Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Acute lymphoblastic leukemia

Combination efficacy of ruxolitinib with standard-of-care drugs in CRLF2-rearranged Ph-like acute lymphoblastic leukemia

Abstract

Philadelphia chromosome-like acute lymphoblastic leukemia (Ph-like ALL) is a high-risk ALL subtype with high rates of relapse and poor patient outcome. Activating mutations affecting components of the JAK-STAT signaling pathway occur in the majority of Ph-like ALL cases. The use of JAK inhibitors represents a potential treatment option for Ph-like ALL, although we and others have shown that CRLF2-rearranged Ph-like ALL responds poorly to single-agent JAK inhibitors in the preclinical setting. Therefore, the aim of this study was to identify effective combination treatments against CRLF2-rearranged Ph-like ALL, and to elucidate the underlying mechanisms of synergy. We carried out a series of high-throughput combination drug screenings and found that ruxolitinib exerted synergy with standard-of-care drugs used in the treatment of ALL. In addition, we investigated the molecular effects of ruxolitinib on Ph-like ALL by combining mass spectrometry phosphoproteomics with gene expression analysis. Based on these findings, we conducted preclinical in vivo drug testing and demonstrated that ruxolitinib enhanced the in vivo efficacy of an induction-type regimen consisting of vincristine, dexamethasone, and l-asparaginase in 2/3 CRLF2-rearranged Ph-like ALL xenografts. Overall, our findings support evaluating the addition of ruxolitinib to conventional induction regimens for the treatment of CRLF2-rearranged Ph-like ALL.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: HTS of the Ph-like ALL cell line MHH-CALL-4 to identify synergistic drug combinations with ruxolitinib.
Fig. 2: Ruxolitinib-induced gene expression changes in MHH-CALL-4 cells.
Fig. 3: Mass spectrometry phosphoproteomics analysis of the effects of dexamethasone, ruxolitinib, and their combination on kinase signaling pathways.
Fig. 4: In vivo efficacy of ruxolitinib in combination with standard-of-care drugs against Ph-like ALL PDXs.

Similar content being viewed by others

References

  1. Hunger SP, Lu X, Devidas M, Camitta BM, Gaynon PS, Winick NJ, et al. Improved survival for children and adolescents with acute lymphoblastic leukemia between 1990 and 2005: a report from the children’s oncology group. J Clin Oncol. 2012;30:1663–9.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Pui C-H, Robison LL, Look AT. Acute lymphoblastic leukaemia. Lancet. 2008;371:1030–43.

    Article  CAS  PubMed  Google Scholar 

  3. Harvey RC, Mullighan CG, Wang X, Dobbin KK, Davidson GS, Bedrick EJ, et al. Identification of novel cluster groups in pediatric high-risk B-precursor acute lymphoblastic leukemia with gene expression profiling: correlation with genome-wide DNA copy number alterations, clinical characteristics, and outcome. Blood. 2010;116:4874–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mullighan CG, Su X, Zhang J, Radtke I, Phillips LA, Miller CB, et al. Deletion of IKZF1 and prognosis in acute lymphoblastic leukemia. N Engl J Med. 2009;360:470–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Roberts KG, Morin RD, Zhang J, Hirst M, Zhao Y, Su X, et al. Genetic alterations activating kinase and cytokine receptor signaling in high-risk acute lymphoblastic leukemia. Cancer Cell. 2012;22:153–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Harvey RC, Mullighan CG, Chen IM, Wharton W, Mikhail FM, Carroll AJ, et al. Rearrangement of CRLF2 is associated with mutation of JAK kinases, alteration of IKZF1, Hispanic/Latino ethnicity, and a poor outcome in pediatric B-progenitor acute lymphoblastic leukemia. Blood. 2010;115:5312–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Roll JD, Reuther GW. CRLF2 and JAK2 in B-progenitor acute lymphoblastic leukemia: a novel association in oncogenesis. Cancer Res. 2010;70:7347–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ravandi F, O’Brien SM, Cortes JE, Thomas DM, Garris R, Faderl S, et al. Long-term follow-up of a phase 2 study of chemotherapy plus dasatinib for the initial treatment of patients with Philadelphia chromosome-positive acute lymphoblastic leukemia. Cancer. 2015;121:4158–64.

