Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Lymphoma

Treatment and outcome of IG-MYC+ neoplasms with precursor B-cell phenotype in childhood and adolescence

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1

References

  1. Meznarich J, Miles R, Paxton CN, Afify Z. Pediatric B-Cell lymphoma with lymphoblastic morphology, TdT expression, MYC rearrangement, and features overlapping with Burkitt lymphoma. Pediatr Blood Cancer. 2016;63:938–40.

    Article  Google Scholar 

  2. Navid F, Mosijczuk AD, Head DR, Borowitz MJ, Carroll AJ, Brandt JM, et al. Acute lymphoblastic leukemia with the (8;14)(q24; q32) translocation and FAB L3 morphology associated with a B-precursor immunophenotype: the Pediatric Oncology Group experience. Leukemia. 1999;13:135–41.

    Article  CAS  Google Scholar 

  3. Kaneko Y, Rowley JD, Check I, Variakojis D, Moohr JW. The 14q+ chromosome in pre-B-ALL. Blood. 1980;56:782–5.

    Article  CAS  Google Scholar 

  4. Wodzinski MA, Watmore AE, Lilleyman JS, Potter AM. Chromosomes in childhood acute lymphoblastic leukaemia: karyotypic patterns in disease subtypes. J Clin Pathol. 1991;44:48–51.

    Article  CAS  Google Scholar 

  5. Loh ML, Samson Y, Motte E, Moreau LA, Dalton V, Waters S, et al. Translocation (2;8)(p12; q24) associated with a cryptic t(12;21)(p13;q22) TEL/AML1 gene rearrangement in a child with acute lymphoblastic leukemia. Cancer Genet Cytogenet. 2000;122:79–82.

    Article  CAS  Google Scholar 

  6. Reid MM, Drewery C, Windebank KP. Surface immunoglobulin-negative acute lymphoblastic leukaemia with predominant L1 morphology, occasional L3 cells and t(8;22). Br J Haematol. 2003;122:693.

    Article  Google Scholar 

  7. Gupta AA, Grant R, Shago M, Abdelhaleem M. Occurrence of t(8;22)(q24.1; q11.2) involving the MYC locus in a case of pediatric acute lymphoblastic leukemia with a precursor B cell immunophenotype. J Pediatr Hematol Oncol. 2004;26:532–4.

    Article  Google Scholar 

  8. Hassan R, Felisbino F, Stefanoff CG, Pires V, Klumb CE, Dobbin J, et al. Burkitt lymphoma/leukaemia transformed from a precursor B cell: clinical and molecular aspects. Eur J Haematol. 2008;80:265–70.

    Article  Google Scholar 

  9. Meeker ND, Cherry AM, Bangs CD, Frazer JK. A pediatric B lineage leukemia with coincident MYC and MLL translocations. J Pediatr Hematol Oncol. 2011;33:158–60.

    Article  Google Scholar 

  10. Roug AS, Wendtland P, Bendix K, Kjeldsen E. Supernumerary isochromosome 1, idic(1)(p12), leading to tetrasomy 1q in Burkitt lymphoma. Cytogenet Genome Res. 2014;142:7–13.

    Article  CAS  Google Scholar 

  11. Sato Y, Kurosawa H, Fukushima K, Okuya M, Arisaka O. Burkitt-type acute lymphoblastic leukemia with precursor B-cell immunophenotype and partial tetrasomy of 1q: a case report. Med (Baltim). 2016;95:e2904.

    Article  Google Scholar 

  12. Bessenyei B, Ujfalusi A, Balogh E, Olah E, Szegedi I, Kiss C. Jumping translocation of chromosome 1q associated with good clinical outcome in a case of Burkitt leukemia. Cancer Genet. 2011;204:207–10.

    Article  CAS  Google Scholar 

  13. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, et al. WHO classification of tumors of hematopoietic and lymphoid tissues. 4th ed.. Lyon: IARC Press; 2008.

  14. Wagener R, Lopez C, Kleinheinz K, Bausinger J, Aukema SM, Nagel I, et al. IG-MYC (+) neoplasms with precursor B-cell phenotype are molecularly distinct from Burkitt lymphomas. Blood. 2018;132:2280–5.

    Article  CAS  Google Scholar 

  15. Varano G, Raffel S, Sormani M, Zanardi F, Lonardi S, Zasada C, et al. The B-cell receptor controls fitness of MYC-driven lymphoma cells via GSK3beta inhibition. Nature. 2017;546:302–6.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Ulrike Meyer, Claudia Sopalla, Nora Muehlegger (data management), and Gabi Buck (cytomorphology) for their expert work. We also thank the patients, parents, and guardians as well as physicians, nurses, and data managers in the participating centers of the NHL‐BFM group who cared for the children and adolescents and supplied data. We thank the Deutsche Kinderkrebsstiftung for support of the NHL-BFM Registry 2012 (DKS 2014.11 A/B). WK and RS are supported by the Kinderkrebsinitiative Buchholz, Holm‐Seppensen (KKI). The Austrian NHL‐BFM Study Group was supported by the St. Anna Kinderkrebsforschung (Children’s Cancer Research Institute).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Birgit Burkhardt.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herbrueggen, H., Mueller, S., Rohde, J. et al. Treatment and outcome of IG-MYC+ neoplasms with precursor B-cell phenotype in childhood and adolescence. Leukemia 34, 942–946 (2020). https://doi.org/10.1038/s41375-019-0606-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-019-0606-6

Search

Quick links