:1214–23. 3

    Article  CAS  PubMed  Google Scholar 

  4. Rio-Machin A, Vulliamy T, Hug N, Walne A, Tawana K, Cardoso S, et al. The complex genetic landscape of familial MDS and AML reveals pathogenic germline variants. Nat Commun. 2020;11:1044. 25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127:2391–405. 19

    Article  CAS  PubMed  Google Scholar 

  6. Kennedy AL, Shimamura A. Genetic predisposition to MDS: clinical features and clonal evolution. Blood. 2019;133:1071–85. 07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bluteau O, Sebert M, Leblanc T, Peffault de Latour R, Quentin S, Lainey E, et al. A landscape of germ line mutations in a cohort of inherited bone marrow failure patients. Blood. 2018;131:717–32. 15

    Article  CAS  PubMed  Google Scholar 

  8. Landgren O, Goldin LR, Kristinsson SY, Helgadottir EA, Samuelsson J, Bjorkholm M. Increased risks of polycythemia vera, essential thrombocythemia, and myelofibrosis among 24,577 first-degree relatives of 11,039 patients with myeloproliferative neoplasms in Sweden. Blood. 2008;112:2199–204. 15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sud A, Chattopadhyay S, Thomsen H, Sundquist K, Sundquist J, Houlston RS, et al. Familial risks of acute myeloid leukemia, myelodysplastic syndromes, and myeloproliferative neoplasms. Blood. 2018;132:973–6. 30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bellanne-Chantelot C, Chaumarel I, Labopin M, Bellanger F, Barbu V, De Toma C, et al. Genetic and clinical implications of the Val617Phe JAK2 mutation in 72 families with myeloproliferative disorders. Blood. 2006;108:346–52. 1

    Article  CAS  PubMed  Google Scholar 

  11. Rumi E, Passamonti F, Della Porta MG, Elena C, Arcaini L, Vanelli L, et al. Familial chronic myeloproliferative disorders: clinical phenotype and evidence of disease anticipation. J Clin Oncol. 2007;25:5630–5. 2007/11/12 ed

    Article  PubMed  Google Scholar 

  12. Kralovics R, Stockton DW, Prchal JT. Clonal hematopoiesis in familial polycythemia vera suggests the involvement of multiple mutational events in the early pathogenesis of the disease. Blood. 2003;102:3793–6. 15

    Article  CAS  PubMed  Google Scholar 

  13. Saint-Martin C, Leroy G, Delhommeau F, Panelatti G, Dupont S, James C, et al. Analysis of the ten-eleven translocation 2 (TET2) gene in familial myeloproliferative neoplasms. Blood. 2009;114:1628–32.

  14. Olcaydu D, Harutyunyan A, Jäger R, Berg T, Gisslinger B, Pabinger I, et al. A common JAK2 haplotype confers susceptibility to myeloproliferative neoplasms. Nat Genet. 2009;41:450–4. 2009/03/15 ed

    Article  CAS  PubMed  Google Scholar 

  15. Jäger R, Harutyunyan AS, Rumi E, Pietra D, Berg T, Olcaydu D. et al. Common germline variation at the TERT locus contributes to familial clustering of myeloproliferative neoplasms. Am J Hematol. 2014;89:1107–10.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Tapper W, Jones AV, Kralovics R, Harutyunyan AS, Zoi K, Leung W, et al. Genetic variation at MECOM, TERT, JAK2 and HBS1L-MYB predisposes to myeloproliferative neoplasms. Nat Commun. 2015 Apr;6:6691.

  17. Hinds DA, Barnholt KE, Mesa RA, Kiefer AK, Do CB, Eriksson N, et al. Germ line variants predispose to both JAK2 V617F clonal hematopoiesis and myeloproliferative neoplasms. Blood. 2016;128:1121–8. 25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bao EL, Nandakumar SK, Liao X, Bick AG, Karjalainen J, Tabaka M, et al. Inherited myeloproliferative neoplasm risk affects haematopoietic stem cells. Nature. 2020;586:769–75. 2020/10/16 ed

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bick AG, Weinstock JS, Nandakumar SK, Fulco CP, Bao EL, Zekavat SM, et al. Inherited causes of clonal haematopoiesis in 97,691 whole genomes. Nature. 2020;586:763–8. 2020/10/16 ed