    Article  CAS  PubMed  Google Scholar 

  9. Schultz KR, Carroll A, Heerema NA, Bowman WP, Aledo A, Slayton WB, et al. Long-term follow-up of imatinib in pediatric Philadelphia chromosome-positive acute lymphoblastic leukemia: children’s Oncology Group study AALL0031. Leukemia. 2014;28:1467–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Roberts KG, Li Y, Payne-Turner D, Harvey RC, Yang YL, Pei D, et al. Targetable kinase-activating lesions in Ph-like acute lymphoblastic leukemia. N Engl J Med. 2014;371:1005–15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Hunger SP, Mullighan CG. Redefining ALL classification: toward detecting high-risk ALL and implementing precision medicine. Blood. 2015;125:3977–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Maese L, Tasian SK, Raetz EA. How is the Ph-like signature being incorporated into ALL therapy? Best Pr Res Clin Haematol. 2017;30:222–8.

    Article  Google Scholar 

  13. Tasian SK, Loh ML, Hunger SP. Philadelphia chromosome-like acute lymphoblastic leukemia. Blood. 2017;130:2064–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shiraz, P, Payne, KJ, Muffly L. The current genomic and molecular landscape of Philadelphia-like acute lymphoblastic leukemia. Int J Mol Sci. 2020;21:2193.

  15. Roberts KG, Yang YL, Payne-Turner D, Lin W, Files JK, Dickerson K, et al. Oncogenic role and therapeutic targeting of ABL-class and JAK-STAT activating kinase alterations in Ph-like ALL. Blood Adv. 2017;1:1657–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Maude SL, Tasian SK, Vincent T, Hall JW, Sheen C, Roberts KG, et al. Targeting JAK1/2 and mTOR in murine xenograft models of Ph-like acute lymphoblastic leukemia. Blood. 2012;120:3510–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Tasian SK, Teachey DT, Li Y, Shen F, Harvey RC, Chen IM, et al. Potent efficacy of combined PI3K/mTOR and JAK or ABL inhibition in murine xenograft models of Ph-like acute lymphoblastic leukemia. Blood. 2017;129:177–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Suryani S, Bracken LS, Harvey RC, Sia K, Carol H, Chen IM, et al. Evaluation of the in vitro and in vivo efficacy of the JAK inhibitor AZD1480 against JAK-mutated acute lymphoblastic leukemia. Mol Cancer Ther. 2015;14:364–74.

    Article  CAS  PubMed  Google Scholar 

  19. Weigert O, Lane AA, Bird L, Kopp N, Chapuy B, van Bodegom D, et al. Genetic resistance to JAK2 enzymatic inhibitors is overcome by HSP90 inhibition. J Exp Med. 2012;209:259–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bliss CI. The toxicity of poisons applied jointly. Ann Appl Biol. 1939;26:585–615.

    Article  CAS  Google Scholar 

  21. Chou TC. Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res. 2010;70:440–6.

    Article  CAS  PubMed  Google Scholar 

  22. Bijnsdorp IV, Giovannetti E, Peters GJ. Analysis of drug interactions. Methods Mol Biol. 2011;731:421–34.

    Article  CAS  PubMed  Google Scholar 

  23. Bachmann PS, Gorman R, Papa RA, Bardell JE, Ford J, Kees UR, et al. Divergent mechanisms of glucocorticoid resistance in experimental models of pediatric acute lymphoblastic leukemia. Cancer Res. 2007;67:4482–90.

    Article  CAS  PubMed  Google Scholar 

  24. Dolai S, Sia KC, Robbins AK, Zhong L, Heatley SL, Vincent TL, et al. Quantitative phosphotyrosine profiling of patient-derived xenografts identifies therapeutic targets in pediatric leukemia. Cancer Res. 2016;76:2766–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liem NL, Papa RA, Milross CG, Schmid MA, Tajbakhsh M, Choi S, et al. Characterization of childhood acute lymphoblastic leukemia xenograft models for the preclinical evaluation of new therapies. Blood. 2004;103:3905–14.

