Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Myelodysplastic syndrome

Recurrent somatic mutations are rare in patients with cryptic dyskeratosis congenita

Abstract

Dyskeratosis congenita (DKC) is a paradigmatic telomere disorder characterized by substantial and premature telomere shortening, bone marrow failure, and a dramatically increased risk of developing myelodysplastic syndrome (MDS) or acute myeloid leukemia (AML). DKC can occur as a late-onset, so-called cryptic form, with first manifestation in adults. Somatic MDS-related mutations are found in up to 35% of patients with acquired aplastic anemia (AA), especially in patients with short telomeres. The aim of our study was to investigate whether cryptic DKC is associated with an increased incidence of MDS-related somatic mutations, thereby linking the accelerated telomere shortening with the increased risk of MDS/AML. Samples from 15 adult patients (median age: 42 years, range: 23–60 years) with molecularly confirmed cryptic DKC were screened using next-generation gene panel sequencing to detect MDS-related somatic variants. Only one of the 15 patients (7%) demonstrated a clinically relevant MDS-related somatic variant. This incidence was dramatically lower than formerly described in acquired AA. Based on our data, we conclude that clonal evolution of subclones carrying MDS-related mutations is not the predominant mechanism for MDS/AML initiation in adult cryptic DKC patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Blasco MA. Telomeres and human disease: ageing, cancer and beyond. Nat Rev Genet. 2005;6:611–22.

    Article  PubMed  CAS  Google Scholar 

  2. Brummendorf TH, Balabanov S. Telomere length dynamics in normal hematopoiesis and in disease states characterized by increased stem cell turnover. Leukemia. 2006;20:1706–16.

    Article  PubMed  CAS  Google Scholar 

  3. Greider CW, Blackburn EH. Identification of a specific telomere terminal transferase activity in tetrahymena extracts. Cell. 1985;43:405–13.

    Article  PubMed  CAS  Google Scholar 

  4. Cooper JN, Young NS. Clonality in context: hematopoietic clones in their marrow environment. Blood. 2017;130:2363–72.

    Article  PubMed  CAS  Google Scholar 

  5. Martinez P, Blasco MA. Telomere-driven diseases and telomere-targeting therapies. J Cell Biol. 2017;216:875–87.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Fernandez Garcia MS, Teruya-Feldstein J. The diagnosis and treatment of dyskeratosis congenita: a review. J Blood Med. 2014;5:157–67.

    PubMed  PubMed Central  Google Scholar 

  7. Alter BP, Giri N, Savage SA, Rosenberg PS. Cancer in the National Cancer Institute inherited bone marrow failure syndrome cohort after 15 years of follow-up. Haematologica. 2017;103:30–39.

    Article  PubMed  Google Scholar 

  8. Alter BP, Giri N, Savage SA, Rosenberg PS. Cancer in dyskeratosis congenita. Blood. 2009;113:6549–57.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Townsley DM, Dumitriu B, Young NS. Bone marrow failure and the telomeropathies. Blood. 2014;124:2775–83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Schmitt K, Beier F, Panse J, Brummendorf TH. (Pan-)cytopenia as first manifestation of kryptic telomeropathies in adults. Dtsch Med Wochenschr. 2016;141:1578–80.

    Article  PubMed  Google Scholar 

  11. Bejar R, Stevenson K, Abdel-Wahab O, Galili N, Nilsson B, Garcia-Manero G, et al. Clinical effect of point mutations in myelodysplastic syndromes. N Engl J Med. 2011;364:2496–506.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Sperling AS, Gibson CJ, Ebert BL. The genetics of myelodysplastic syndrome: from clonal haematopoiesis to secondary leukaemia. Nat Rev Cancer. 2017;17:5–19.

    Article  PubMed  CAS  Google Scholar 

  13. Brummendorf TH, Holyoake TL, Rufer N, Barnett MJ, Schulzer M, Eaves CJ, et al. Prognostic implications of differences in telomere length between normal and malignant cells from patients with chronic myeloid leukemia measured by flow cytometry. Blood. 2000;95:1883–90.

    PubMed  CAS  Google Scholar 

  14. Jaiswal S, Fontanillas P, Flannick J, Manning A, Grauman PV, Mar BG, et al. Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med. 2014;371:2488–98.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Steensma DP, Bejar R, Jaiswal S, Lindsley RC, Sekeres MA, Hasserjian RP, et al. Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood. 2015;126:9–16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Stanley N, Olson TS, Babushok DV. Recent advances in understanding clonal haematopoiesis in aplastic anaemia. Br J Haematol. 2017;177:509–25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Park HS, Park SN, Im K, Kim SM, Kim JA, Hwang SM, et al. Telomere length and somatic mutations in correlation with response to immunosuppressive treatment in aplastic anaemia. Br J Haematol. 2017;178:603–15.

