Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chronic myeloproliferative neoplasms

ASXL1/EZH2 mutations promote clonal expansion of neoplastic HSC and impair erythropoiesis in PMF

Abstract

Primary myelofibrosis (PMF) is a hematopoietic stem cell (HSC) disease, characterized by aberrant differentiation of all myeloid lineages and profound disruption of the bone marrow niche. PMF samples carry several mutations, but their cell origin and hierarchy in regulating the different waves of clonal and aberrant myeloproliferation from the prime HSC compartment is poorly understood. Genotyping of >2000 colonies from CD133+HSC and progenitors from PMF patients confirmed the complex genetic heterogeneity within the neoplastic population. Notably, mutations in chromatin regulators ASXL1 and/or EZH2 were identified as the first genetic lesions, preceding both JAK2-V617F and CALR mutations, and are thus drivers of clonal myelopoiesis in a PMF subset. HSC from PMF patients with double ASXL1/EZH2 mutations exhibited significantly higher engraftment in immunodeficient mice than those from patients without histone modifier mutations. EZH2 mutations correlate with aberrant erythropoiesis in PMF patients, exemplified by impaired maturation and cell cycle arrest of erythroid progenitors. These data underscore the importance of post-transcriptional modifiers of histones in neoplastic stem cells, whose clonal growth sustains aberrant myelopoiesis and expansion of pre-leukemic clones in PMF.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Campbell P, Green A. The myeloproliferative disorders. New Engl J Med. 2006;355:2452–66.

    Article  CAS  Google Scholar 

  2. Rumi E, Cazzola M. Diagnosis, risk stratification, and response evaluation in classical myeloproliferative neoplasms. Blood. 2017;129:680–92.

    Article  CAS  Google Scholar 

  3. Nangalia J, Massie C, Baxter E, Nice F, Gundem G, Wedge D, et al. Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. New Engl J Med. 2013;369:2391–405.

    Article  CAS  Google Scholar 

  4. Rampal R, Al-Shahrour F, Abdel-Wahab O, Patel J, Brunel J-P, Mermel C, et al. Integrated genomic analysis illustrates the central role of JAK-STAT pathway activation in myeloproliferative neoplasm pathogenesis. Blood. 2014;123:e123–133.

    Article  Google Scholar 

  5. Shih A, Abdel-Wahab O, Patel J, Levine R. The role of mutations in epigenetic regulators in myeloid malignancies. Nat Rev Cancer. 2012;12:599–612.

    Article  CAS  Google Scholar 

  6. Vainchenker W, Kralovics R. Genetic basis and molecular pathophysiology of classical myeloproliferative neoplasms. Blood. 2017;129:667–79.

    Article  CAS  Google Scholar 

  7. Lundberg P, Karow A, Nienhold R, Looser R, Hao-Shen H, Nissen I, et al. Clonal evolution and clinical correlates of somatic mutations in myeloproliferative neoplasms. Blood. 2014;123:2220–8.

    Article  CAS  Google Scholar 

  8. Ortmann CA, Kent DG, Nangalia J, Silber Y, Wedge DC, Grinfeld J, et al. Effect of mutation order on myeloproliferative neoplasms. New Engl J Med. 2015;372:601–12.

    Article  Google Scholar 

  9. Shlush LI, Zandi S, Mitchell A, Chen WC, Brandwein JM, Gupta V, et al. Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia. Nature. 2014;506:328–33.

    Article  CAS  Google Scholar 

  10. Triviai I, Stübig T, Niebuhr B, Hussein K, Tsiftsoglou A, Fehse B, et al. CD133 marks a stem cell population that drives human primary myelofibrosis. Haematologica. 2015;100:768–79.

    Article  CAS  Google Scholar 

  11. Thol F, Suchanek K, Koenecke C, Stadler M, Platzbecker U, Thiede C, et al. SETBP1 mutation analysis in 944 patients with MDS and AML. Leukemia. 2013;27:2072–5.