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Olcaydu D, Rumi E, Harutyunyan A, Passamonti F, Pietra D, Pascutto C, et al. The role of the JAK2 GGCC haplotype and the TET2 gene in familial myeloproliferative neoplasms. Haematologica. 2011;96:367–74. 2010/12/20 ed

    Article  CAS  PubMed  Google Scholar 

  21. Schaub FX, Looser R, Li S, Hao-Shen H, Lehmann T, Tichelli A, et al. Clonal analysis of TET2 and JAK2 mutations suggests that TET2 can be a late event in the progression of myeloproliferative neoplasms. Blood. 2010;115:2003–7. 2010/01/08 ed

    Article  CAS  PubMed  Google Scholar 

  22. Harutyunyan AS, Giambruno R, Krendl C, Stukalov A, Klampfl T, Berg T, et al. Germline RBBP6 mutations in familial myeloproliferative neoplasms. Blood. 2016;127:362–5. 2015/11/16 ed

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rumi E, Harutyunyan AS, Pietra D, Feenstra JDM, Cavalloni C, Roncoroni E, et al. LNK mutations in familial myeloproliferative neoplasms. Blood. 2016;128:144–5. 7

    Article  CAS  PubMed  Google Scholar 

  24. Loscocco GG, Mannarelli C, Pacilli A, Fanelli T, Rotunno G, Gesullo F, et al. Germline transmission of LNKE208Q variant in a family with myeloproliferative neoplasms. Am J Hematol. 2016;91:E356.

    Article  PubMed  Google Scholar 

  25. Hirvonen EAM, Pitkänen E, Hemminki K, Aaltonen LA, Kilpivaara O. Whole-exome sequencing identifies novel candidate predisposition genes for familial polycythemia vera. Hum Genomics. 2017;11:6. 20

    Article  PubMed  PubMed Central  Google Scholar 

  26. Saliba J, Saint-Martin C, Di Stefano A, Lenglet G, Marty C, Keren B, et al. Germline duplication of ATG2B and GSKIP predisposes to familial myeloid malignancies. Nat Genet. 2015;47:1131–40.

    Article  CAS  PubMed  Google Scholar 

  27. Hahn CN, Wee A, Babic M, Feng J, Wang P, Kutyna MM, et al. Duplication on chromosome 14q Identified In familial predisposition to myeloid malignancies and myeloproliferative neoplasms. Blood. 2017;130:492.

    Google Scholar 

  28. Babushok DV, Stanley NL, Morrissette JJD, Lieberman DB, Olson TS, Chou ST, et al. Germline duplication of ATG2B and GSKIP genes is not required for the familial myeloid malignancy syndrome associated with the duplication of chromosome 14q32. Leukemia. 2018;32:2720–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tefferi A, Thiele J, Orazi A, Kvasnicka HM, Barbui T, Hanson CA, et al. Proposals and rationale for revision of the World Health Organization diagnostic criteria for polycythemia vera, essential thrombocythemia, and primary myelofibrosis: recommendations from an ad hoc international expert panel. Blood. 2007;110:1092–7. 15

    Article  CAS  PubMed  Google Scholar 

  30. Döhner H, Estey E, Grimwade D, Amadori S, Appelbaum FR, Büchner T, et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood. 2017;129:424–47. 26

    Article  PubMed  PubMed Central  Google Scholar 

  31. Guermouche H, Ravalet N, Gallay N, Deswarte C, Foucault A, Beaud J, et al. High prevalence of clonal hematopoiesis in the blood and bone marrow of healthy volunteers. Blood Adv. 2020;4:3550–7.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Besson C, Gonin C, Brebion A, Delaunay C, Panelatti G, Plumelle Y. Incidence of hematological malignancies in Martinique, French West Indies, overrepresentation of multiple myeloma and adult T cell leukemia/lymphoma. Leukemia. 2001;15:828–31.

    Article  CAS  PubMed  Google Scholar 

  33. Döhner H, Weisdorf DJ, Bloomfield CD. Acute myeloid leukemia. N Engl J Med. 2015;373:1136–52.

    Article  PubMed  Google Scholar 

  34. Klampfl T, Gisslinger H, Harutyunyan AS, Nivarthi H, Rumi E, Milosevic JD, et al. Somatic mutations of calreticulin in myeloproliferative neoplasms. N Engl J Med. 2013;369:2379–90. 2013/12/10 ed

    Article  CAS  PubMed  Google Scholar 

  35. Nangalia J, Massie CE, Baxter EJ, Nice FL, Gundem G, Wedge DC, et al. Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N Engl J Med. 2013;369:2391–405. 2013/12/10 ed

