TYK2 is a member of the JAK family of tyrosine kinases that is involved in chromosomal translocation-induced fusion proteins found in anaplastic large cell lymphomas (ALCL) that lack rearrangements activating the anaplastic lymphoma kinase (ALK). Here we demonstrate that TYK2 is highly expressed in all cases of human ALCL, and that in a mouse model of NPM-ALK-induced lymphoma, genetic disruption of Tyk2 delays the onset of tumors and prolongs survival of the mice. Lymphomas in this model lacking Tyk2 have reduced STAT1 and STAT3 phosphorylation and reduced expression of Mcl1, a pro-survival member of the BCL2 family. These findings in mice are mirrored in human ALCL cell lines, in which TYK2 is activated by autocrine production of IL-10 and IL-22 and by interaction with specific receptors expressed by the cells. Activated TYK2 leads to STAT1 and STAT3 phosphorylation, activated expression of MCL1 and aberrant ALCL cell survival. Moreover, TYK2 inhibitors are able to induce apoptosis in ALCL cells, regardless of the presence or absence of an ALK-fusion. Thus, TYK2 is a dependency that is required for ALCL cell survival through activation of MCL1 expression. TYK2 represents an attractive drug target due to its essential enzymatic domain, and TYK2-specific inhibitors show promise as novel targeted inhibitors for ALCL.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1.

    Velazquez L, Fellous M, Stark GR, Pellegrini S. A protein tyrosine kinase in the interferon alpha/beta signaling pathway. Cell. 1992;70:313–22.

  2. 2.

    Firmbach-Kraft I, Byers M, Shows T, Dalla-Favera R, Krolewski JJ. tyk2, prototype of a novel class of non-receptor tyrosine kinase genes. Oncogene. 1990;5:1329–36.

  3. 3.

    Sanda T, Tyner JW, Gutierrez A, Ngo VN, Glover J, Chang BH, et al. TYK2-STAT1-BCL2 pathway dependence in T-cell acute lymphoblastic leukemia. Cancer Discov. 2013;3:564–77.

  4. 4.

    Hirbe AC, Kaushal M, Sharma MK, Dahiya S, Pekmezci M, Perry A, et al. Clinical genomic profiling identifies TYK2 mutation and overexpression in patients with neurofibromatosis type 1-associated malignant peripheral nerve sheath tumors. Cancer. 2017;123:1194–201.

  5. 5.

    Velusamy T, Kiel MJ, Sahasrabuddhe AA, Rolland D, Dixon CA, Bailey NG, et al. A novel recurrent NPM1-TYK2 gene fusion in cutaneous CD30-positive lymphoproliferative disorders. Blood. 2014;124:3768–71.

  6. 6.

    Crescenzo R, Abate F, Lasorsa E, Tabbo F, Gaudiano M, Chiesa N, et al. Convergent mutations and kinase fusions lead to oncogenic STAT3 activation in anaplastic large cell lymphoma. Cancer Cell. 2015;27:516–32.

  7. 7.

    Waanders E, Scheijen B, Jongmans MC, Venselaar H, van Reijmersdal SV, van Dijk AH, et al. Germline activating TYK2 mutations in pediatric patients with two primary acute lymphoblastic leukemia occurrences. Leukemia. 2017;31:821–8.

  8. 8.

    Roberts KG, Li Y, Payne-Turner D, Harvey RC, Yang YL, Pei D, et al. Targetable kinase- activating lesions in Ph-like acute lymphoblastic leukemia. N Engl J Med. 2014;371:1005–15.

  9. 9.

    Tron AE, Keeton EK, Ye M, Casas-Selves M, Chen H, Dillman KS, et al. Next-generation sequencing identifies a novel ELAVL1-TYK2 fusion gene in MOLM-16, an AML cell line highly sensitive to the PIM kinase inhibitor AZD1208. Leuk Lymphoma. 2016;57:2927–9.

  10. 10.

    Akahane K, Sanda T, Mansour MR, Radimerski T, DeAngelo DJ, Weinstock DM, et al. HSP90 inhibition leads to degradation of the TYK2 kinase and apoptotic cell death in T-cell acute lymphoblastic leukemia. Leukemia. 2015;30:219–28.

  11. 11.

    Chiarle R, Voena C, Ambrogio C, Piva R, Inghirami G. The anaplastic lymphoma kinase in the pathogenesis of cancer. NatRevCancer. 2008;8:11–23.

  12. 12.