    Article  CAS  Google Scholar 

  12. Thol F, Klesse S, Köhler L, Gabdoulline R, Kloos A, Liebich A, et al. Acute myeloid leukemia derived from lympho-myeloid clonal hematopoiesis. Leukemia. 2017;31:1286–95.

    Article  CAS  Google Scholar 

  13. Badbaran A, Fehse B, Christopeit M, Aranyossy T, Ayuk F, Wolschke C, et al. Digital-PCR assay for screening and quantitative monitoring of calreticulin (CALR) type-2 positive patients with myelofibrosis following allogeneic stem cell transplantation. Bone Marrow Transplant. 2016;51:872–3.

    Article  CAS  Google Scholar 

  14. Kröger N, Badbaran A, Holler E, Hahn J, Kobbe G, Bornhäuser M, et al. Monitoring of the JAK2-V617F mutation by highly sensitive quantitative real-time PCR after allogeneic stem cell transplantation in patients with myelofibrosis. Blood. 2007;109:1316–21.

    Article  Google Scholar 

  15. Alchalby H, Badbaran A, Bock O, Fehse B, Bacher U, Zander A, et al. Screening and monitoring of MPL W515L mutation with real-time PCR in patients with myelofibrosis undergoing allogeneic-SCT. Bone Marrow Transplant. 2010;45:1404–7.

    Article  CAS  Google Scholar 

  16. Abdel-Wahab O, Adli M, LaFave LM, Gao J, Hricik T, Shih AH, et al. ASXL1 mutations promote myeloid transformation through loss of PRC2-mediated gene repression. Cancer Cell. 2012;22:180–93.

    Article  CAS  Google Scholar 

  17. Dey A, Seshasayee D, Noubade R, French D, Liu J, Chaurushiya M, et al. Loss of the tumor suppressor BAP1 causes myeloid transformation. Science. 2012;337:1541–6.

    Article  CAS  Google Scholar 

  18. Carbuccia N, Murati A, Trouplin V, Brecqueville M, Adélaïde J, Rey J, et al. Mutations of ASXL1 gene in myeloproliferative neoplasms. Leukemia. 2009;23:2183–6.

    Article  CAS  Google Scholar 

  19. Sorigué M, Ribera J, García O, Cabezón M, Vélez P, Marcé S, et al. Highly variable mutational profile of ASXL1 in myelofibrosis. Eur J Haematol. 2016;97:331–5.

    Article  Google Scholar 

  20. Guglielmelli P, Pacilli A, Rotunno G, Rumi E, Rosti V, Delaini F, et al. Presentation and outcome of patients with 2016 WHO diagnosis of prefibrotic and overt primary myelofibrosis. Blood. 2017;129:3227–36.

    Article  CAS  Google Scholar 

  21. Anjos-Afonso F, Currie E, Palmer H, Foster K, Taussig D, Bonnet D. CD34(-) cells at the apex of the human hematopoietic stem cell hierarchy have distinctive cellular and molecular signatures. Cell Stem Cell. 2013;13:161–74.

    Article  CAS  Google Scholar 

  22. Bhatia M, Bonnet D, Murdoch B, Gan O, Dick J. A newly discovered class of human hematopoietic cells with SCID-repopulating activity. Nat Med. 1998;4:1038–45.

    Article  CAS  Google Scholar 

  23. Goodell M, Rosenzweig M, Kim H, Marks D, DeMaria M, Paradis G, et al. Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species. Nat Med. 1997;3:1337–45.

    Article  CAS  Google Scholar 

  24. Ishii M, Matsuoka Y, Sasaki Y, Nakatsuka R, Takahashi M, Nakamoto T, et al. Development of a high-resolution purification method for precise functional characterization of primitive human cord blood-derived CD34-negative SCID-repopulating cells. Exp Hematol. 2011;39:203–13.