    Article  PubMed  CAS  Google Scholar 

  18. Kulasekararaj AG, Jiang J, Smith AE, Mohamedali AM, Mian S, Gandhi S, et al. Somatic mutations identify a subgroup of aplastic anemia patients who progress to myelodysplastic syndrome. Blood. 2014;124:2698–704.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Beier F, Balabanov S, Buckley T, Dietz K, Hartmann U, Rojewski M, et al. Accelerated telomere shortening in glycosylphosphatidylinositol (GPI)-negative compared with GPI-positive granulocytes from patients with paroxysmal nocturnal hemoglobinuria (PNH) detected by proaerolysin flow-FISH. Blood. 2005;106:531–3.

    Article  PubMed  CAS  Google Scholar 

  20. Werner B, Beier F, Hummel S, Balabanov S, Lassay L, Orlikowsky T, et al. Reconstructing the in vivo dynamics of hematopoietic stem cells from telomere length distributions. eLife 2015;4:e08687.

  21. Beier F, Masouleh BK, Buesche G, Ventura Ferreira MS, Schneider RK, Ziegler P, et al. Telomere dynamics in patients with del (5q) MDS before and under treatment with lenalidomide. Leuk Res. 2015 S0145-2126(15)30380-5.

  22. Brummendorf TH, Maciejewski JP, Mak J, Young NS, Lansdorp PM. Telomere length in leukocyte subpopulations of patients with aplastic anemia. Blood. 2001;97:895–900.

    Article  PubMed  CAS  Google Scholar 

  23. Weidner CI, Lin Q, Birkhofer C, Gerstenmaier U, Kaifie A, Kirschner M, et al. DNA methylation in PRDM8 is indicative for dyskeratosis congenita. Oncotarget. 2016;7:10765–72.

    PubMed  PubMed Central  Google Scholar 

  24. Graubert TA, Shen D, Ding L, Okeyo-Owuor T, Lunn CL, Shao J, et al. Recurrent mutations in the U2AF1 splicing factor in myelodysplastic syndromes. Nat Genet. 2011;44:53–57.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Walter MJ, Shen D, Ding L, Shao J, Koboldt DC, Chen K, et al. Clonal architecture of secondary acute myeloid leukemia. N Engl J Med. 2012;366:1090–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Shirai CL, Ley JN, White BS, Kim S, Tibbitts J, Shao J, et al. Mutant U2AF1 expression alters hematopoiesis and pre-mRNA splicing in vivo. Cancer Cell. 2015;27:631–43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Jongmans MC, Verwiel ET, Heijdra Y, Vulliamy T, Kamping EJ, Hehir-Kwa JY, et al. Revertant somatic mosaicism by mitotic recombination in dyskeratosis congenita. Am J Hum Genet. 2012;90:426–33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Perdigones N, Perin JC, Schiano I, Nicholas P, Biegel JA, Mason PJ, et al. Clonal hematopoiesis in patients with dyskeratosis congenita. Am J Hematol. 2016;91:1227–33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to Lucia Vankann, Kristina Feldberg and Stephan Klinkenberg for their excellent technical assistance. We thank Kim Kricheldorf for the excellent administration of the “Aachen Telomeropathy Registry”. This work was partly supported by a grant from “Lichterzellen e.V.” (THB).

Author contributions

MK: Performed the experiments, analyzed and interpreted the data and wrote the manuscript. AM: Performed the experiments and analyzed the data. MW: Provided patient samples, clinical data and interpreted the data. MSVF, A-SB, IH: Performed the experiments and interpreted the data. WB, MK, MR, SC, JB, MS, JB, MPR, CMW: Provided patient samples, clinical data and interpreted the data. SK, MB, IK, MS: Performed the experiments, analyzed and interpreted the data. THB co-planned the study, analyzed and interpreted the data and wrote the manuscript; FB conceived and planned the study design, interpreted the data, and wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabian Beier.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

These authors contributed equally: Tim H. Brümmendorf, Fabian Beier.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirschner, M., Maurer, A., Wlodarski, M.W. et al. Recurrent somatic mutations are rare in patients with cryptic dyskeratosis congenita. Leukemia 32, 1762–1767 (2018). https://doi.org/10.1038/s41375-018-0125-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41375-018-0125-x

This article is cited by

Search

Quick links