    Hassler MR, Pulverer W, Lakshminarasimhan R, Redl E, Hacker J, Garland GD, et al. Insights into the pathogenesis of anaplastic large-cell lymphoma through genome-wide DNA methylation profiling. Cell Rep. 2016;17:596–608.

  13. 13.

    Malcolm TI, Villarese P, Fairbairn CJ, Lamant L, Trinquand A, Hook CE, et al. Anaplastic large cell lymphoma arises in thymocytes and requires transient TCR expression for thymic egress. Nat Commun. 2016;7:10087.

  14. 14.

    Gambacorti-Passerini C, Orlov S, Zhang L, Braiteh F, Huang H, Esaki T, et al. Long-term effects of crizotinib in ALK-positive tumors (excluding NSCLC): a phase 1b open-label study. Am J Hematol. 2018;93:607–14.

  15. 15.

    Schmitz N, Trumper L, Ziepert M, Nickelsen M, Ho AD, Metzner B, et al. Treatment and prognosis of mature T-cell and NK-cell lymphoma: an analysis of patients with T-cell lymphoma treated in studies of the German High-Grade Non-Hodgkin Lymphoma Study Group. Blood. 2010;116:3418–25.

  16. 16.

    Fanale MA, Forero-Torres A, Rosenblatt JD, Advani RH, Franklin AR, Kennedy DA, et al. A phase I weekly dosing study of brentuximab vedotin in patients with relapsed/refractory CD30-positive hematologic malignancies. Clin Cancer Res. 2012;18:248–55.

  17. 17.

    Vose J, Armitage J, Weisenburger D. International peripheral T-cell and natural killer/T-cell lymphoma study: pathology findings and clinical outcomes. J Clin Oncol. 2008;26:4124–30.

  18. 18.

    Swerdlow SH, Campo E, Pileri SA, Harris NL, Stein H, Siebert R, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016;127:2375–90.

  19. 19.

    Turner SD, Tooze R, Maclennan K, Alexander DR. Vav-promoter regulated oncogenic fusion protein NPM-ALK in transgenic mice causes B-cell lymphomas with hyperactive Jun kinase. Oncogene. 2003;22:7750–61.

  20. 20.

    Turner SD, Merz H, Yeung D, Alexander DR. CD2 promoter regulated nucleophosmin- anaplastic lymphoma kinase in transgenic mice causes B lymphoid malignancy. Anticancer Res. 2006;26(5A):3275–9.

  21. 21.

    Chiarle R, Gong JZ, Guasparri I, Pesci A, Cai J, Liu J, et al. NPM-ALK transgenic mice spontaneously develop T-cell lymphomas and plasma cell tumors. Blood. 2003;101:1919–27.

  22. 22.

    Vielnascher RM, Hainzl E, Leitner NR, Rammerstorfer M, Popp D, Witalisz A, et al. Conditional ablation of TYK2 in immunity to viral infection and tumor surveillance. Transgenic Res. 2014;23:519–29.

  23. 23.

    Rassidakis GZ, Lai R, McDonnell TJ, Cabanillas F, Sarris AH, Medeiros LJ. Overexpression of Mcl-1 in anaplastic large cell lymphoma cell lines and tumors. Am J Pathol. 2002;160:2309–10.

  24. 24.

    Levy DE, Darnell JE Jr.. Stats: transcriptional control and biological impact. Nat Rev Mol Cell Biol. 2002;3:651–62.

  25. 25.

    Sohn SJ, Barrett K, Van Abbema A, Chang C, Kohli PB, Kanda H, et al. A restricted role for TYK2 catalytic activity in human cytokine responses revealed by novel TYK2-selective inhibitors. J Immunol. 2013;191:2205–16.

  26. 26.

    Prchal-Murphy M, Semper C, Lassnig C, Wallner B, Gausterer C, Teppner-Klymiuk I, et al. TYK2 kinase activity is required for functional type I interferon responses in vivo. PLoS ONE. 2012;7:e39141.

  27. 27.

    Darnell JE Jr., Kerr IM, Stark GR. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science. 1994;264:1415–21.

  28. 28.

    Strobl B, Stoiber D, Sexl V, Mueller M. Tyrosine kinase 2 (TYK2) in cytokine signalling and host immunity. Front Biosci. 2011;16:3214–32.

  29. 29.

    Merkel O, Hamacher F, Griessl R, Grabner L, Schiefer AI, Prutsch N, et al. Oncogenic role of miR-155 in anaplastic large cell lymphoma lacking the t(2;5) translocation. J Pathol. 2015;236:445–56.