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Papaemmanuil E, Gerstung M, Bullinger L, Gaidzik VI, Paschka P, Roberts ND, et al. Genomic classification and prognosis in acute myeloid leukemia. N Engl J Med. 2016;374:2209–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Grinfeld J, Nangalia J, Baxter EJ, Wedge DC, Angelopoulos N, Cantrill R, et al. Classification and personalized prognosis in myeloproliferative neoplasms. N Engl J Med. 2018;379:1416–30. 11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lindsley RC, Mar BG, Mazzola E, Grauman PV, Shareef S, Allen SL, et al. Acute myeloid leukemia ontogeny is defined by distinct somatic mutations. Blood. 2015;125:1367–76. 2014/12/30 ed

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Genovese G, Kähler AK, Handsaker RE, Lindberg J, Rose SA, Bakhoum SF, et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N Engl J Med. 2014;371:2477–87. 2014/11/27 ed25

    Article  PubMed  PubMed Central  Google Scholar 

  40. Jaiswal S, Fontanillas P, Flannick J, Manning A, Grauman PV, Mar BG, et al. Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med. 2014;371:2488–98. 2014/11/26 ed

    Article  PubMed  PubMed Central  Google Scholar 

  41. Xie M, Lu C, Wang J, McLellan MD, Johnson KJ, Wendl MC, et al. Age-related mutations associated with clonal hematopoietic expansion and malignancies. Nat Med. 2014;20:1472–8. 2014/10/20 ed

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Buscarlet M, Provost S, Zada YF, Barhdadi A, Bourgoin V, Lépine G, et al. DNMT3A and TET2 dominate clonal hematopoiesis and demonstrate benign phenotypes and different genetic predispositions. Blood. 2017;130:753–62. 2017/06/29 ed10

    Article  CAS  PubMed  Google Scholar 

  43. Bellanné-Chantelot C, Rabadan Moraes G, Schmaltz-Panneau B, Marty C, Vainchenker W, Plo I. Germline genetic factors in the pathogenesis of myeloproliferative neoplasms. Blood Rev. 2020;42:100710.

    Article  PubMed  Google Scholar 

  44. Cazzola M. Myelodysplastic syndromes. Longo DL, editor. N Engl J Med. 2020;383:1358–74.

  45. Passamonti F, Rumi E, Arcaini L, Boveri E, Elena C, Pietra D, et al. Prognostic factors for thrombosis, myelofibrosis, and leukemia in essential thrombocythemia: a study of 605 patients. Haematologica. 2008;93:1645–51.

    Article  PubMed  Google Scholar 

  46. Tefferi A, Lasho TL, Guglielmelli P, Finke CM, Rotunno G, Elala Y, et al. Targeted deep sequencing in polycythemia vera and essential thrombocythemia. Blood Adv. 2016;1:21–30. 29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Luque Paz D, Jouanneau-Courville R, Riou J, Ianotto JC, Boyer F, Chauveau A, et al. Leukemic evolution of polycythemia vera and essential thrombocythemia: genomic profiles predict time to transformation. Blood Adv. 2020;4:4887–97. 2020/10/10 ed13

    Article  PubMed  PubMed Central  Google Scholar 

  48. Pegliasco J, Schmaltz-Panneau B, Martin J-E, Chraibi S, Khalife-Hachem S, Salviat F, et al. ATG2B/GSKIP in de novo acute myeloid leukemia (AML): high prevalence of germline predisposition in French West Indies. Leuk Lymphoma. 2021;7:1–8.

  49. Eisfeld A-K, Kohlschmidt J, Mims A, Nicolet D, Walker CJ, Blachly JS, et al. Additional gene mutations may refine the 2017 European LeukemiaNet classification in adult patients with de novo acute myeloid leukemia aged <60 years. Leukemia 2020;34:3215–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sébert M, Passet M, Raimbault A, Rahmé R, Raffoux E, Sicre de Fontbrune F, et al. Germline DDX41 mutations define a significant entity within adult MDS/AML patients. Blood. 2019;134:1441–4. 24

    Article  PubMed  Google Scholar 

  51. Brown AL, Arts P, Carmichael CL, Babic M, Dobbins J, Chong C-E, et al. RUNX1-mutated families show phenotype heterogeneity and a somatic mutation profile unique to germline predisposed AML. Blood Adv. 2020;4:1131–44. 24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Challen GA, Goodell MA. Clonal hematopoiesis: mechanisms driving dominance of stem cell clones. Blood. 2020;136:1590–8. 1