    Article  CAS  PubMed  Google Scholar 

  26. Lock RB, Liem N, Farnsworth ML, Milross CG, Xue C, Tajbakhsh M, et al. The nonobese diabetic/severe combined immunodeficient (NOD/SCID) mouse model of childhood acute lymphoblastic leukemia reveals intrinsic differences in biologic characteristics at diagnosis and relapse. Blood. 2002;99:4100–8.

    Article  CAS  PubMed  Google Scholar 

  27. Jing D, Bhadri VA, Beck D, Thoms JA, Yakob NA, Wong JW, et al. Opposing regulation of BIM and BCL2 controls glucocorticoid-induced apoptosis of pediatric acute lymphoblastic leukemia cells. Blood. 2015;125:273–83.

    Article  CAS  PubMed  Google Scholar 

  28. Russell LJ, Capasso M, Vater I, Akasaka T, Bernard OA, Calasanz MJ, et al. Deregulated expression of cytokine receptor gene, CRLF2, is involved in lymphoid transformation in B-cell precursor acute lymphoblastic leukemia. Blood. 2009;114:2688–98.

    Article  CAS  PubMed  Google Scholar 

  29. Tasian SK, Doral MY, Borowitz MJ, Wood BL, Chen IM, Harvey RC, et al. Aberrant STAT5 and PI3K/mTOR pathway signaling occurs in human CRLF2-rearranged B-precursor acute lymphoblastic leukemia. Blood. 2012;120:833–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang Q, Shi C, Han L, Jain N, Roberts KG, Ma H, et al. Inhibition of mTORC1/C2 signaling improves anti-leukemia efficacy of JAK/STAT blockade in CRLF2 rearranged and/or JAK driven Philadelphia chromosome-like acute B-cell lymphoblastic leukemia. Oncotarget. 2018;9:8027–41.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Basham B, Sathe M, Grein J, McClanahan T, D’Andrea A, Lees E, et al. In vivo identification of novel STAT5 target genes. Nucleic Acids Res. 2008;36:3802–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sadras T, Heatley SL, Kok CH, Dang P, Galbraith KM, McClure BJ, et al. Differential expression of MUC4, GPR110 and IL2RA defines two groups of CRLF2-rearranged acute lymphoblastic leukemia patients with distinct secondary lesions. Cancer Lett. 2017;408:92–101.

    Article  CAS  PubMed  Google Scholar 

  33. Zhong J, Kim MS, Chaerkady R, Wu X, Huang TC, Getnet D, et al. TSLP signaling network revealed by SILAC-based phosphoproteomics. Mol Cell Proteom. 2012;11:M112 017764.

    Article  CAS  Google Scholar 

  34. Harr MW, Caimi PF, McColl KS, Zhong F, Patel SN, Barr PM, et al. Inhibition of Lck enhances glucocorticoid sensitivity and apoptosis in lymphoid cell lines and in chronic lymphocytic leukemia. Cell Death Differ. 2010;17:1381–91.

    Article  CAS  PubMed  Google Scholar 

  35. Kfir-Erenfeld S, Sionov RV, Spokoini R, Cohen O, Yefenof E. Protein kinase networks regulating glucocorticoid-induced apoptosis of hematopoietic cancer cells: fundamental aspects and practical considerations. Leuk Lymphoma. 2010;51:1968–2005.

    Article  CAS  PubMed  Google Scholar 

  36. Lowenberg M, Tuynman J, Bilderbeek J, Gaber T, Buttgereit F, van Deventer S, et al. Rapid immunosuppressive effects of glucocorticoids mediated through Lck and Fyn. Blood. 2005;106:1703–10.