  30. 30.

    Lejeune D, Dumoutier L, Constantinescu S, Kruijer W, Schuringa JJ, Renauld JC. Interleukin-22 (IL-22) activates the JAK/STAT, ERK, JNK, and p38 MAP kinase pathways in a rat hepatoma cell line. Pathways that are shared with and distinct from IL-10. J Biol Chem. 2002;277:33676–82.

  31. 31.

    Kaltoft K, Bisballe S, Dyrberg T, Boel E, Rasmussen PB, Thestrup-Pedersen K. Establishment of two continuous T-cell strains from a single plaque of a patient with mycosis fungoides. Vitr Cell Dev Biol. 1992;28A(3 Pt 1):161–7.

  32. 32.

    Chiarle R, Simmons WJ, Cai H, Dhall G, Zamo A, Raz R, et al. Stat3 is required for ALK- mediated lymphomagenesis and provides a possible therapeutic target. Nat Med. 2005;11:623–9.

  33. 33.

    Avalle L, Pensa S, Regis G, Novelli F, Poli V. STAT1 and STAT3 in tumorigenesis: a matter of balance. JAKSTAT. 2012;1:65–72.

  34. 34.

    Wu C, Molavi O, Zhang H, Gupta N, Alshareef A, Bone KM, et al. STAT1 is phosphorylated and downregulated by the oncogenic tyrosine kinase NPM-ALK in ALK- positive anaplastic large-cell lymphoma. Blood. 2015;126:336–45.

  35. 35.

    Zhang Y, Liu Z. STAT1 in cancer: friend or foe? Discov Med. 2017;24:19–29.

  36. 36.

    Khodarev N, Ahmad R, Rajabi H, Pitroda S, Kufe T, McClary C, et al. Cooperativity of the MUC1 oncoprotein and STAT1 pathway in poor prognosis human breast cancer. Oncogene. 2010;29:920–9.

  37. 37.

    Hix LM, Karavitis J, Khan MW, Shi YH, Khazaie K, Zhang M. Tumor STAT1 transcription factor activity enhances breast tumor growth and immune suppression mediated by myeloid- derived suppressor cells. J Biol Chem. 2013;288:11676–88.

  38. 38.

    Khodarev NN, Minn AJ, Efimova EV, Darga TE, Labay E, Beckett M, et al. Signal transducer and activator of transcription 1 regulates both cytotoxic and prosurvival functions in tumor cells. Cancer Res. 2007;67:9214–20.

  39. 39.

    Tsai MH, Cook JA, Chandramouli GV, DeGraff W, Yan H, Zhao S, et al. Gene expression profiling of breast, prostate, and glioma cells following single versus fractionated doses of radiation. Cancer Res. 2007;67:3845–52.

  40. 40.

    O’Reilly LA, Putoczki TL, Mielke LA, Low JT, Lin A, Preaudet A, et al. Loss of NF-kappaB1 causes gastric cancer with aberrant inflammation and expression of immune checkpoint regulators in a STAT-1-dependent manner. Immunity. 2018;48:570–83 e578.

  41. 41.

    Rassidakis GZ, Sarris AH, Herling M, Ford RJ, Cabanillas F, McDonnell TJ, et al. Differential expression of BCL-2 family proteins in ALK-positive and ALK-negative anaplastic large cell lymphoma of T/null-cell lineage. Am J Pathol. 2001;159:527–35.

  42. 42.

    Shaw MH, Freeman GJ, Scott MF, Fox BA, Bzik DJ, Belkaid Y, et al. Tyk2 negatively regulates adaptive Th1 immunity by mediating IL-10 signaling and promoting IFN-gamma- dependent IL-10 reactivation. J Immunol. 2006;176:7263–71.

  43. 43.

    Karaghiosoff M, Neubauer H, Lassnig C, Kovarik P, Schindler H, Pircher H, et al. Partial impairment of cytokine responses in Tyk2-deficient mice. Immunity. 2000;13:549–60.

  44. 44.

    Boulland ML, Meignin V, Leroy-Viard K, Copie-Bergman C, Briere J, Touitou R, et al. Human interleukin-10 expression in T/natural killer-cell lymphomas: association with anaplastic large cell lymphomas and nasal natural killer-cell lymphomas. Am J Pathol. 1998;153:1229–37.

  45. 45.

