Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A phase I trial of caffeine to evaluate safety in infants with hypoxic-ischemic encephalopathy

Abstract

Objective

Caffeine provides neuroprotection following hypoxic-ischemic injury in animals. We characterized the safety of escalating doses of caffeine in infants with hypoxic-ischemic encephalopathy (HIE) receiving therapeutic hypothermia.

Study design

Phase I trial of infants undergoing therapeutic hypothermia for HIE receiving IV caffeine 20 mg/kg followed by up to two daily doses of 5 mg/kg (n = 9) or 10 mg/kg (n = 8). Safety was evaluated based on adverse events and frequency of pre-specified outcomes compared to data from the Whole-Body Hypothermia for HIE trial (Shankaran, 2005).

Results

Twelve of 17 (71%) infants had ≥1 adverse event during the study period. The frequency of clinical outcomes related to HIE were not statistically different from outcomes in infants receiving hypothermia in the Whole-Body Hypothermia for HIE trial.

Conclusion

Caffeine administration was well tolerated. A larger study is required to determine the optimal dose and evaluate drug safety and efficacy.

Clinical trial

ClinicalTrials.gov Identifier: NCT03913221.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Douglas-Escobar M, Weiss MD. Hypoxic-ischemic encephalopathy: a review for the clinician. JAMA Pediatr. 2015;169:397–403.

    Article  PubMed  Google Scholar 

  2. Shankaran S, Laptook AR, Ehrenkranz RA, Tyson JE, McDonald SA, Donovan EF, et al. Whole-body hypothermia for neonates with hypoxic-ischemic encephalopathy. N Engl J Med. 2005;353:1574–84.

    Article  CAS  PubMed  Google Scholar 

  3. Shankaran S, Laptook AR, Pappas A, McDonald SA, Das A, Tyson JE, et al. Effect of depth and duration of cooling on death or disability at age 18 months among neonates with hypoxic-ischemic encephalopathy: a randomized clinical trial. JAMA 2017;318:57–67.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Higgins RD, Raju T, Edwards AD, Azzopardi DV, Bose CL, Clark RH, et al. Hypothermia and other treatment options for neonatal encephalopathy: an executive summary of the Eunice Kennedy Shriver NICHD workshop. J Pediatr. 2011;159:851–8.e1.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bruschettini M, Moreira A, Pizarro AB, Mustafa S, Romantsik O. The effects of caffeine following hypoxic-ischemic encephalopathy: a systematic review of animal studies. Brain Res. 2022;1790:147990.

    Article  CAS  PubMed  Google Scholar 

  6. Eslami Z, Shajari A, Kheirandish M, Heidary A. Theophylline for prevention of kidney dysfunction in neonates with severe asphyxia. Iran J Kidney Dis. 2009;3:222–6.

    PubMed  Google Scholar 

  7. Bakr AF. Prophylactic theophylline to prevent renal dysfunction in newborns exposed to perinatal asphyxia–a study in a developing country. Pediatr Nephrol. 2005;20:1249–52.

    Article  PubMed  Google Scholar 

  8. Jenik AG, Ceriani Cernadas JM, Gorenstein A, Ramirez JA, Vain N, Armadans M, et al. A randomized, double-blind, placebo-controlled trial of the effects of prophylactic theophylline on renal function in term neonates with perinatal asphyxia. Pediatrics. 2000;105:E45.

    Article  CAS  PubMed  Google Scholar 

  9. Raina A, Pandita A, Harish R, Yachha M, Jamwal A. Treating perinatal asphyxia with theophylline at birth helps to reduce the severity of renal dysfunction in term neonates. Acta Paediatr. 2016;105:e448–51.

    Article  CAS  PubMed  Google Scholar 

  10. Bhat MA, Shah ZA, Makhdoomi MS, Mufti MH. Theophylline for renal function in term neonates with perinatal asphyxia: a randomized, placebo-controlled trial. J Pediatr. 2006;149:180–4.

    Article  CAS  PubMed  Google Scholar 

  11. Merrikhi AR, Ghaemi S, Gheissari A, Shokrani M, Madihi Y, Mousavinasab F. Effects of aminophyllinein preventing renal failure in premature neonates with asphyxia in Isfahan-Iran. J Pak Med Assoc. 2012;62:S48–51.

    CAS  PubMed  Google Scholar 

  12. Al-Wassia H, Alshaikh B, Sauve R. Prophylactic theophylline for the prevention of severe renal dysfunction in term and post-term neonates with perinatal asphyxia: a systematic review and meta-analysis of randomized controlled trials. J Perinatol. 2013;33:271–7.

    Article  CAS  PubMed  Google Scholar 

  13. Johnson, Jacob. Methylxanthine use and outcomes in infants with perinatal asphyxia undergoing therapeutic hypothermia. Pediatric Academic Societies Meeting. April 30, 2019. Baltimore, MD, USA. E-PAS2019:4450.2.

  14. Brown EG, Wood L, Wood S. The medical dictionary for regulatory activities (MedDRA). Drug Saf. 1999;20:109–17.

    Article  CAS  PubMed  Google Scholar 

  15. Kellum JA, Lameire N. Diagnosis, evaluation, and management of acute kidney injury: a KDIGO summary (Part 1). Crit Care. 2013;17:204.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Jetton JG, Boohaker LJ, Sethi SK, Wazir S, Rohatgi S, Soranno DE, et al. Incidence and outcomes of neonatal acute kidney injury (AWAKEN): a multicentre, multinational, observational cohort study. Lancet Child Adolesc Health. 2017;1:184–94.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wang Y, Jadhav PR, Lala M, Gobburu JV. Clarification on precision criteria to derive sample size when designing pediatric pharmacokinetic studies. J Clin Pharm. 2012;52:1601–6.