    Article  PubMed  CAS  Google Scholar 

  37. Szymanska B, Wilczynska-Kalak U, Kang MH, Liem NL, Carol H, Boehm I, et al. Pharmacokinetic modeling of an induction regimen for in vivo combined testing of novel drugs against pediatric acute lymphoblastic leukemia xenografts. PLoS ONE. 2012;7:e33894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Delgado-Martin C, Meyer LK, Huang BJ, Shimano KA, Zinter MS, Nguyen JV, et al. JAK/STAT pathway inhibition overcomes IL7-induced glucocorticoid resistance in a subset of human T-cell acute lymphoblastic leukemias. Leukemia. 2017;31:2568–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wu SC, Li LS, Kopp N, Montero J, Chapuy B, Yoda A, et al. Activity of the type II JAK2 inhibitor CHZ868 in B cell acute lymphoblastic leukemia. Cancer Cell. 2015;28:29–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Greenstein S, Ghias K, Krett NL, Rosen ST. Mechanisms of glucocorticoid-mediated apoptosis in hematological malignancies. Clin Cancer Res. 2002;8:1681–94.

    CAS  PubMed  Google Scholar 

  41. Kfir-Erenfeld S, Yefenof E. Non-genomic events determining the sensitivity of hemopoietic malignancies to glucocorticoid-induced apoptosis. Cancer Immunol Immunother. 2014;63:37–43.

    Article  CAS  PubMed  Google Scholar 

  42. Jamieson CA, Yamamoto KR. Crosstalk pathway for inhibition of glucocorticoid-induced apoptosis by T cell receptor signaling. Proc Natl Acad Sci USA. 2000;97:7319–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Almawi WY, Melemedjian OK. Molecular mechanisms of glucocorticoid antiproliferative effects: antagonism of transcription factor activity by glucocorticoid receptor. J Leukoc Biol. 2002;71:9–15.

    CAS  PubMed  Google Scholar 

  44. Ishida-Takahashi R, Uotani S, Abe T, Degawa-Yamauchi M, Fukushima T, Fujita N, et al. Rapid inhibition of leptin signaling by glucocorticoids in vitro and in vivo. J Biol Chem. 2004;279:19658–64.

    Article  CAS  PubMed  Google Scholar 

  45. Tasian SK, Assad A, Hunter DS, Du Y, Loh ML. A phase 2 study of ruxolitinib with chemotherapy in children with Philadelphia chromosome-like acute lymphoblastic leukemia (INCB18424-269/AALL1521): dose-finding results from the part 1 safety phase. Blood. 2018;132:555.

    Article  Google Scholar 

  46. Loh ML, Tasian SK, Rabin KR, Brown P, Magoon D, Reid JM, et al. A phase 1 dosing study of ruxolitinib in children with relapsed or refractory solid tumors, leukemias, or myeloproliferative neoplasms: a Children’s Oncology Group phase 1 consortium study (ADVL1011). Pediatr Blood Cancer. 2015;62:1717–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tefferi A, Pardanani A. Serious adverse events during ruxolitinib treatment discontinuation in patients with myelofibrosis. Mayo Clin Proc. 2011;86:1188–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Health and Medical Research Council of Australia (NHMRC Fellowships APP1059804 and APP1157871 to RBL, NHMRC Program Grant 1091261), the NSW Cancer Council (Program Grant PG16-01), the Steven Walter Children’s Cancer Foundation, and the National Cancer Institute (CA199222 and CA199000). Children’s Cancer Institute Australia for Medical Research is affiliated with the UNSW Sydney and the Sydney Children’s Hospitals Network.

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: JWB, KCSS, RBL. Development of methodology: JWB, KCSS, AM, LZ. Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): JWB, KCSS, CJ, KE, AM, RL, RC. Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): JWB, KCSS, IP, CM, AM, TF. Writing, review, and/or revision of the manuscript: JWB, KCSS, CM, MDN, MH, GMM, RBL. Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): MDN, MH, GMM. Study supervision: GA, MJR, MRW, RBL.

Corresponding author

Correspondence to Richard B. Lock.

Ethics declarations

Conflict of interest

RL and RC are employees of Incyte Corporation. No potential conflicts of interest were disclosed by the other authors.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bӧhm, J.W., Sia, K.C.S., Jones, C. et al. Combination efficacy of ruxolitinib with standard-of-care drugs in CRLF2-rearranged Ph-like acute lymphoblastic leukemia. Leukemia 35, 3101–3112 (2021). https://doi.org/10.1038/s41375-021-01248-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-021-01248-8

This article is cited by

Search

Quick links