    Article  CAS  Google Scholar 

  25. Manz M, Milyamoto T, Akashi K, Weissmann I. Prospective isolation of human clonogenic common myeloid progenitors. Proc Natl Acad Sci USA. 2002;99:11872–7.

    Article  CAS  Google Scholar 

  26. Nangalia J, Nice FL, Wedge DC, Godfrey AL, Grinfeld J, Thakker C, et al. DNMT3A mutations occur early or late in patients with myeloproliferative neoplasms and mutation order influences phenotype. Haematologica. 2015;100:42.

    Article  Google Scholar 

  27. Steensma DP, Bejar R, Jaiswal S, Lindsley RC, Sekeres MA, Hasserjian RP, et al. Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood. 2015;126:9–16.

    Article  CAS  Google Scholar 

  28. Zink F, Stacey SN, Norddahl GL, Frigge ML, Magnusson OT, Jonsdottir I, et al. Clonal hematopoiesis, with and without candidate driver mutations, is common in the elderly. Blood. 2017;130:742–52.

    Article  CAS  Google Scholar 

  29. Busque L, Patel J, Figueroa M, Vasanthakumar A, Provost S, Hamilou Z, et al. Recurrent somatic TET2 mutations in normal elderly individuals with clonal hematopoiesis. Nat Genet. 2012;44:1179–81.

    Article  CAS  Google Scholar 

  30. Delhommeau F, Dupont S, Della Valle V, James C, Trannoy S, Massé A, et al. Mutation in TET2 in myeloid cancers. N Engl J Med. 2009;360:2289–301.

    Article  Google Scholar 

  31. Sashida G, Wang C, Tomioka T, Oshima M, Aoyama K, Kanai A, et al. The loss of Ezh2 drives the pathogenesis of myelofibrosis and sensitizes tumor-initiating cells to bromodomain inhibition. J Exp Med. 2016;213:1459–77.

    Article  CAS  Google Scholar 

  32. Shi H, Yamamoto S, Sheng M, Bai J, Zhang P, Chen R, et al. ASXL1 plays an important role in erythropoiesis. Sci Rep. 2016;6:28789.

    Article  CAS  Google Scholar 

  33. Shimizu T, Kubovcakova L, Nienhold R, Zmajkovic J, Meyer SC, Hao-Shen H, et al. Loss of Ezh2 synergizes with JAK2-V617F in initiating myeloproliferative neoplasms and promoting myelofibrosis. J Exp Med. 2016;213:1479–96.

    Article  CAS  Google Scholar 

  34. Yang Y, Akada H, Nath D, Hutchison RE, Mohi G. Loss of Ezh2 cooperates with Jak2V617F in the development of myelofibrosis in a mouse model of myeloproliferative neoplasm. Blood. 2016;127:3410–23.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Laura Montanus, Marla Wobbe, Roman Kanke and Martin Wichmann for their contribution to PCR and sequencing experiments and the personnel of the Core Facility in University Medical Center Hamburg Eppendorf for their assistance in FACS experiments. We thank Dr. Robert Geffers and Dr. Michael Jarek from the Genome Analytics Group, Helmholtz Centre for Infection Research, Braunschweig, Germany for next-generation sequencing services.

This work was supported from grants of the European Hematology Association, the José Carreras Leukaemia Foundation and Else Kröner-Fresenius-Foundation to IT and grants from the German Federal Ministry of Education and Research grant 01EO0802 (IFB-Tx) and from DFG grants HE 5240/5-1 and HE 5240/6-1 to MH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioanna Triviai.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Triviai, I., Zeschke, S., Rentel, J. et al. ASXL1/EZH2 mutations promote clonal expansion of neoplastic HSC and impair erythropoiesis in PMF. Leukemia 33, 99–109 (2019). https://doi.org/10.1038/s41375-018-0159-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-018-0159-0

This article is cited by

Search

Quick links