    Article  CAS  Google Scholar 

  18. Shankaran S, McDonald SA, Laptook AR, Hintz SR, Barnes PD, Das A, et al. Neonatal magnetic resonance imaging pattern of brain injury as a biomarker of childhood outcomes following a trial of hypothermia for neonatal hypoxic-ischemic encephalopathy. J Pediatr. 2015;167:987–93.e3.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Bayley N. Bayley scales of infant and toddler development. San Antonio, TX: Harcourt Assessment, 2006.

  20. Shankaran S, Laptook AR, Pappas A, McDonald SA, Das A, Tyson JE, et al. Effect of depth and duration of cooling on deaths in the NICU among neonates with hypoxic ischemic encephalopathy: a randomized clinical trial. JAMA. 2014;312:2629–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dobson NR, Hunt CE. Caffeine: an evidence-based success story in VLBW pharmacotherapy. Pediatr Res. 2018;84:333–40.

    Article  CAS  PubMed  Google Scholar 

  22. Schmidt B, Roberts RS, Davis P, Doyle LW, Barrington KJ, Ohlsson A, et al. Long-term effects of caffeine therapy for apnea of prematurity. N Engl J Med. 2007;357:1893–902.

    Article  CAS  PubMed  Google Scholar 

  23. Rivkees SA, Wendler CC. Adverse and protective influences of adenosine on the newborn and embryo: implications for preterm white matter injury and embryo protection. Pediatr Res. 2011;69:271–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Endesfelder S, Zaak I, Weichelt U, Buhrer C, Schmitz T. Caffeine protects neuronal cells against injury caused by hyperoxia in the immature brain. Free Radic Biol Med. 2014;67:221–34.

    Article  CAS  PubMed  Google Scholar 

  25. Lee YS, Chou YH. Antioxidant profiles in full term and preterm neonates. Chang Gung Med J 2005;28:846–51.

    PubMed  Google Scholar 

  26. Abu-Shaweesh JM, Martin RJ. Caffeine use in the neonatal intensive care unit. Semin Fetal Neonatal Med. 2017;22:342–7.

    Article  PubMed  Google Scholar 

  27. Back SA, Craig A, Luo NL, Ren J, Akundi RS, Ribeiro I, et al. Protective effects of caffeine on chronic hypoxia-induced perinatal white matter injury. Ann Neurol. 2006;60:696–705.

    Article  CAS  PubMed  Google Scholar 

  28. Bona E, Aden U, Gilland E, Fredholm BB, Hagberg H. Neonatal cerebral hypoxia-ischemia: the effect of adenosine receptor antagonists. Neuropharmacology 1997;36:1327–38.

    Article  CAS  PubMed  Google Scholar 

  29. Kilicdag H. Effects of caffeine on neuronal apoptosis in neonatal hypoxic-ischemic brain injury. J Matern-Fetal Neonatal Med. 2014;27:1470–5.

    Article  CAS  PubMed  Google Scholar 

  30. Vesoulis ZA, McPherson C, Neil JJ, Mathur AM, Inder TE. Early high-dose caffeine increases seizure burden in extremely preterm neonates: a preliminary study. J Caffeine Res. 2016;6:101–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. van Koert RR, Bauer PR, Schuitema I, Sander JW, Visser GH. Caffeine and seizures: a systematic review and quantitative analysis. Epilepsy Behav. 2018;80:37–47.

    Article  PubMed  Google Scholar 

  32. Shankaran S, Barnes PD, Hintz SR, Laptook AR, Zaterka-Baxter KM, McDonald SA, et al. Brain injury following trial of hypothermia for neonatal hypoxic-ischaemic encephalopathy. Arch Dis Child Fetal Neonatal Ed. 2012;97:F398–404.

    PubMed  Google Scholar 

Download references

Funding

Thrasher Research Fund Early Career Award for Dr. Jackson (#14934), and a mentoring award from the National Heart, Lung, and Blood Institute for Dr. Laughon (1K24HL143283).

Author information

Authors and Affiliations

Authors

Contributions

WJ, DG, MML, and RGG designed the study. WJ enrolled patients in the trial, performed the safety analysis, and wrote the first draft of the manuscript. YZL reviewed all brain MRIs. DG, RGG, YZL, and MML reviewed and made significant edits to the manuscript.

Corresponding author

Correspondence to Wesley Jackson.

Ethics declarations

Competing interests

WJ, MML, and YZL have no conflicts of interest to disclose. DG performs consulting services for Tellus Therapeutics unrelated to the content of this article. RGG has received support from industry for research services (https://dcri.org/about-us/conflict-of-interest/).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jackson, W., Gonzalez, D., Greenberg, R.G. et al. A phase I trial of caffeine to evaluate safety in infants with hypoxic-ischemic encephalopathy. J Perinatol 44, 508–512 (2024). https://doi.org/10.1038/s41372-023-01752-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41372-023-01752-y

Search

Quick links