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Ostrander EL, Kramer AC, Mallaney C, Celik H, Koh WK, Fairchild J, et al. Divergent effects of dnmt3a and tet2 mutations on hematopoietic progenitor cell fitness. Stem Cell Rep. 2020;14:551–60. 2020/03/30 ed14

    Article  CAS  Google Scholar 

  54. Izzo F, Lee SC, Poran A, Chaligne R, Gaiti F, Gross B, et al. DNA methylation disruption reshapes the hematopoietic differentiation landscape. Nat Genet. 2020;52:378–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. López-Moyado IF, Rao A. DNMT3A and TET2 mutations reshape hematopoiesis in opposing ways. Nat Genet. 2020;52:554–6.

    Article  PubMed  Google Scholar 

  56. Buscarlet M, Provost S, Zada YF, Bourgoin V, Mollica L, Dubé MP, et al. Lineage restriction analyses in CHIP indicate myeloid bias for TET2 and multipotent stem cell origin for DNMT3A. Blood. 2018;132:277–80. 2018/05/17 ed19

    Article  CAS  PubMed  Google Scholar 

  57. Abegunde SO, Buckstein R, Wells RA, Rauh MJ. An inflammatory environment containing TNFα favors Tet2-mutant clonal hematopoiesis. Exp Hematol. 2018;59:60–5.

    Article  CAS  PubMed  Google Scholar 

  58. Cai Z, Kotzin JJ, Ramdas B, Chen S, Nelanuthala S, Palam LR, et al. Inhibition of inflammatory signaling in Tet2 mutant preleukemic cells mitigates stress-induced abnormalities and clonal hematopoiesis. Cell Stem Cell. 2018;23:833–.e5. 06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Meisel M, Hinterleitner R, Pacis A, Chen L, Earley ZM, Mayassi T, et al. Microbial signals drive pre-leukaemic myeloproliferation in a Tet2-deficient host. Nature. 2018;557:580–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhang CRC, Nix D, Gregory M, Ciorba MA, Ostrander EL, Newberry RD, et al. Inflammatory cytokines promote clonal hematopoiesis with specific mutations in ulcerative colitis patients. Exp Hematol. 2019;80:36–41.e3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sanders MA, Chew E, Flensburg C, Zeilemaker A, Miller SE, Al Hinai AS, et al. MBD4 guards against methylation damage and germ line deficiency predisposes to clonal hematopoiesis and early-onset AML. Blood. 2018;132:1526–34. 4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank all the patients and family members involved in the study. This work was supported by INSERM, Gustave Roussy and grants from Program Hospitalier de Recherche Clinique (PHRC) AOR07014 (CB-C and AN), INCa Plbio2017 (IP and FD), Journées Nationales Contre la Leucémie (IP and J-BM), and Association sur la recherche pour le cancer (Program Labellisé Fondation ARC PGA2020 to IP). BS-P was supported by Association de Recherche sur la Moelle Osseuse (ARMO) and INCa Plbio2017. CB-C is a recipient from contrat d’interface INSERM.

Author information

Authors and Affiliations

Authors

Contributions

IP and CB-C designed the research, analyzed data, prepared figures, and wrote the paper. JP collected data, analyzed results, and prepared figures. PH, FI, J-CM, FP, J-HB, EB, OC, SC, PC-M, CD-D, SL, FS-F, PF, WV, and J-BM were involved in the clinical aspects of the study. CC, PRB, and OB performed the genetic counseling. A.N. was involved in the clinical aspect of the study and initiated the familial study of MPN. PH, CM, CD, and FD performed and analyzed the NGS. PP, CL, and GL performed DNA extraction, CNV, and SNV genotyping, Sanger sequencing, and analyzed results. GR-M. and BS-P purified primary cells from patients. PH conducted the statistical analysis. PH, WV, FD, and J-BM contributed intellectual input. All authors critically reviewed and approved the final version of the manuscript.

Corresponding author

Correspondence to Christine Bellanné-Chantelot.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pegliasco, J., Hirsch, P., Marzac, C. et al. Germline ATG2B/GSKIP-containing 14q32 duplication predisposes to early clonal hematopoiesis leading to myeloid neoplasms. Leukemia 36, 126–137 (2022). https://doi.org/10.1038/s41375-021-01319-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-021-01319-w

This article is cited by

Search

Quick links