    Bard JD, Gelebart P, Anand M, Amin HM, Lai R. Aberrant expression of IL-22 receptor 1 and autocrine IL-22 stimulation contribute to tumorigenicity in ALK+anaplastic large cell lymphoma. Leukemia. 2008;22:1595–603.

  46. 46.

    Savan R, McFarland AP, Reynolds DA, Feigenbaum L, Ramakrishnan K, Karwan M, et al. A novel role for IL-22R1 as a driver of inflammation. Blood. 2011;117:575–84.

  47. 47.

    Leitner NR, Witalisz-Siepracka A, Strobl B, Muller M. Tyrosine kinase 2 - Surveillant of tumours and bona fide oncogene. Cytokine. 2017;89:209–18.

  48. 48.

    Ruchatz H, Coluccia AM, Stano P, Marchesi E, Gambacorti-Passerini C. Constitutive activation of Jak2 contributes to proliferation and resistance to apoptosis in NPM/ALK- transformed cells. Exp Hematol. 2003;31:309–15.

  49. 49.

    Amin HM, Medeiros LJ, Ma Y, Feretzaki M, Das P, Leventaki V, et al. Inhibition of JAK3 induces apoptosis and decreases anaplastic lymphoma kinase activity in anaplastic large cell lymphoma. Oncogene. 2003;22:5399–407.

  50. 50.

    Zhang Q, Nowak I, Vonderheid EC, Rook AH, Kadin ME, Nowell PC, et al. Activation of Jak/STAT proteins involved in signal transduction pathway mediated by receptor for interleukin 2 in malignant T lymphocytes derived from cutaneous anaplastic large T-cell lymphoma and Sezary syndrome. Proc Natl Acad Sci USA. 1996;93:9148–53.

  51. 51.

    Han Y, Amin HM, Franko B, Frantz C, Shi X, Lai R. Loss of SHP1 enhances JAK3/STAT3 signaling and decreases proteosome degradation of JAK3 and NPM-ALK in ALK+anaplastic large-cell lymphoma. Blood. 2006;108:2796–803.

  52. 52.

    Chen J, Zhang Y, Petrus MN, Xiao W, Nicolae A, Raffeld M, et al. Cytokine receptor signaling is required for the survival of ALK- anaplastic large cell lymphoma, even in the presence of JAK1/STAT3 mutations. Proc Natl Acad Sci USA. 2017;114:3975–80.

  53. 53.

    Bryan JC, Verstovsek S. Overcoming treatment challenges in myelofibrosis and polycythemia vera: the role of ruxolitinib. Cancer Chemother Pharmacol. 2016;77:1125–42.

  54. 54.

    Strand V, Ahadieh S, French J, Geier J, Krishnaswami S, Menon S, et al. Systematic review and meta-analysis of serious infections with tofacitinib and biologic disease-modifying antirheumatic drug treatment in rheumatoid arthritis clinical trials. Arthritis Res Ther. 2015;17:362.

  55. 55.

    Akahane K, Li Z, Etchin J, Berezovskaya A, Gjini E, Masse CE, et al. Anti-leukaemic activity of the TYK2 selective inhibitor NDI-031301 in T-cell acute lymphoblastic leukaemia. Br J Haematol. 2017;177:271–82.

Download references


S.D.T., L.K., and O.M. receive funding from the European Union’s Horizon 2020 Marie Sklodowska Curie Innovative Training Network ALKATRAS under grant agreement 675712, and H.C.L. is a Marie Curie Early Stage Researcher within this program. S.D.T. is a Bloodwise fellow. This work was supported by the “Jubiläumsfond der Österreichischen Nationalbank” (grant No. 14856 to O.M.), L.K. was supported by FWF grants P26011 and P29251. L.K. and O.M. were supported by the BM Fonds No. 15142 and the Margaretha Hehberger Stiftung No. 15142. G.I. was supported by the AIRC 5 × 1000 (No. 10007) and by the Leukemia Lymphoma Society (SCOR 2015). The work of N.S. and P.W. was supported by the Austrian Science Fund FWF (W1241) and the Medical University of Graz through the PhD program Molecular Fundamentals of Inflammation (DK-MOLIN). R.M., M.M., and B.S. were funded by the FWF SFB F6105, F6106, and F6101. R.M. was additionally funded by SFB F4707.

Author information

Author notes

  1. These authors contributed equally: Lukas Kenner, Olaf Merkel


  1. Clinical Institute of Pathology, Department for Experimental and Laboratory Animal Pathology, Medical University of Vienna, Vienna, Austria

    • Nicole Prutsch
    • , Elisabeth Gurnhofer
    • , Tobias Suske
    • , Huan Chang Liang
    • , Michaela Schlederer
    • , Dario A. Leone
    • , Tanja Limberger
    • , Astrid Aufinger
    • , Lukas Kenner
    •  & Olaf Merkel
  2. Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, USA

    • Nicole Prutsch
    •  & A. Thomas Look
  3. Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, Austria

    • Nicole Prutsch
    • , Simone Roos
    •  & Lukas Kenner
  4. Department of Oncology, Amgen Discovery Research, South San Francisco, CA, 94080, USA

    • Lawren C. Wu
  5. Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria

    • Ingrid Simonitsch-Klupp
    • , Andrea Alvarez-Hernandez
    •  & Christoph Kornauth
  6. Institute of Cancer Research, Medical University of Vienna & Comprehensive Cancer Center (CCC), Vienna, Austria

    • Jasmin Svinka
    •  & Robert Eferl
  7. Department of Dermatology and Venereology, Medical University of Graz, Graz, Austria

    • Nitesh Shirsath
    •  & Peter Wolf
  8. Division of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, Germany

    • Thomas Hielscher
  9. Department of Molecular Biology, Cancer Cluster Salzburg, Faculty of Natural Sciences, Paris Lodron University, Salzburg, Austria

    • Fritz Aberger
  10. Ludwig Boltzmann Institute for Cancer Research (LBI-CR), Vienna, Austria

    • Johannes Schmoellerl
    • , Dagmar Stoiber
    • , Florian Grebien
    • , Richard Moriggl
    •  & Lukas Kenner
  11. Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria

    • Dagmar Stoiber
  12. Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria

    • Birgit Strobl
    • , Richard Moriggl
    •  & Mathias Müller
  13. Department of Medicine I, Clinical Division of Hematology and Hemostaseology and Comprehensive Cancer Center (CCC), Medical University of Vienna, Vienna, Austria

    • Ulrich Jäger
    •  & Philipp B. Staber
  14. Medical University of Vienna, Vienna, Austria

    • Richard Moriggl
  15. Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NYC, USA

    • Giorgio G. Inghirami
  16. European Research Initiative for ALK related malignancies (www.erialcl.net), Vienna, Austria

    • Giorgio G. Inghirami
    • , Suzanne D. Turner
    • , Lukas Kenner
    •  & Olaf Merkel
  17. Cancer Science Institute of Singapore, National University of Singapore, 117599, Singapore, Singapore

    • Takaomi Sanda
  18. Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge, UK

    • Suzanne D. Turner
  19. CBMed Core Lab2, Medical University of Vienna, Vienna, Austria

    • Lukas Kenner


  1. Search for Nicole Prutsch in:

  2. Search for Elisabeth Gurnhofer in:

  3. Search for Tobias Suske in:

  4. Search for Huan Chang Liang in:

  5. Search for Michaela Schlederer in:

  6. Search for Simone Roos in:

  7. Search for Lawren C. Wu in:

  8. Search for Ingrid Simonitsch-Klupp in:

  9. Search for Andrea Alvarez-Hernandez in:

  10. Search for Christoph Kornauth in:

  11. Search for Dario A. Leone in:

  12. Search for Jasmin Svinka in:

  13. Search for Robert Eferl in:

  14. Search for Tanja Limberger in:

  15. Search for Astrid Aufinger in:

  16. Search for Nitesh Shirsath in:

  17. Search for Peter Wolf in:

  18. Search for Thomas Hielscher in:

  19. Search for Fritz Aberger in:

  20. Search for Johannes Schmoellerl in:

  21. Search for Dagmar Stoiber in:

  22. Search for Birgit Strobl in:

  23. Search for Ulrich Jäger in:

  24. Search for Philipp B. Staber in:

  25. Search for Florian Grebien in:

  26. Search for Richard Moriggl in:

  27. Search for Mathias Müller in:

  28. Search for Giorgio G. Inghirami in:

  29. Search for Takaomi Sanda in:

  30. Search for A. Thomas Look in:

  31. Search for Suzanne D. Turner in:

  32. Search for Lukas Kenner in:

  33. Search for Olaf Merkel in:

Conflict of interest

The authors declare that they have no conflict of interest.

Corresponding authors

Correspondence to Lukas Kenner or Olaf Merkel.

Electronic supplementary material

About this article

Publication history





Issue Date